JPH0697076A - Vapor growth method of thin film - Google Patents

Vapor growth method of thin film

Info

Publication number
JPH0697076A
JPH0697076A JP24475792A JP24475792A JPH0697076A JP H0697076 A JPH0697076 A JP H0697076A JP 24475792 A JP24475792 A JP 24475792A JP 24475792 A JP24475792 A JP 24475792A JP H0697076 A JPH0697076 A JP H0697076A
Authority
JP
Japan
Prior art keywords
thin film
group
compound
supplied
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24475792A
Other languages
Japanese (ja)
Inventor
Masao Mashita
正夫 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24475792A priority Critical patent/JPH0697076A/en
Publication of JPH0697076A publication Critical patent/JPH0697076A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to select a material according to a set substrate temperature and increase an operating efficiency of the material and further improve a quality of a thin film crystal, by growing a thin film using a plurality of materials having different decomposition temperature as the material for supplying the same element. CONSTITUTION:In a thin film growth, a plurality of material having different decomposition temperatures are used as the material for supplying the same element. For example, the material together with a hydrogen carrier is supplied from a piping 1 for supplying the material and a cleaning of a GaAs substrate 3 increased to a temperature of 700omicronC is performed by a heater 4. Then, (CH3)3Ga(TMG) is supplied and a GaAs buffer layer is grown. (CH3)3 In and TMG are supplied to the buffer layer and a P material is mixed with (CH3)3 CPH2 and CH3PH2 and is supplied at the ratio of V to III equal to 30. An InGaP growth film obtained in this manner is a mirror plane and has good electro-optic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜成長のための有機金
属気相成長法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal organic chemical vapor deposition method for growing a thin film.

【0002】[0002]

【従来の技術】たとえば、化合物薄膜の有機金属気相成
長法において基板温度は原料分子の分解のためと成長す
なわち、安定な結晶構造を作るために必要である。前者
と後者でそれぞれに適切な温度が存在する。両者の温度
が一致したときには、その温度に基板温度を設定すれば
良いが、一般には上記二つの温度は一致しない。この時
にはどちらかを犠牲にしなければならない。たとえば、
結晶構造すなわち膜質を重んずれば原料の供給比(III
−V族化合物の場合はV/III比)を著しく大きくしな
ければならず、多い方の原料の大半は膜成長に寄与しな
くては無駄になる、すなわち原料の使用効率が低くな
る。逆に原料の分解すなわち原料間の反応を重視すれば
結晶欠陥が多くなって膜質は必ずしも良くはならない。
2. Description of the Related Art For example, in metalorganic vapor phase epitaxy of a compound thin film, the substrate temperature is necessary for decomposition of raw material molecules and for growth, that is, for forming a stable crystal structure. There is an appropriate temperature for each of the former and the latter. When the two temperatures match, the substrate temperature may be set to that temperature, but generally, the two temperatures do not match. At this time, either one must be sacrificed. For example,
If the crystal structure, that is, the film quality is emphasized, the feed ratio of the raw materials
In the case of a group-V compound, the V / III ratio) must be made extremely large, and most of the larger raw materials are wasted unless they contribute to film growth, that is, the raw material usage efficiency decreases. Conversely, if the decomposition of the raw materials, that is, the reaction between the raw materials is emphasized, the number of crystal defects increases and the film quality is not necessarily improved.

【0003】したがって、これまで原料の分解や反応と
結晶成長の両者から見て最適の基板温度に設定すること
ができなかった。
Therefore, it has been impossible to set the optimum substrate temperature in view of both decomposition and reaction of raw materials and crystal growth.

【0004】[0004]

【発明が解決しようとする課題】上記のように結晶成長
から見て最適の基板温度に設定したときその温度に合っ
た分解温度の原料を選ぶことができなかった。
As described above, when the optimum substrate temperature is set in view of crystal growth, it is impossible to select a raw material having a decomposition temperature suitable for the temperature.

【0005】本発明の目的は設定基板温度に合わせて原
料を選び、原料の使用効率を上げると同時に薄膜結晶の
質も向上できる方法を提供することである。
An object of the present invention is to provide a method capable of selecting a raw material according to a set substrate temperature, improving the use efficiency of the raw material, and at the same time improving the quality of a thin film crystal.

【0006】[0006]

【課題を解決するための手段】本発明に係る薄膜の気相
成長法は上記問題点に鑑みてなされたものであり、同一
元素供給のための複数の原料を同時に用い、基板温度に
合わせて原料の混合比を変えて実質的な分解温度を制御
することを特徴とする。
The vapor phase growth method of a thin film according to the present invention has been made in view of the above problems, and a plurality of raw materials for supplying the same element are used at the same time and are adjusted to the substrate temperature. It is characterized by controlling the substantial decomposition temperature by changing the mixing ratio of the raw materials.

【0007】「即ち、(1)薄膜成長において同一元素
供給のための原料として分解温度の異なる複数の原料を
用いることを特徴とする薄膜の気相成長法。(2)III
−V族化合物の気相成長法により形成する薄膜膜質向上
のために、V族化合物について分解温度が比較的に高い
V族元素化合物と低いV族元素化合物とを混合しその高
い側の温度で分解させることにより分解温度が比較的に
高い分解生成物と分解温度の低い原料から供給されるV
族元素の化学種を用いることを特徴とする上記1項に記
載の薄膜の気相成長法。(3)III−V族化合物の薄膜
成長を行うに際しV族元素の原料としてTBPとMMP
を供給して行うことを特徴とする上記(2)項に記載の
III−V族化合物の薄膜の気相成長法。(4)III−V族
化合物の薄膜成長に際しV族元素の原料としてTBPと
PH3を供給して行うことを特徴とする上記(2)項に
記載のIII−V族化合物の薄膜の気相成長法。」を含む
ものである。
That is, (1) a vapor phase epitaxy method for thin films, characterized in that a plurality of raw materials having different decomposition temperatures are used as raw materials for supplying the same element in the thin film growth. (2) III
In order to improve the quality of the thin film formed by the vapor phase growth method of the group V compound, the group V compound having a relatively high decomposition temperature and the group V compound having a low decomposition temperature are mixed with each other at a temperature on the higher side thereof. V that is supplied from a decomposition product having a relatively high decomposition temperature and a raw material having a low decomposition temperature due to decomposition
2. The vapor phase epitaxy method for a thin film as described in the above item 1, wherein the chemical species of the group element is used. (3) TBP and MMP as raw materials of the group V element when performing thin film growth of the group III-V compound
The above-mentioned item (2) is characterized in that
Vapor phase growth method for thin films of III-V compounds. (4) (2) above, characterized in that by supplying TBP and PH 3 as a raw material of group V element upon film growth of group III-V compound vapor of a thin film of Group III-V compound according to claim Growth method. Is included.

【0008】[0008]

【作用】本発明は上記の方法を用いることにより原料の
使用効率を高め、かつ結晶の質の良好な膜を得ることが
できる。
According to the present invention, by using the above method, it is possible to enhance the use efficiency of the raw material and obtain a film having good crystal quality.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1に本発明の一実施例のIn0.5Ga0.5
P成長のための有機金属気相成長装置を概略の断面図で
示す。図中、1は原料供給のための配管、2はステンレ
スで水冷式の気相成長装置、3は気相成長が施される基
板、4は基板を載置するサセプタ、5は排気管である。
まず、1からアルシン(AsH3)を水素キャリアとと
もに40sccm供給し、ヒーター4によって700℃
に昇温したGaAs(001)基板3のクリーニングを
行う。その後、トリメチルガリウム((CH33Ga:
TMG)を0.2sccm供給してGaAsバッファ層
を0.5μm成長する。その上にトリメチルインジウム
((CH33In:TMI)とTMGをそれぞれ0.2
4sccmおよび0.20sccm、P原料はターシャ
リブチルフォスフィン((CH33CPH2:TBP)
とモノメチルフォスフィン(CH3PH2:MMP)を
1:2の割合で混合し、III族原料の30倍(V/III比
=30)供給した。成長圧力は100Torr、使用後
の廃ガスは5から排気した。In0.5Ga0.5Pは5μm
成長した。鏡面で、良好な電気的光学的特性が得られ
た。一方、TBP単独で用いた時にはV/III比=15
0以上、MMP単独で用いた時にはV/III比=350
以上それぞれ用いないと鏡面は得られなかった。
FIG. 1 shows In 0.5 Ga 0.5 according to one embodiment of the present invention.
FIG. 1 is a schematic sectional view showing an organometallic vapor phase epitaxy apparatus for P growth. In the figure, 1 is a pipe for supplying a raw material, 2 is a stainless steel water-cooled vapor phase growth apparatus, 3 is a substrate on which vapor phase growth is performed, 4 is a susceptor for mounting the substrate, and 5 is an exhaust pipe. .
First, arsine (AsH 3 ) was supplied from 1 at 40 sccm together with a hydrogen carrier, and was heated to 700 ° C. by the heater 4.
The GaAs (001) substrate 3 whose temperature has been raised to is cleaned. After that, trimethylgallium ((CH 3 ) 3 Ga:
TMG) is supplied at 0.2 sccm to grow a GaAs buffer layer at 0.5 μm. On top of that, trimethylindium ((CH 3 ) 3 In: TMI) and TMG were each added to 0.2
4 sccm and 0.20 sccm, P source is tert-butyl phosphine ((CH 3 ) 3 CPH 2 : TBP)
And monomethylphosphine (CH 3 PH 2 : MMP) were mixed at a ratio of 1: 2, and supplied 30 times as much as the group III raw material (V / III ratio = 30). The growth pressure was 100 Torr, and the waste gas after use was exhausted from 5. In 0.5 Ga 0.5 P is 5 μm
grown. On the mirror surface, good electro-optical characteristics were obtained. On the other hand, when TBP is used alone, V / III ratio = 15
0 or more, V / III ratio = 350 when used alone with MMP
A mirror surface could not be obtained without using each of the above.

【0011】In0.5Ga0.5Pの成長はGaAsバッフ
ァ層までの手順は同じで、750℃の基板にTMIを
0.24sccm、TMAを0.11sccmそれぞれ
供給した。P原料はTBPとフォスフィン(PH3)を
1:3の割合で混合し、V/III比=40で供給した。
その結果、5μmの成長膜は鏡面で、良好な電気的光学
的特性を示した。一方、TBP単独で用いた時にはV/
III比=250以上、PH3単独で用いた時にはV/III
比=400以上それぞれ用いないと鏡面は得られなかっ
た。
In 0.5 Ga 0.5 P, the procedure up to the GaAs buffer layer was the same, and TMI of 0.24 sccm and TMA of 0.11 sccm were supplied to the substrate at 750 ° C. As the P raw material, TBP and phosphine (PH 3 ) were mixed at a ratio of 1: 3 and supplied at a V / III ratio = 40.
As a result, the grown film having a thickness of 5 μm was a mirror surface and showed good electro-optical characteristics. On the other hand, when using TBP alone, V /
III ratio = 250 or more, V / III when PH 3 alone is used
A mirror surface could not be obtained unless the ratio was 400 or more.

【0012】上の結果はThe above result is

【表1】 および[Table 1] and

【表2】 に纏めて示す。これらの表からV族原料を単独に用いる
より混合して用いることにより極めて少量のV族原料で
良好な膜が得られることが明らかである。すなわち、V
族原料の使用効率を極めて増大することができる。
[Table 2] Shown together. From these tables, it is clear that a good film can be obtained with an extremely small amount of group V raw material by using a mixture of group V raw materials rather than using them individually. That is, V
The use efficiency of the group raw material can be greatly increased.

【0013】また、基板温度を変えて成長したが膜の特
性からIn0.5Ga0.5PとIn0.5Al0.5Pで最適な温
度はそれぞれ700℃と750℃であった。
Although the growth was carried out while changing the substrate temperature, the optimum temperatures for In 0.5 Ga 0.5 P and In 0.5 Al 0.5 P were 700 ° C. and 750 ° C., respectively, due to the characteristics of the film.

【0014】このように膜の種類にしたがって膜特性を
最良にするための基板温度が存在し、その温度で最も原
料を有効に使うためには原料の性質を適切に選ぶ必要が
ある。この理由を以下に述べる。
As described above, there is a substrate temperature for optimizing film characteristics depending on the type of film, and it is necessary to properly select the properties of the raw material in order to use the raw material most effectively at that temperature. The reason for this will be described below.

【0015】In0.5Ga0.5PやIn0.5Al0.5Pの成
長はV族原料よりIII族原料は分解し易く、III族元素は
蒸気圧が低いのでIII族原料の供給で律速されている
が、膜の質はV族原料の性質と供給量に依存する。すな
わち、膜の成長反応は非平衡状態でおこなわれるので活
性な化学種が要求される。しかし、出来た膜を劣化させ
ないためには膜表面の解離(In0.5Ga0.5P,In
0.5Al0.5P→In,Ga,Al,P2,P4)をさせな
いようにP2やP4の分圧を増して熱平衡からずらす必要
がある。Pを含む活性な化学種は実施例の場合ではPH
n(n=0,1,2)である。すなわち、膜中の欠陥や
不純物を少なくするためには一定分圧以上のPHn(n
=0,1,2)と同時にP2やP4の存在が必要である。
これらの化学種が必要であることは発明者が初めて見出
だし、本発明はこの原理に基づいている。
In the growth of In 0.5 Ga 0.5 P and In 0.5 Al 0.5 P, the group III raw material is more easily decomposed than the group V raw material, and the vapor pressure of the group III element is low. The quality of the membrane depends on the nature and feed rate of the Group V raw material. That is, since the film growth reaction is carried out in a non-equilibrium state, active chemical species are required. However, in order to prevent deterioration of the formed film, dissociation of the film surface (In 0.5 Ga 0.5 P, In
0.5 Al 0.5 P → In, Ga, Al, P 2 , P 4 ) It is necessary to increase the partial pressure of P 2 and P 4 so as not to cause thermal equilibrium. The active species including P is PH in the case of the embodiment.
n (n = 0, 1, 2). That is, in order to reduce defects and impurities in the film, PH n (n
= 0, 1, 2) and the presence of P 2 and P 4 is required at the same time.
The need for these species was first discovered by the inventor and the present invention is based on this principle.

【0016】PH3,MMP,TBP,の50%分解す
る温度はそれぞれ850℃、600℃、450℃であ
り、これらを混合した場合、分解温度の低い原料はきわ
めて効率良くP2やP4を供給でき、一方分解温度の高い
原料はきわめて効率良くPHn(n=0,1,2)を供
給することができる。単独の原料を用いて両機能を持た
せようとすると大量の原料が必要になる。したがって、
複数の原料によって機能を分担させると供給量は著しく
減少させることができる。ただし、P原料の混合比と総
量は基板温度によって決める必要がある。
The temperatures at which 50% of PH 3 , MMP, and TBP are decomposed are 850 ° C., 600 ° C., and 450 ° C., respectively, and when these are mixed, the raw materials having a low decomposition temperature are very efficient in converting P 2 and P 4 . On the other hand, a raw material having a high decomposition temperature can supply PH n (n = 0, 1, 2) very efficiently. A large amount of raw material is required to provide both functions by using a single raw material. Therefore,
When the functions are shared by a plurality of raw materials, the supply amount can be significantly reduced. However, it is necessary to determine the mixing ratio and the total amount of the P raw material depending on the substrate temperature.

【0017】本発明を適用できる半導体はIII−V族化
合物半導体以外、例えばII−VI族化合物半導体や、Si
Ge等のIV−IV族化合物半導体化合物でも可能である。
II−VI族化合物半導体、例えばZnSe単結晶を形成す
る際、ジメチル亜鉛、ジメチルセレンと水素化セレンを
使用することができる。
Semiconductors to which the present invention can be applied are other than III-V group compound semiconductors, such as II-VI group compound semiconductors and Si.
It is also possible to use a IV-IV group compound semiconductor compound such as Ge.
When forming a II-VI group compound semiconductor, for example, a ZnSe single crystal, dimethyl zinc, dimethyl selenium, and selenium hydride can be used.

【0018】[0018]

【発明の効果】以上説明したように本発明による成長法
にしたがえば、原料の使用効率をきわめて高くでき、し
かも良好な膜特性を得ることができる。
As described above, according to the growth method of the present invention, the use efficiency of the raw material can be extremely increased and good film characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機金属気相成長法に用いる装置の概略を示す
断面図。
FIG. 1 is a sectional view showing an outline of an apparatus used for a metal organic chemical vapor deposition method.

【符号の説明】 1 原料供給用配管 2 気相成長装置 3 気相成長が施される基板 4 サセプタ 5 排気管[Explanation of symbols] 1 raw material supply pipe 2 vapor growth apparatus 3 substrate on which vapor phase growth is performed 4 susceptor 5 exhaust pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気相成長によって薄膜成長を行うに際
し、同一元素供給のための原料として分解温度の異なる
複数の原料を用いることを特徴とする薄膜の気相成長
法。
1. A vapor phase epitaxy method for a thin film, wherein a plurality of raw materials having different decomposition temperatures are used as raw materials for supplying the same element when the thin film is grown by vapor phase epitaxy.
【請求項2】 III−V族化合物の気相成長法により形
成する薄膜膜質向上のために、V族化合物について分解
温度が比較的に高いV族元素化合物と低いV族元素化合
物とを混合しその高い側の温度で分解させることにより
分解温度が比較的に高いV族元素化合物から生ずる分解
生成物と分解温度の低い原料から供給されるV族元素の
化学種を用いることを特徴とする請求項1に記載の薄膜
の気相成長法。
2. A group V compound having a relatively high decomposition temperature and a group V compound having a relatively low decomposition temperature are mixed in order to improve the quality of a thin film formed by a vapor phase growth method of a group III-V compound. Claims characterized in that a decomposition product produced from a group V element compound having a relatively high decomposition temperature by decomposing at a temperature on the higher side and a chemical species of the group V element supplied from a raw material having a lower decomposition temperature are used. Item 2. A vapor phase growth method for a thin film according to item 1.
【請求項3】 III−V族化合物の薄膜成長を行うに際
しV族元素の原料としてTBPとMMPを供給して行う
ことを特徴とする請求項2に記載のIII−V族化合物の
薄膜の気相成長法。
3. The vapor deposition of the thin film of the III-V group compound according to claim 2, wherein TBP and MMP are supplied as raw materials of the V group element when the thin film of the III-V group compound is grown. Phase growth method.
【請求項4】 III−V族化合物の薄膜成長に際しV族
元素の原料としてTBPとPH3を供給して行うことを
特徴とする請求項2に記載のIII−V族化合物の薄膜の
気相成長法。
4. The vapor phase of the thin film of the group III-V compound according to claim 2, wherein TBP and PH 3 are supplied as raw materials of the group V element during the growth of the thin film of the group III-V compound. Growth method.
JP24475792A 1992-09-14 1992-09-14 Vapor growth method of thin film Pending JPH0697076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24475792A JPH0697076A (en) 1992-09-14 1992-09-14 Vapor growth method of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24475792A JPH0697076A (en) 1992-09-14 1992-09-14 Vapor growth method of thin film

Publications (1)

Publication Number Publication Date
JPH0697076A true JPH0697076A (en) 1994-04-08

Family

ID=17123449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24475792A Pending JPH0697076A (en) 1992-09-14 1992-09-14 Vapor growth method of thin film

Country Status (1)

Country Link
JP (1) JPH0697076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786184A (en) * 1993-09-20 1995-03-31 Nec Kansai Ltd Crystal growth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786184A (en) * 1993-09-20 1995-03-31 Nec Kansai Ltd Crystal growth method

Similar Documents

Publication Publication Date Title
JP3239622B2 (en) Method of forming semiconductor thin film
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
Boutros et al. High quality InGaN films by atomic layer epitaxy
JPH08316151A (en) Manufacture of semiconductor
JP4528413B2 (en) Vapor growth method
JPH0697076A (en) Vapor growth method of thin film
JP2736655B2 (en) Compound semiconductor crystal growth method
JP3221318B2 (en) Vapor phase growth method of III-V compound semiconductor
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP2952831B2 (en) Method for manufacturing semiconductor device
JPH0547668A (en) Crystal growth method for compound semiconductor
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
JPH1126382A (en) Manufacture of gallium nitride compound semiconductor thin film
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JPH06244110A (en) Vapor growth equipment
JP2784384B2 (en) Vapor growth method
JPH02122521A (en) Manufacture of compound semiconductor crystal layer
JPH11126754A (en) Gaseous-phase growing method of organic metal
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0613323A (en) Vapor phase epitaxy method for compound semiconductor mixed crystal
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPH07240373A (en) Vapor growing method of iii-v group compound semiconductor
JPH06124900A (en) Epitaxial growth method for compound crystal and method for doping
JPH06132227A (en) Vapor growth method
JPH07122507A (en) Semiconductor manufacturing device