JPH0748478B2 - Vapor phase growth equipment - Google Patents

Vapor phase growth equipment

Info

Publication number
JPH0748478B2
JPH0748478B2 JP4182752A JP18275292A JPH0748478B2 JP H0748478 B2 JPH0748478 B2 JP H0748478B2 JP 4182752 A JP4182752 A JP 4182752A JP 18275292 A JP18275292 A JP 18275292A JP H0748478 B2 JPH0748478 B2 JP H0748478B2
Authority
JP
Japan
Prior art keywords
gas
introduction port
organic metal
hydride
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4182752A
Other languages
Japanese (ja)
Other versions
JPH06244110A (en
Inventor
智郁 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4182752A priority Critical patent/JPH0748478B2/en
Publication of JPH06244110A publication Critical patent/JPH06244110A/en
Publication of JPH0748478B2 publication Critical patent/JPH0748478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相成長装置に関し、特
にIII−V族化合物半導体等の気相結晶成長装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus, and more particularly to a vapor phase crystal growth apparatus for III-V compound semiconductors.

【0002】[0002]

【従来の技術】GaInPやAlGaInPのような化
合物半導体の従来の気相成長装置は、有機金属であるト
リエチルガリウム(Ga(C2 5 3 ,以下TEGと
略す)やトリメチルインジウム(In(CH3 3 ,以
下、TMIと略す)やトリメチルアルミニウム(Al
(CH3 3 ,以下、TMAと略す)とハイドライドガ
スであるアルシン(AsH3 )やホスフィン(PH3
の組み合わせによる気相反応で気相成長せしめていた。
しかしながら、例えばGaInP(ガリウムインジウム
リン)の結晶を成長するような場合は、常温で反応を起
こし、中間生成物ができてしまい、半導体ウェファー上
に良質な結晶が出来ない。このような場合、図3のよう
にIII族ガスである有機金属ガスの導入ポート16
(TEG,TMI)とハイドライドガス等のV族ガスの
導入ポート17(PH3 )より反応炉内へ別々に原料ガ
スを導入し、半導体ウェファー18上まで合流させない
ようにし、中間生成物ができる可能性を低くしている。
また、他の従来の気相成長装置では、図4のように、有
機金属ガスとV族ガスの一方の原料ガスを導入する第1
のガス導入ポート19と他方の原料ガスを導入する第2
のガス導入ポート20と、第1のガス導入ポート19よ
り導入されたガスを拡散させるディフューザ21とを有
し、第2のガス導入ポート20はこのディフューザ21
以降に設置され、半導体ウェファー22上まで2つの原
料ガスが合流しないようにして中間生成物ができる可能
性を低くしている。更に他の従来例では図5のように第
1の原料ガス導入ポート23と第2の原料ガス導入ポー
ト24とは別の異なる新たな水素,窒素又は不活性ガス
導入ポート25をこれらの間に設けることで、半導体ウ
ェファー26上まで2つの原料ガスが合流しないように
して中間生成物ができる可能性を低くしている。
2. Description of the Related Art Conventional vapor phase growth apparatuses for compound semiconductors such as GaInP and AlGaInP are organic metals such as triethylgallium (Ga (C 2 H 5 ) 3 , hereinafter abbreviated as TEG) and trimethylindium (In (CH 3 ) 3 , hereinafter abbreviated as TMI) and trimethylaluminum (Al
(CH 3 ) 3 , hereinafter abbreviated as TMA) and hydride gases arsine (AsH 3 ) and phosphine (PH 3 ).
The vapor phase reaction was caused by the combination of the above.
However, in the case of growing a crystal of GaInP (gallium indium phosphide), for example, a reaction occurs at room temperature to form an intermediate product, and a good quality crystal cannot be formed on a semiconductor wafer. In such a case, as shown in FIG. 3, the introduction port 16 of the organometallic gas which is a group III gas is used.
(TEG, TMI) and a group V gas such as hydride gas are introduced into the reaction furnace separately from the introduction port 17 (PH 3 ) so that an intermediate product can be formed by preventing them from merging onto the semiconductor wafer 18. The sex is low.
Further, in another conventional vapor phase growth apparatus, as shown in FIG. 4, a first source gas of one of an organometallic gas and a group V gas is introduced.
Second gas introduction port 19 and second raw material gas introduction
Gas introduction port 20 and a diffuser 21 for diffusing the gas introduced through the first gas introduction port 19, and the second gas introduction port 20 includes this diffuser 21.
It is installed thereafter to prevent the two raw material gases from merging to the upper side of the semiconductor wafer 22 to reduce the possibility of forming an intermediate product. In still another conventional example, as shown in FIG. 5, a new hydrogen, nitrogen or inert gas introduction port 25 different from the first raw material gas introduction port 23 and the second raw material gas introduction port 24 is provided between them. By providing it, the two source gases are prevented from merging to above the semiconductor wafer 26, and the possibility of forming an intermediate product is lowered.

【0003】[0003]

【発明が解決しようとする課題】この従来の気相成長装
置では、ウェファーの大面積化による量産が難しく、半
導体ウェファーが直径で5cm(2インチ)以上で膜厚
均一性5%以内格子整合度Δa/aで±0.3+10-3
以内を実現できないという問題があった。さらにカウン
タムウェル層を成長するような場合膜厚50オングスト
ローム程度を均一性よく直径5cm(2インチ)ウェフ
ァーの表面に成長しずらいという問題があった。
With this conventional vapor phase epitaxy apparatus, it is difficult to mass-produce by increasing the area of the wafer, and the semiconductor wafer has a diameter of 5 cm (2 inches) or more and the film thickness uniformity is within 5%. Δa / a ± 0.3 +10 -3
There was a problem that it could not be achieved. Further, in the case of growing a counterwell layer, there is a problem that it is difficult to grow a film having a thickness of about 50 angstroms on a wafer having a diameter of 5 cm (2 inches) with good uniformity.

【0004】[0004]

【課題を解決するための手段】本発明によれば、ガスを
熱分解させ、結晶成長させる反応炉において、有機金属
であるTEGやTMIやTMAとハイドライドガスであ
るアルシンやホスフィンが中間反応を生じないように別
々に導入する複数のガス導入ポートを設け、これら両ガ
スが半導体ウェファー上で均一な流れとなるように、そ
の出口にそれぞれディフューザと呼ばれる小さな穴の開
いた邪魔板を設け、この邪魔板の穴は有機金属ガスの出
口流速がハイドライドガスの出口流速の1〜1.5倍と
なるように穴の大きさが調整されており、両ガスを効率
よく半導体ウェファーに当てるために、ガス導入ポート
の周囲に水素,窒素又は不活性ガスを半導体ウェファー
側に流すための不活性ガス導入ポートとを設けた気相成
長装置を得る。
According to the present invention, an organic metal such as TEG, TMI or TMA and an hydride gas such as arsine or phosphine undergo an intermediate reaction in a reaction furnace for thermally decomposing a gas and growing a crystal. In order to prevent both these gases from flowing uniformly on the semiconductor wafer, a plurality of baffles with small holes, called diffusers, are installed at the outlets of these ports so that they both flow uniformly on the semiconductor wafer. The hole size of the holes in the plate is adjusted so that the outlet flow velocity of the organometallic gas is 1 to 1.5 times the outlet flow velocity of the hydride gas. A vapor phase growth apparatus is provided which is provided with an inert gas introduction port for flowing hydrogen, nitrogen or an inert gas to the semiconductor wafer side around the introduction port.

【0005】[0005]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0006】図1は本発明の一実施例の気相成長装置の
概略図で、図2は図1に示した反応部の詳細図である。
この気相成長装置は、有機金属,ハイドライドガス及び
キャリアガスである水素及びパージガスであるアルゴン
を制御,供給するガスミキサ1と有機金属であるTE
G,TMI,TMAとハイドライドガスであるアルシン
(AsH3 ),ホスフィン(PH3 )を高周波加熱5に
よって600〜800℃に加熱されたサセプタ7及び半
導体ウェファー6上で熱分解し、半導体ウェファー6上
にGaAs,GaIP,AlGaIP等の薄膜を結晶成
長するための反応部2とこの反応部2を所望の圧力に制
御し、未反応ガスや結晶ダストを排気する排気部3とサ
セプタ7及び半導体ウェファー6を大気に触れないよう
に反応部2まで供給,取出すための搬送部4とこれら4
つのユニットを制御するためのコントローラ(図示せ
ず)とを備えている。
FIG. 1 is a schematic view of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 is a detailed view of the reaction section shown in FIG.
This vapor-phase growth apparatus is a gas mixer 1 for controlling and supplying an organic metal, hydride gas, hydrogen which is a carrier gas, and argon which is a purge gas, and TE which is an organic metal.
G, TMI, TMA and hydride gas arsine (AsH 3 ) and phosphine (PH 3 ) are thermally decomposed on the susceptor 7 and the semiconductor wafer 6 heated to 600 to 800 ° C. by the high frequency heating 5, and then on the semiconductor wafer 6. In addition, a reaction part 2 for crystal growth of a thin film of GaAs, GaIP, AlGaIP or the like, and an exhaust part 3 for controlling the reaction part 2 to a desired pressure to exhaust unreacted gas or crystal dust, a susceptor 7, and a semiconductor wafer 6. And a conveying section 4 for supplying and removing the gas to and from the reaction section 2 so as not to come into contact with the atmosphere.
And a controller (not shown) for controlling the two units.

【0007】有機金属であるTEG,TMI,TMA等
はバブラと呼ばれる金属の密閉ボトルに収納されてお
り、有機金属の反応部2への供給量は、各有機金属の蒸
気圧,バブラの温度,バブラ内に流すマスフローコント
ローラにより制御された水素流量によりお決められる。
ハイドライドガスであるアルシン,ホスフィン等は、高
圧ボンベに収納されており、このハイドライドガスの反
応部2への供給量は、マスフローコントローラにより制
御され決められる。この制御された有機金属とハイドラ
イドガスは、それぞれ有機金属導入ポート9とハイドラ
イド導入ポート8により反応部2の内部に導入される。
このそれぞれの導入ポート8,9は、同心円状に分離さ
れたまま、半導体ウェファー6上部まで導かれる。その
出口は、それぞれディフューザ11,12が形成されて
いる。このディフューザ11,12は、導入ガスを均一
よく分布させるため、小さな穴が均一よく並んでいる。
さらにこのディフューザの穴14,15のそれぞれの総
面積比はほぼ1:1となっている。また別のシャワーガ
ス導入ポート10によりシャワーガスの水素を供給し、
有機金属を含むガスとハイドライドガスの周囲に流し、
両ガスを整流させ、効率よく両ガスを半導体ウェファー
6に当てる。このシャワーガス部にも均一性を向上させ
るためディフューザ13が設けられている。
The organic metals TEG, TMI, TMA, etc. are contained in a metal closed bottle called a bubbler, and the supply amount of the organic metal to the reaction part 2 is the vapor pressure of each organic metal, the bubbler temperature, It is determined by the hydrogen flow rate controlled by the mass flow controller in the bubbler.
The hydride gases arsine, phosphine, etc. are housed in a high-pressure cylinder, and the supply amount of this hydride gas to the reaction part 2 is controlled and determined by the mass flow controller. The controlled organic metal and hydride gas are introduced into the reaction section 2 through the organic metal introduction port 9 and the hydride introduction port 8, respectively.
The respective introduction ports 8 and 9 are guided to the upper portion of the semiconductor wafer 6 while being concentrically separated. Diffusers 11 and 12 are formed at the outlets, respectively. In the diffusers 11 and 12, small holes are uniformly arranged in order to uniformly distribute the introduced gas.
Further, the total area ratio of the holes 14 and 15 of the diffuser is approximately 1: 1. Further, the shower gas hydrogen is supplied through another shower gas introduction port 10,
Flow around the gas containing organic metal and hydride gas,
Both gases are rectified, and both gases are efficiently applied to the semiconductor wafer 6. A diffuser 13 is also provided in the shower gas portion to improve the uniformity.

【0008】例えば、GaIP(ガリウムインジウムリ
ン)の薄膜を成長する場合、有機金属はTEG,TMI
が使用される、有機金属導入ポート9より供給されるト
ータルガス流量はキャリアガスである水素を含め2.0
リットル/minとする。ハイドライドガスはホフフィ
ンが使用される。ハイドライドガス導入ポート8より供
給されるトータルガス流量は、キャリアガスである水素
を含め1.5リットル/minとする。このとき、両ガ
スのディフューザ11,12の出口の穴14,15の総
面積比はほぼ1:1であるので、出口の流速はほぼ有機
金属とハイドライドガスで1.3対1となる。両ガスの
流速差は1〜1.5倍以内にする。
For example, when a GaIP (gallium indium phosphide) thin film is grown, the organic metal is TEG or TMI.
Is used, and the total gas flow rate supplied from the organometallic introduction port 9 is 2.0 including the carrier gas hydrogen.
L / min. Hoffin is used for hydride gas. The total gas flow rate supplied from the hydride gas introduction port 8 is 1.5 liter / min, including hydrogen as a carrier gas. At this time, since the total area ratio of the holes 14 and 15 at the outlets of the diffusers 11 and 12 for both gases is about 1: 1, the flow velocity at the outlet is about 1.3 to 1 for the organic metal and the hydride gas. The flow velocity difference between the two gases should be within 1 to 1.5 times.

【0009】さらにシャワーガスは6リットル/min
流す。半導体ウェファー6は温度700℃程度、成長圧
力は30Torr程度である。この結果膜厚分布は直径
5cm(2インチ)の半導体ウェファー6の表面内で3
%以内を実現し、格子整合度分布においても直径5cm
(2インチ)の面内でΔa/aは0.15×13-3を実
現した。
Further, the shower gas is 6 liters / min.
Shed. The semiconductor wafer 6 has a temperature of about 700 ° C. and a growth pressure of about 30 Torr. As a result, the film thickness distribution is 3 on the surface of the semiconductor wafer 6 having a diameter of 5 cm (2 inches).
% Within 5% and diameter 5 cm in lattice matching distribution
Within the (2 inch) plane, Δa / a of 0.15 × 13 −3 was realized.

【0010】また、レーザダイオードの結晶の性能向上
のため、薄膜(50〜1000オングストローム)の連
続成長が必要となるが、有機金属,ハイドライドガスが
効率よく半導体ウェファー6に当り、反応部2内部が層
流となり、ガスの急峻性が向上したことにより、50オ
ングストローム程度の薄膜連続成長が可能となった。
In order to improve the crystal performance of the laser diode, it is necessary to continuously grow a thin film (50 to 1000 angstrom), but organic metal and hydride gas efficiently hit the semiconductor wafer 6 and the inside of the reaction part 2 is A laminar flow and improved gas steepness enabled continuous thin film growth of about 50 Å.

【0011】[0011]

【発明の効果】以上説明したように、本発明では気相成
長装置の反応部において有機金属であるTEG,TM
I,TMAとハイドライドガスであるアルシン,ホスフ
ィンを別々のポートにより導入し、半導体ウェファー上
まで混合させずそれぞれの出口部にディフューザを設
け、さらにその出口の穴の面積比を有機金属を含むガス
の出口流速がハイドライドガスの出口流速の1〜1.5
倍にし、また水素,窒素又は不活性ガスをさらに別のポ
ートより導入させ、有機金属とハイドライドガスの周囲
に均一よく流したことで、TEG,TMI,TMAとア
ルシン,ホスフィンの中間反応を低減させGaInPや
AlGaInPのような結晶においても中間生成物によ
る結晶品質の低下を起こさず結晶成長を行なうことが可
能となった。また反応部内のガス流の層流化を実現した
ことにより、均一性の向上,ガスの切換え急峻性が向上
した。よって膜厚の均一性では直径5cm(2インチ)
のウェファー面内で5%以内、格子整合度分布では直径
5cm(2インチ)のウェアーの面内でΔa/a≦±
0.3×10-3を実現し、量産性の優れた結晶を成長す
ることが可能となった。さらに、50オングストローム
程度の薄膜が連続に成長できることが可能となり、レー
ザダイオードのカウンタムウェル成長ができるという効
果を有する。
As described above, in the present invention, TEG, TM which is an organic metal is used in the reaction part of the vapor phase growth apparatus.
I, TMA and hydride gases arsine and phosphine are introduced through separate ports, diffusers are provided at the respective outlets without mixing up to the semiconductor wafer, and the area ratio of the holes at the outlets is set to The outlet flow velocity is 1 to 1.5 of the outlet flow velocity of hydride gas.
By doubling and introducing hydrogen, nitrogen or an inert gas from another port and flowing it evenly around the organic metal and hydride gas, the intermediate reaction between TEG, TMI, TMA and arsine, phosphine was reduced. Even in crystals such as GaInP and AlGaInP, it has become possible to perform crystal growth without causing deterioration of crystal quality due to intermediate products. Also, by realizing the laminar flow of the gas flow in the reaction section, the uniformity was improved and the steepness of gas switching was improved. Therefore, for film thickness uniformity, the diameter is 5 cm (2 inches).
Within 5% on the wafer surface of the wafer and Δa / a ≦ ± on the surface of the wear with a lattice matching distribution of 5 cm (2 inches) in diameter.
Realizing 0.3 × 10 −3 , it became possible to grow crystals with excellent mass productivity. Furthermore, it becomes possible to continuously grow a thin film of about 50 angstroms, which has the effect of enabling counterwell growth of the laser diode.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略図FIG. 1 is a schematic view of an embodiment of the present invention.

【図2】図1に示した反応部の詳細図FIG. 2 is a detailed view of the reaction part shown in FIG.

【図3】第1の従来技術の気相成長装置の概略図FIG. 3 is a schematic diagram of a first prior art vapor phase growth apparatus.

【図4】第2の従来技術の気相成長装置の概略図FIG. 4 is a schematic diagram of a second prior art vapor phase growth apparatus.

【図5】第3の従来技術の気相成長装置の概略図FIG. 5 is a schematic diagram of a third prior art vapor phase growth apparatus.

【符号の説明】[Explanation of symbols]

1 ガスミキサ 2 反応部 3 排気部 4 搬送部 5 高周波加熱 6 半導体ウェファー 7 サセプタ 8 ハイドライドガス導入ポート 9 有機金属導入ポート 10 シャワーガス導入ポート 11 ディフューザ 12 ディフューザ 13 ディフューザ 14 穴 15 穴 16 有機金属ガスポート 17 V族ガス導入ポート 18 半導体ウェファー 19 第1のガス導入ポート 20 第2のガス導入ポート 21 ディフューザ 22 半導体ウェファー 23 第1のガス導入ポート 24 第2のガス導入ポート 25 不活性ガス導入ポート 26 半導体ウェファー 1 Gas Mixer 2 Reaction Part 3 Exhaust Part 4 Transfer Part 5 High Frequency Heating 6 Semiconductor Wafer 7 Susceptor 8 Hydride Gas Introducing Port 9 Organic Metal Introducing Port 10 Shower Gas Introducing Port 11 Diffuser 12 Diffuser 13 Diffuser 14 Hole 15 Hole 16 Organic Metal Gas Port 17 Group V gas introduction port 18 semiconductor wafer 19 first gas introduction port 20 second gas introduction port 21 diffuser 22 semiconductor wafer 23 first gas introduction port 24 second gas introduction port 25 inert gas introduction port 26 semiconductor wafer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機金属を含むガスとハイドライドガス
が別々に供給され、且つ半導体ウェファー直前まで合流
しないようにされたガス導入ポートと、該ガス導入ポー
トから導入された前記有機金属を含むガスと前記ハイド
ライドガスの前記半導体ウェファー上への供給状態を制
御する多数の小さな穴を有した邪魔板と、前記ガス導入
ポートから導入された前記有機金属を含むガスと前記ハ
イドライドガスとの流れの周囲に水素,窒素又はその他
不活性ガスを流すためのガス供給ポートとを有すること
を特徴とする気相成長装置。
1. A gas introduction port to which an organic metal-containing gas and a hydride gas are separately supplied, and which is prevented from joining until just before a semiconductor wafer, and a gas containing the organic metal introduced from the gas introduction port. A baffle plate having a large number of small holes for controlling the supply state of the hydride gas onto the semiconductor wafer, and around the flow of the gas containing the organic metal introduced from the gas introduction port and the hydride gas. A vapor phase growth apparatus having a gas supply port for flowing hydrogen, nitrogen or other inert gas.
【請求項2】 前記邪魔板の前記多数の小さな穴は、該
邪魔板出口での流速が前記有機金属を含むガスが前記ハ
イドライドガスの1〜1.5倍となるように穴面積が調
整されていることを特徴とする請求項1記載の気相成長
装置。
2. The hole areas of the plurality of small holes of the baffle plate are adjusted so that the flow velocity at the outlet of the baffle plate is 1 to 1.5 times that of the gas containing the organic metal as compared with the hydride gas. The vapor phase growth apparatus according to claim 1, wherein
JP4182752A 1992-07-10 1992-07-10 Vapor phase growth equipment Expired - Fee Related JPH0748478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4182752A JPH0748478B2 (en) 1992-07-10 1992-07-10 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4182752A JPH0748478B2 (en) 1992-07-10 1992-07-10 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH06244110A JPH06244110A (en) 1994-09-02
JPH0748478B2 true JPH0748478B2 (en) 1995-05-24

Family

ID=16123818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4182752A Expired - Fee Related JPH0748478B2 (en) 1992-07-10 1992-07-10 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0748478B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091850A (en) * 2002-08-30 2004-03-25 Tokyo Electron Ltd Treatment apparatus and treatment method
JP6319975B2 (en) * 2013-09-11 2018-05-09 学校法人 名城大学 Method for producing nitride semiconductor mixed crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CRYSTAL GROWTH94=1989 *

Also Published As

Publication number Publication date
JPH06244110A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
US5637146A (en) Method for the growth of nitride based semiconductors and its apparatus
JP3879173B2 (en) Compound semiconductor vapor deposition method
JPH08325094A (en) Preparation of iii-v group compound semiconductor
JP3485285B2 (en) Vapor phase growth method and vapor phase growth apparatus
JPH08316151A (en) Manufacture of semiconductor
JPH0748478B2 (en) Vapor phase growth equipment
JPH0677136A (en) Method and device for vapor growing compound semiconductor thin film crystal
JP3772621B2 (en) Vapor phase growth method and vapor phase growth apparatus
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
JP3702403B2 (en) Vapor growth method
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
JP3221318B2 (en) Vapor phase growth method of III-V compound semiconductor
JP2827736B2 (en) Vapor growth method
JP3577880B2 (en) Method for manufacturing group 3-5 compound semiconductor
JP2768023B2 (en) Vapor growth method
JPH06132227A (en) Vapor growth method
JPS59170000A (en) Device for crystal growth
JP2712910B2 (en) Vapor growth method
JPH0697076A (en) Vapor growth method of thin film
JPH01206618A (en) Organic metal vapor growth method
JP2982332B2 (en) Vapor growth method
JPH0265125A (en) Reaction pipe of mocvd crystal growth device
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JP2982333B2 (en) Vapor growth method
JP2784384B2 (en) Vapor growth method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970909

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees