JPH0750173A - Electrolyte for battery and lithium battery using it - Google Patents

Electrolyte for battery and lithium battery using it

Info

Publication number
JPH0750173A
JPH0750173A JP5194511A JP19451193A JPH0750173A JP H0750173 A JPH0750173 A JP H0750173A JP 5194511 A JP5194511 A JP 5194511A JP 19451193 A JP19451193 A JP 19451193A JP H0750173 A JPH0750173 A JP H0750173A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
lithium
general formula
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5194511A
Other languages
Japanese (ja)
Other versions
JP3222644B2 (en
Inventor
Yuko Kanazawa
祐子 金澤
Nozomi Narita
望 成田
Yoshiro Harada
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP19451193A priority Critical patent/JP3222644B2/en
Publication of JPH0750173A publication Critical patent/JPH0750173A/en
Application granted granted Critical
Publication of JP3222644B2 publication Critical patent/JP3222644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To remarkably improve charging and discharging cycle characteristics and a discharging characteristic of a battery by using one of the specific four kinds of lithium salt as electrolyte, and using a specific non-aqueous solvent as a solvent. CONSTITUTION:Electrolyte is selected among LiClO4, Li)CF3SO2)2N, LiPF6, LiCF3SO3. Electrolyte for battery, which contains non-aqueous solvent composed of 1, 3-dioxane-2-on derivative expressed by a formula (R1, R6 means alkyl group expressed by a general formula OCnH2n+1 (n=1-4) or alkoxyl group expressed by a general formula OCnH2n+1 (n=1-4), and R2, R5 means hydrogen or alkyl group expressed by a general formula CnH2n+1 (n=1-4) or alkoxyl expressed by a general formula OCnH2n+1 (n=1-4), is used. Charging and discharging cycle characteristics are thereby remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池用電解液に係わり、
特にリチウム電池などの非水電解液電池に使用される電
解液とその電解液を用いたリチウム電池に関する。
The present invention relates to a battery electrolyte,
In particular, the present invention relates to an electrolytic solution used for a non-aqueous electrolytic solution battery such as a lithium battery and a lithium battery using the electrolytic solution.

【0002】[0002]

【従来の技術】従来から電池用電解液の非水溶媒として
種々のものが検討されている。有用な溶媒としては、γ
−ブチロラクトン(略号:γ−BL、以下同じ),エチ
レンカーボネート(EC),プロピレンカーボネート
(PC),スルホラン(SL),1,3−ジオキソラン
(DO),1,2−ジメトキシエタン(DME),2−
メチルテトラヒドロフラン(2−MeTHF),ジエチ
ルカーボネート(DEC)などが、単独で又はそれら同
士を混合して用いられてきた。
2. Description of the Related Art Various nonaqueous solvents for battery electrolytes have been studied. Useful solvents include γ
-Butyrolactone (abbreviation: γ-BL, the same applies hereinafter), ethylene carbonate (EC), propylene carbonate (PC), sulfolane (SL), 1,3-dioxolane (DO), 1,2-dimethoxyethane (DME), 2 −
Methyltetrahydrofuran (2-MeTHF), diethyl carbonate (DEC), etc. have been used alone or as a mixture thereof.

【0003】特にPCは、単独溶媒としても混合溶媒と
しても、電池用電解液の非水溶媒としてもっとも多く用
いられているが、充放電を繰返すことにより負極リチウ
ムと反応して還元生成物を生じ、これが負極表面上に蓄
積して充放電効率低下の一因となる問題点を残してい
る。
In particular, PC is most often used as a non-aqueous solvent for a battery electrolyte, either as a single solvent or as a mixed solvent, but by repeated charging and discharging, it reacts with negative electrode lithium to produce a reduction product. However, there remains a problem that this accumulates on the surface of the negative electrode and contributes to a decrease in charge / discharge efficiency.

【0004】なお、リチウム一次電池にも、前掲した各
種溶媒、特にPCが用いられている。一次電池では充電
の問題を考慮する必要はないが、放電時に存在する活性
なリチウムによって溶媒が還元されて、電池の性能劣化
を招くことが問題となっている。特に、高温条件下で長
期間に亘って微弱放電を行うと、前記活性なリチウムと
溶媒との反応が長期間に亘って行われるため、著しい電
池性能の劣化を招くことがあった。
The above-mentioned various solvents, especially PC, are also used for the lithium primary battery. In a primary battery, it is not necessary to consider the problem of charging, but the problem is that the active lithium present during discharging reduces the solvent, leading to deterioration in battery performance. In particular, when a weak discharge is performed for a long period under high temperature conditions, the reaction between the active lithium and the solvent is performed for a long period of time, which may result in remarkable deterioration of battery performance.

【0005】本発明者らは、次の構造式The present inventors have made the following structural formula

【化2】 において、R1 〜R6 の全てが水素で占められた構造を
有する1,3−ジオキサン−2−オンが高い比誘電率を
有し、前記PCなど電池用電解液を構成する非水溶媒の
代替物質として好適であるとの知見に基づいて、この
1,3−ジオキサン−2−オンの耐還元性を検討した。
その結果、O1 −C6 ,O3 −C4 における酸素−炭素
間の結合が開裂し易いという問題点が見出されたが、そ
の基本構造におけるC4 ,C6 両炭素に結合する水素の
内の少なくとも一つ以上をアルキル基,又はアルコキシ
ル基に置き換えれば、これら置換基の寄与によってO1
−C6 ,O3 −C4 の酸素−炭素間の結合が開裂し難く
なり、十分に電池電解液用非水溶媒として実用できるレ
ベルの耐還元性が得られることを確認している。
[Chemical 2] In the above, 1,3-dioxan-2-one having a structure in which all of R 1 to R 6 are occupied by hydrogen has a high relative dielectric constant and is a non-aqueous solvent that constitutes the electrolytic solution for a battery such as the PC. Based on the finding that it is suitable as an alternative substance, the reduction resistance of this 1,3-dioxan-2-one was examined.
As a result, a problem was found that the oxygen-carbon bond in O 1 -C 6 , O 3 -C 4 was easily cleaved, but the hydrogen bonded to both C 4 and C 6 carbon in the basic structure was found. If at least one of these is replaced with an alkyl group or an alkoxyl group, O 1 is contributed by these substituents.
It has been confirmed that the oxygen-carbon bond of —C 6 , O 3 —C 4 is less likely to be cleaved, and reduction resistance of a level that can be practically used as a nonaqueous solvent for a battery electrolyte is obtained.

【0006】本発明者らは、このような知見に基づい
て、先に平成4年特許願第137193号を出願済みで
ある。
The present inventors have already filed a patent application No. 137193 of 1992 based on such knowledge.

【0007】[0007]

【発明が解決しようとする課題】前記のC4 ,C6 両炭
素に結合する水素の内の少なくとも一つ以上をアルキル
基,又はアルコキシル基に置き換えて得られる1,3−
ジオキサン−2−オン誘導体は、電池用電解液に用いら
れる非水溶媒として優れた特性を有しているが、組合せ
られる電解質によって、電池性能に優劣が生じることが
明らかとなってきた。
The above-mentioned hydrogen bonded to both C 4 and C 6 carbons can be obtained by substituting at least one or more of them with an alkyl group or an alkoxyl group.
The dioxan-2-one derivative has excellent properties as a non-aqueous solvent used in a battery electrolyte solution, but it has been clarified that battery performance is superior or inferior depending on the combined electrolyte.

【0008】本発明は、以上の点に基づいてなされたも
のであり、その目的は、十分な耐還元性を有するととも
に、電池用電解液として要求される他の物理化学的特性
も完全に満足する非水溶媒を含み、しかも当該非水溶媒
の性能を十分引き出すことができる電解質を備えた電池
用電解液及びその電解液を用いたリチウム電池を提供す
ることにある。
The present invention has been made based on the above points, and an object thereof is to have sufficient reduction resistance and to completely satisfy other physicochemical characteristics required as an electrolytic solution for a battery. Another object of the present invention is to provide an electrolytic solution for a battery including an electrolyte containing the non-aqueous solvent and capable of sufficiently bringing out the performance of the non-aqueous solvent, and a lithium battery using the electrolytic solution.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る電池用電解液は、四種のリチウム塩L
iClO4 ,Li(CF3 SO2 2 N,LiPF6
LiCF3 SO3 の中から一種を選択して電解質として
用いるとともに、次の構造式
In order to achieve the above object, the electrolytic solution for a battery according to the present invention comprises four kinds of lithium salts L.
iClO 4 , Li (CF 3 SO 2 ) 2 N, LiPF 6 ,
One of LiCF 3 SO 3 is selected and used as an electrolyte, and the following structural formula

【化3】 (ただし、式中のR1 ,R6 は、一般式Cn 2n+1(n=
1 〜4 )で表わされるアルキル基、又は一般式OCn
2n+1(n=1 〜4 )で示されるアルコキシル基、式中のR
2 〜R5 は、水素もしくは一般式Cn 2n+1(n=1 〜4
)で表わされるアルキル基、又は一般式OCn 2n+1
(n=1 〜4 )で示されるアルコキシル基である)で表わ
される1,3−ジオキサン−2−オン誘導体を含む非水
溶媒を備えたことを特徴とする。
[Chemical 3] (However, R 1 and R 6 in the formula are represented by the general formula C n H 2n + 1 (n =
An alkyl group represented by 1 to 4) or a general formula OC n H
An alkoxyl group represented by 2n + 1 (n = 1 to 4), R in the formula
2 to R 5 are hydrogen or the general formula C n H 2n + 1 (n = 1 to 4
) Or an alkyl group represented by the general formula OC n H 2n + 1
A non-aqueous solvent containing a 1,3-dioxan-2-one derivative represented by (an alkoxyl group represented by n = 1 to 4) is provided.

【0010】ここで、前記アルキル基は、CH3 ,C2
5 ,C3 7 ,CH(CH3 2,C(CH3 3
中から選択されることが好ましい。
Here, the alkyl group is CH 3 , C 2
It is preferably selected from H 5 , C 3 H 7 , CH (CH 3 ) 2 and C (CH 3 ) 3 .

【0011】また、前記アルコキシル基は、OCH3
OC2 5 ,OC3 7 ,OCH(CH3 2 ,OC
(CH3 3 の中から選択されることが好ましい。
The alkoxyl group is OCH 3 ,
OC 2 H 5 , OC 3 H 7 , OCH (CH 3 ) 2 , OC
It is preferably selected from (CH 3 ) 3 .

【0012】本発明に係るリチウム電池は、金属リチウ
ムあるいはリチウム合金あるいはリチウムイオンを吸
蔵,放出することが可能な炭素質材料からなる負極と、
前記本発明に係る電池用電解液とを備えている。すなわ
ち、本発明に係る電池用電解液は、正極活物質に金属酸
化物あるいは硫化物などを用い、負極に金属リチウムあ
るいはリチウム合金あるいはリチウムイオンを吸蔵,放
出することが可能な炭素質材料を用いたリチウム二次電
池の非水電解液として用いることができるほか、リチウ
ム一次電池の非水電解液として用いることができる。
The lithium battery according to the present invention comprises a negative electrode made of metallic lithium, a lithium alloy, or a carbonaceous material capable of inserting and extracting lithium ions,
The battery electrolyte according to the present invention is provided. That is, the electrolytic solution for a battery according to the present invention uses a metal oxide or a sulfide as a positive electrode active material, and uses a carbonaceous material capable of inserting and extracting metal lithium or a lithium alloy or lithium ion as a negative electrode. In addition to being used as a non-aqueous electrolyte solution for lithium secondary batteries, it can be used as a non-aqueous electrolyte solution for lithium primary batteries.

【0013】[0013]

【作用】LiClO4 ,Li(CF3 SO2 2 N,L
iPF6 ,LiCF3 SO3 の中から選択される一種の
リチウム塩を電解質として備えるとともに、前記構造式
において、少なくともR1 ,R6 にアルキル基又はアル
コキシル基を有する1,3−ジオキサン−2−オン誘導
体からなる非水溶媒を含む電池用電解液を用いたリチウ
ム二次電池の充放電サイクル特性は、同一条件のPC及
びBCを非水溶媒として用いた電池用電解液に比べて顕
著に向上する。また、リチウム一次電池に本発明に係る
非水溶媒を含む電池用電解液を用いると、特に低負荷で
の長期放電時における電池特性の低下を防止でき、放電
容量が増加する。
Function: LiClO 4 , Li (CF 3 SO 2 ) 2 N, L
1,3-dioxane-2-having a lithium salt selected from iPF 6 , LiCF 3 SO 3 as an electrolyte and having an alkyl group or an alkoxyl group in at least R 1 and R 6 in the above structural formula The charge / discharge cycle characteristics of a lithium secondary battery using a battery electrolyte containing a non-aqueous solvent composed of an on-derivative are significantly improved compared to a battery electrolyte using PC and BC as the non-aqueous solvent under the same conditions. To do. Further, when the battery electrolyte containing the non-aqueous solvent according to the present invention is used in a lithium primary battery, it is possible to prevent deterioration of battery characteristics during long-term discharge under a low load, and increase discharge capacity.

【0014】[0014]

【実施例】次に、本発明の実施例について説明する。た
だし、本発明は、以下に述べる実施例のみに限定される
ものではない。
EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited to only the examples described below.

【0015】従来より、電池用電解液の電解質として
は、LiClO4 ,LiPF6 ,LiBF4 ,LiAs
6 ,LiCF3 SO3 ,Li(CF3 SO2 2 Nな
どが多く用いられてきた。本発明者らは、次の表1に示
す9種類の非水溶媒を準備した。
Conventionally, LiClO 4 , LiPF 6 , LiBF 4 , and LiAs have been used as electrolytes for battery electrolytes.
F 6, LiCF 3 SO 3, Li (CF 3 SO 2) , such as 2 N has been used often. The present inventors prepared nine types of non-aqueous solvents shown in Table 1 below.

【0016】[0016]

【表1】 本実施例にあっては、電池用電解液の非水溶媒として、
上記表1中の配合No.2である4,4,6−トリメチル
−1,3−ジオキサン−2−オン+DMC=1:2を選
択し、まず、電解質としての前記各リチウム塩と組合せ
て得られる電解液の電導度を比較した。なお、表1にお
ける,,,,,は、本発明の構成要素であ
るそれぞれ次の物質である。
[Table 1] In this example, as the non-aqueous solvent of the battery electrolyte,
4,4,6-trimethyl-1,3-dioxan-2-one + DMC = 1: 2, which is the formulation No. 2 in Table 1 above, was selected and first obtained by combining with each lithium salt as an electrolyte. The electrical conductivities of the electrolytes were compared. It should be noted that ,,,,, in Table 1 are the following substances which are constituent elements of the present invention.

【0017】[0017]

【表2】 その比較結果を図1に示す。なお、LiAsF6 は、A
sを含んでいるため、安全上製品に採用することは問題
があるので、比較対象から除外した。図1の結果から、
電解質としては、特にLi(CF3 SO2 2 N,Li
CF3 SO3 ,LiPF6 の3種のリチウム塩が優れて
いることが判明した。
[Table 2] The comparison result is shown in FIG. In addition, LiAsF 6 is
Since it contains s, there is a problem in adopting it in products for safety, so it was excluded from the comparison. From the results in Figure 1,
As the electrolyte, especially Li (CF 3 SO 2 ) 2 N, Li
It has been found that three lithium salts of CF 3 SO 3 and LiPF 6 are excellent.

【0018】次に、実際の電池性能を調べるために、こ
れら3種類の電解質を用いて、図2に示すテストセルを
組立てた。
Next, in order to investigate the actual battery performance, a test cell shown in FIG. 2 was assembled using these three kinds of electrolytes.

【0019】まず、LiCoO2 と、導電材としてのカ
ーボン粉末と、バインダとしてのテフロン粉末とを重量
比で100:10:6の割合で混合し圧延してシート状
に形成してなる正極合剤1を、集電体2としてのチタン
製ネットに圧着して正極とした。また、ピッチ系炭素繊
維を焼成することによって得られる炭素質粉末と、バイ
ンダとしてのEPDM(エチレンプロピレンジエンモノ
マー)とを、100:7になるよう混合して圧延してシ
ート状に形成してなる負極合剤3を、集電体4としての
Niネットに圧着して負極とした。正極合剤1,負極合
剤3ともに、その平面形状は10×10mmの正方形で、
正極合剤1の厚みは0.25mm,負極合剤3の厚みは
0.40mmである。また、両合剤1,3間の間隔は2mm
とし、ビーカー5の中に図示のごとく配置した。溶媒と
しては、4,4,6−トリメチル−1,3−ジオキサン
−2−オン+DMC=1:2を用い、電解質の濃度は、
いずれも1mol/l とした。
First, a positive electrode mixture formed by mixing LiCoO 2 , carbon powder as a conductive material, and Teflon powder as a binder in a weight ratio of 100: 10: 6 and rolling to form a sheet. 1 was pressure-bonded to a titanium net as the current collector 2 to obtain a positive electrode. Further, a carbonaceous powder obtained by firing pitch-based carbon fiber and EPDM (ethylene propylene diene monomer) as a binder are mixed and rolled in a ratio of 100: 7 to form a sheet. The negative electrode mixture 3 was pressure-bonded to a Ni net as the current collector 4 to obtain a negative electrode. Both the positive electrode mixture 1 and the negative electrode mixture 3 have a planar shape of a square of 10 × 10 mm,
The thickness of the positive electrode mixture 1 is 0.25 mm, and the thickness of the negative electrode mixture 3 is 0.40 mm. In addition, the space between the mixture 1 and 2 is 2 mm.
And placed in the beaker 5 as shown. As the solvent, 4,4,6-trimethyl-1,3-dioxan-2-one + DMC = 1: 2 was used, and the concentration of the electrolyte was
Both were 1 mol / l.

【0020】なお、正極の理論充電容量は8.2mAh 、
負極の理論充電容量は7mAh である。正極の理論充電容
量を負極よりも大きくしてあるのは、最初の充電後、次
の放電に関与できるリチウム量が充電容量よりも減少し
てしまうからである。これは、最初の充放電サイクルに
限って、充電されたリチウムが炭素質負極中に一定量取
り込まれ、次回からは放電できなくなることによる。
The theoretical charge capacity of the positive electrode is 8.2 mAh,
The theoretical charge capacity of the negative electrode is 7 mAh. The reason why the theoretical charge capacity of the positive electrode is made larger than that of the negative electrode is that the amount of lithium that can participate in the next discharge after the first charge becomes smaller than the charge capacity. This is because the charged lithium is taken in a certain amount into the carbonaceous negative electrode only in the first charge / discharge cycle and cannot be discharged from the next time.

【0021】次に、前記の電解液を使用した前記仕様の
各テストセルについて、充電電流1mA,放電電流2mAの
定電流充放電を行わせる充放電サイクル特性試験を実施
したところ、図3に示す結果を得た。放電終止電圧は
2.8V 、充電電圧は4.15V を上限とした。また、
上記と同様のテストセルを組立て、同様の充放電サイク
ル特性試験を行った。この場合、溶媒としては、表1の
配合NO. 1〜9を用い、電解質はLi(CF3 SO2
2 Nを1mol/l 溶媒に溶解させた。
Next, a charge-discharge cycle characteristic test was performed on each test cell of the above specifications using the above-mentioned electrolytic solution, in which a constant current charge / discharge of a charging current of 1 mA and a discharging current of 2 mA was performed. I got the result. The discharge end voltage was 2.8V and the charge voltage was 4.15V. Also,
A test cell similar to that described above was assembled, and a similar charge / discharge cycle characteristic test was performed. In this case, as the solvent, the compounding Nos. 1 to 9 shown in Table 1 were used, and the electrolyte was Li (CF 3 SO 2 ).
2 N was dissolved in 1 mol / l solvent.

【0022】前記特性試験の結果を示す図3から明らか
なように、電解質としてLi(CF3 SO2 2 Nを用
いた場合に、特に優れた特性を得られることが判明し
た。このことは、図4で明らかな通り、本発明の構成要
素である他の溶媒についても同様であり、比較例より優
れていることがわかる。以上、本実施例から、本発明に
係る1,3−ジオキサン−2−オン誘導体を含む非水溶
媒とLi(CF3 SO22 N,LiCF3 SO3 ,L
iPF6 の内から選択された一種からなる電解質とを備
えた非水電解液を用いることにより、電池の特性を大幅
に向上できることが確認された。さらに、電解質として
Li(CF3 SO2 2 Nを用いると、電池特性の向上
効果は一層顕著である。
As is clear from FIG. 3 showing the result of the characteristic test, it was found that particularly excellent characteristics can be obtained when Li (CF 3 SO 2 ) 2 N is used as the electrolyte. As is clear from FIG. 4, this is the same for the other solvents that are the constituent elements of the present invention, and it can be seen that this is superior to the comparative example. Above, the present embodiment, the non-aqueous containing 1,3-dioxan-2-one derivatives according to the present invention a solvent and Li (CF 3 SO 2) 2 N, LiCF 3 SO 3, L
It was confirmed that the characteristics of the battery can be significantly improved by using the non-aqueous electrolytic solution provided with the electrolyte made of one kind selected from iPF 6 . Further, when Li (CF 3 SO 2 ) 2 N is used as the electrolyte, the effect of improving the battery characteristics is more remarkable.

【0023】[0023]

【発明の効果】以上、各実施例によって詳細に説明した
ように、本発明に係る1,3−ジオキサン−2−オン誘
導体を溶媒構成物質として用い、電解質として、LiC
lO4,Li(CF3 SO2 2 N,LiPF6 ,Li
CF3 SO3 の中から選択される一種のリチウム塩を用
いた電解液を採用することにより、電池の性能を大幅に
向上させることができる。すなわち、本発明に係る電解
液を用いたリチウム二次電池にあっては、充放電サイク
ル特性を著しく改善することができ、また、本発明に係
る電解液をリチウム一次電池に適用した場合には、特に
低負荷での長期に亘る放電時の特性の劣化を防止でき
る。
As described above in detail with reference to each example, the 1,3-dioxan-2-one derivative according to the present invention is used as a solvent constituent substance, and LiC is used as an electrolyte.
lO 4 , Li (CF 3 SO 2 ) 2 N, LiPF 6 , Li
By adopting an electrolytic solution containing one kind of lithium salt selected from CF 3 SO 3 , the performance of the battery can be significantly improved. That is, in the lithium secondary battery using the electrolytic solution according to the present invention, the charge and discharge cycle characteristics can be significantly improved, and when the electrolytic solution according to the present invention is applied to a lithium primary battery, In particular, it is possible to prevent the deterioration of the characteristics when discharging for a long period under a low load.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電解液の電導度を比較したグラフ
である。
FIG. 1 is a graph comparing the electric conductivities of electrolytic solutions according to the present invention.

【図2】実施例におけるテストセルの模式図である。FIG. 2 is a schematic diagram of a test cell in an example.

【図3】テストセルの充放電サイクル特性を比較したグ
ラフである。
FIG. 3 is a graph comparing charge-discharge cycle characteristics of test cells.

【図4】他の溶媒を用いたテストセルの充放電サイクル
特性を比較したグラフである。
FIG. 4 is a graph comparing charge-discharge cycle characteristics of test cells using other solvents.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 四種のリチウム塩LiClO4 ,Li
(CF3 SO2 2 N,LiPF6 ,LiCF3 SO3
の中から一種を選択して電解質として用いるとともに、
次の構造式 【化1】 (ただし、式中のR1 ,R6 は、一般式Cn 2n+1(n=
1 〜4 )で表わされるアルキル基、又は一般式OCn
2n+1(n=1 〜4 )で示されるアルコキシル基、式中のR
2 〜R5 は、水素もしくは一般式Cn 2n+1(n=1 〜4
)で表わされるアルキル基、又は一般式OCn 2n+1
(n=1 〜4 )で示されるアルコキシル基である)で表わ
される1,3−ジオキサン−2−オン誘導体を含む非水
溶媒を備えたことを特徴とする電池用電解液。
1. Four kinds of lithium salts LiClO 4 , Li
(CF 3 SO 2 ) 2 N, LiPF 6 , LiCF 3 SO 3
While selecting one from among and using it as an electrolyte,
The following structural formula: (However, R 1 and R 6 in the formula are represented by the general formula C n H 2n + 1 (n =
An alkyl group represented by 1 to 4) or a general formula OC n H
An alkoxyl group represented by 2n + 1 (n = 1 to 4), R in the formula
2 to R 5 are hydrogen or the general formula C n H 2n + 1 (n = 1 to 4
) Or an alkyl group represented by the general formula OC n H 2n + 1
An electrolytic solution for a battery, comprising a non-aqueous solvent containing a 1,3-dioxan-2-one derivative represented by (which is an alkoxyl group represented by n = 1 to 4).
【請求項2】 前記アルキル基がCH3 ,C2 5 ,C
3 7 ,CH(CH3 2 ,C(CH3 3 の中から選
択されることを特徴とする請求項1に記載の電池用電解
液。
2. The alkyl group is CH 3 , C 2 H 5 , C
The electrolytic solution for a battery according to claim 1, which is selected from 3 H 7 , CH (CH 3 ) 2 and C (CH 3 ) 3 .
【請求項3】 前記アルコキシル基がOCH3 ,OC2
5 ,OC3 7 ,OCH(CH3 2 ,OC(C
3 3 の中から選択されることを特徴とする請求項1
に記載の電池用電解液。
3. The alkoxyl group is OCH 3 , OC 2
H 5 , OC 3 H 7 , OCH (CH 3 ) 2 , OC (C
H 3 ) 3 selected from:
The electrolytic solution for a battery according to.
【請求項4】 金属リチウム、又はリチウム合金、又は
リチウムイオンを吸蔵,放出することが可能な炭素質材
料からなる負極と、請求項1から請求項3までのいずれ
か一つの項に記載の電池用電解液とを備えたことを特徴
とするリチウム電池。
4. The negative electrode made of metallic lithium, a lithium alloy, or a carbonaceous material capable of inserting and extracting lithium ions; and the battery according to claim 1. Lithium battery, which is provided with an electrolytic solution for use.
JP19451193A 1993-08-05 1993-08-05 Battery electrolyte and lithium battery using the same Expired - Lifetime JP3222644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19451193A JP3222644B2 (en) 1993-08-05 1993-08-05 Battery electrolyte and lithium battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19451193A JP3222644B2 (en) 1993-08-05 1993-08-05 Battery electrolyte and lithium battery using the same

Publications (2)

Publication Number Publication Date
JPH0750173A true JPH0750173A (en) 1995-02-21
JP3222644B2 JP3222644B2 (en) 2001-10-29

Family

ID=16325751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19451193A Expired - Lifetime JP3222644B2 (en) 1993-08-05 1993-08-05 Battery electrolyte and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP3222644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1339121A2 (en) * 2002-02-20 2003-08-27 Wilson Greatbatch Technologies, Inc. Organic cyclic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1339121A2 (en) * 2002-02-20 2003-08-27 Wilson Greatbatch Technologies, Inc. Organic cyclic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
JP2004039625A (en) * 2002-02-20 2004-02-05 Wilson Greatbatch Technologies Inc Organic cyclic carbonate additive for nonaqueous electrolyte in alkaline metal electrochemical battery
EP1339121A3 (en) * 2002-02-20 2005-05-18 Wilson Greatbatch Technologies, Inc. Organic cyclic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US7033707B2 (en) 2002-02-20 2006-04-25 Wilson Greatbatch Technologies, Inc. Organic cyclic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
JP4564237B2 (en) * 2002-02-20 2010-10-20 グレイトバッチ リミテッド Organic cyclic carbonate additives for non-aqueous electrolytes in alkali metal electrochemical cells

Also Published As

Publication number Publication date
JP3222644B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
EP1882283B1 (en) N-oxide redox shuttles for rechargeable lithium-ion cell
US7341807B2 (en) Non-flammable nonaqueous electrolyte solution and lithium ion cell using same
KR101108945B1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US8021782B2 (en) Nonaqueous electrolyte secondary battery
US6479192B1 (en) Non-aqueous electrolyte for electrochemical systems and lithium secondary battery comprising the same
US8580440B2 (en) Non-aqueous electrolytic solution containing additive for increasing capacity of lithium-ion cell and lithium-ion cell using same
JPH09147913A (en) Nonaqueous electrolyte battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
US7226703B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH0878052A (en) Lithium secondary battery
JPH09147910A (en) Lithium secondary battery
JPH07211351A (en) Nonaqueous electrolyte for secondary battery
JP5110057B2 (en) Lithium secondary battery
JP3438364B2 (en) Non-aqueous electrolyte
JP3222644B2 (en) Battery electrolyte and lithium battery using the same
JP2004095325A (en) Lithium secondary battery
EP4078711B1 (en) Electrolyte for li secondary batteries
JP4432397B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3443290B2 (en) Non-aqueous electrolyte battery
JP2003331914A (en) Nonaqueous electrolyte secondary cell
US20230395866A1 (en) Electrochemical cell with a specific liquid electrolyte
US20230395850A1 (en) Lithium-ion battery electrolyte and lithium-ion battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

EXPY Cancellation because of completion of term