JPH0745360B2 - InP single crystal heat treatment method - Google Patents

InP single crystal heat treatment method

Info

Publication number
JPH0745360B2
JPH0745360B2 JP63334588A JP33458888A JPH0745360B2 JP H0745360 B2 JPH0745360 B2 JP H0745360B2 JP 63334588 A JP63334588 A JP 63334588A JP 33458888 A JP33458888 A JP 33458888A JP H0745360 B2 JPH0745360 B2 JP H0745360B2
Authority
JP
Japan
Prior art keywords
single crystal
inp single
heat treatment
wafer
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63334588A
Other languages
Japanese (ja)
Other versions
JPH02180783A (en
Inventor
敬司 甲斐荘
春人 島倉
小田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP63334588A priority Critical patent/JPH0745360B2/en
Priority to US07/421,680 priority patent/US4929564A/en
Publication of JPH02180783A publication Critical patent/JPH02180783A/en
Publication of JPH0745360B2 publication Critical patent/JPH0745360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半絶縁性の化合物半導体の製造方法に関し、
特にInP単結晶の熱処理方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a semi-insulating compound semiconductor,
In particular, it relates to a heat treatment method for InP single crystals.

[従来の技術] 化合物半導体単結晶を製造する方法としては、当該結晶
の融液に種結晶を浸漬してこれを引き上げていき単結晶
を育成する方法や、当該結晶の融液を徐々に固化させ単
結晶を育成する方法がある。前者に属する方法としては
液体封止チョクラルスキー法(LEC法)があり、後者に
属する方法としては徐冷法(GF法)、水平ブリッヂマン
法(HB法)、垂直ブリッヂマン法(VB法)がある。
[Prior Art] As a method for producing a compound semiconductor single crystal, a seed crystal is soaked in a melt of the crystal and pulled up to grow a single crystal, or the melt of the crystal is gradually solidified. There is a method of growing a single crystal. Liquid sealing Czochralski method (LEC method) belongs to the former method, and slow cooling method (GF method), horizontal Bridgeman method (HB method) and vertical Bridgeman method (VB method) belong to the latter method. is there.

しかし、このような各種の単結晶の育成法は、それぞれ
差異はあるものの、基本的には結晶と融液の間に温度勾
配を生じさせ、融液から結晶を固化させるものである。
そのため、従来成長が起こっている固液界面は融点にあ
っても、すでに結晶が成長した部分は常に融点よりより
低温にさらされていることになる。従って、上述の化合
物半導体単結晶の育成法は本質的に育成結晶内の特性が
不均一となることが避けられないものである。
However, although there are differences among these various methods for growing a single crystal, basically, a temperature gradient is generated between the crystal and the melt to solidify the crystal from the melt.
Therefore, even if the solid-liquid interface where conventional growth occurs is at the melting point, the portion where the crystal has already grown is always exposed to a temperature lower than the melting point. Therefore, in the above-described method for growing a compound semiconductor single crystal, it is essentially unavoidable that the characteristics in the grown crystal become non-uniform.

そこで、例えばアンドープ半絶縁性GaAs単結晶を基板と
して用いたMESFET等を製造するにあたり、GaAs単結晶の
インゴットを700〜1000℃の高温でアニールして結晶の
電気的特性のバラツキを低減させる方法がRumsbyらによ
って提案されている。このインゴットアニール法は、不
純物やEL2という固有欠陥を結晶内で移動させ、特性の
均一化を図るものである。
Therefore, for example, when manufacturing an MESFET or the like using an undoped semi-insulating GaAs single crystal as a substrate, a method of reducing the variation in the electrical characteristics of the crystal by annealing the ingot of the GaAs single crystal at a high temperature of 700 to 1000 ° C. Proposed by Rumsby et al. The ingot annealing method aims to move impurities and intrinsic defects such as EL2 in the crystal to make the characteristics uniform.

従来、FeドープInP単結晶をMISFETやOEIC等の基板とし
て用いる場合にも、上記高温でのインゴットアニール法
を適用していた。
Conventionally, the above-described high temperature ingot annealing method has been applied even when a Fe-doped InP single crystal is used as a substrate for MISFET or OEIC.

[発明が解決しようとする課題] しかしながら、上記のように結晶インゴットを700℃〜1
000℃で熱処理するとウェーハ面内での抵抗率をある程
度は均一化することができるものの実用上充分でなかっ
た。
[Problems to be Solved by the Invention] However, as described above, the crystal ingot is 700 ° C to 1 ° C.
Although heat treatment at 000 ° C can make the resistivity within the wafer uniform to some extent, it was not practically sufficient.

本発明は、かかる従来の問題点に鑑みてなされたもの
で、その目的するところは、Fe,Co,TiまたはCr等を含有
するInP単結晶の電気的特性のウェーハ面内均一性を向
上させることにある。
The present invention has been made in view of such conventional problems, and its object is to improve the in-wafer uniformity of electrical characteristics of InP single crystals containing Fe, Co, Ti, Cr, or the like. Especially.

[課題を解決するための手段] 本発明に先立って、本発明者等は、FeドープInP単結晶
を種々の条件下でアニールする実験を行なった結果、Fe
ドープInP単結晶では、従来のような高温でのインゴッ
トアニールに比べて、ウェーハを低温(400℃以上690℃
以下)でアニールした方が、ウェーハ面内での電気的特
性を均一化できることを見出した。また、その原因を知
るため種々の温度でアニールしたFeドープInPウェーハ
を鏡面研磨した後、そのウェーハのフォトルミネッセン
ス(PL)強度を調べる実験を繰り返した。その結果、熱
処理温度が700℃以上になるとPL発行強度が大幅に劣化
することが分かった。そして、その理由は、FeドープIn
P単結晶中でFeの原子が移動して析出物などを形成する
ためであるとの推論を得た。
[Means for Solving the Problems] Prior to the present invention, the present inventors conducted experiments to anneal Fe-doped InP single crystals under various conditions.
In the case of doped InP single crystal, compared to conventional ingot annealing at high temperature, the wafer temperature is lower (400 ° C to 690 ° C).
It was found that the electrical characteristics within the wafer surface can be made uniform by annealing in the following). Moreover, in order to find out the cause, Fe-doped InP wafers annealed at various temperatures were mirror-polished, and then the experiment for examining the photoluminescence (PL) intensity of the wafers was repeated. As a result, it was found that the PL issuance strength deteriorates significantly when the heat treatment temperature exceeds 700 ° C. And the reason is Fe-doped In
It is inferred that this is because Fe atoms move in P single crystal to form precipitates.

そこで、本発明は、Fe,Co,TiまたはCrのいずれか1種類
以上の不純物を0.2ppmw以上含有したInP単結晶インゴッ
トを薄板もしくはブロック状に切断し、この薄板もしく
はブロックを、該InP単結晶の構成元素またはその構成
元素を含む別個の化合物半導体材料とともに石英アンプ
ル内に真空封入した後、その石英アンプル内を上記InP
単結晶の解離圧以上の圧力にして400℃以上690℃以下の
温度で加熱するようにした。
Therefore, the present invention is to cut an InP single crystal ingot containing 0.2 ppmw or more of any one or more of Fe, Co, Ti, and Cr into a thin plate or block, and cut the thin plate or block into the InP single crystal. After vacuum encapsulating in a quartz ampoule together with the constituent elements or the separate compound semiconductor material containing the constituent elements,
The pressure was set to a pressure higher than the dissociation pressure of the single crystal and heated at a temperature of 400 ° C. or higher and 690 ° C. or lower.

[作用] 上記した方法によると、InP単結晶を薄板またはブロッ
ク状に切断してから加熱を行うため、インゴットのまま
行う場合に比べて結晶内熱分布が均一になり易いととも
に、InP単結晶の解離圧以上の圧力下で加熱するため、
熱処理中におけるInP単結晶の構成元素の揮発を防止す
ることができる。
[Operation] According to the method described above, since the InP single crystal is cut into a thin plate or block and then heated, the heat distribution in the crystal tends to be more uniform and the InP single crystal Since it is heated under a pressure higher than the dissociation pressure,
It is possible to prevent the constituent elements of the InP single crystal from volatilizing during the heat treatment.

また、690℃以下の低温で熱処理を行うこととしたの
で、FeやCo等のドーパントが結晶内で析出するのを防止
することができ、これらの相乗効果によってInP単結晶
の抵抗率の面内均一性を大幅に向上させることができ
る。
Moreover, since the heat treatment is performed at a low temperature of 690 ° C. or less, it is possible to prevent the precipitation of dopants such as Fe and Co in the crystal, and the synergistic effect of these causes the in-plane resistivity of the InP single crystal. Uniformity can be significantly improved.

[実施例] LEC法により、直径2インチ、長さ100mmのFeドープInP
単結晶を育成した。ここで、使用した多結晶InPの純度
は、キャリア濃度で1×1015〜3×1015cm-3のものであ
る。また、引き上げた単結晶のFe濃度は、0.2〜1.0ppmw
である。その後、引き上げた単結晶(インゴット)の両
端を切断するとともに、円筒研削を行なった後、厚さ0.
7mmのウェーハを切出した。そして、切出したアズカッ
トウェーハをBr−メタノール2%溶液でエッチングし、
洗浄した後、熱処理を行なった。
[Example] Fe-doped InP having a diameter of 2 inches and a length of 100 mm was obtained by the LEC method.
Single crystals were grown. The polycrystalline InP used here has a carrier concentration of 1 × 10 15 to 3 × 10 15 cm −3 . Moreover, the Fe concentration of the pulled single crystal is 0.2 to 1.0 ppmw.
Is. After that, both ends of the pulled single crystal (ingot) were cut, and after cylindrical grinding was performed, the thickness was reduced to 0.
A 7 mm wafer was cut out. Then, the cut out as-cut wafer is etched with a Br-methanol 2% solution,
After cleaning, heat treatment was performed.

熱処理は、石英アンプル内にウェーハ50枚と赤リンを入
れて真空封入した後、アンプルを450℃,520℃,620℃な
らびに720℃まで加熱して各々5時間行なった。赤リン
の量は、石英アンプル内でのリン圧が0.5atmとなるよう
に調整した。
The heat treatment was carried out by putting 50 wafers and red phosphorus in a quartz ampoule and vacuum-sealing them, and then heating the ampoule to 450 ° C., 520 ° C., 620 ° C. and 720 ° C. for 5 hours each. The amount of red phosphorus was adjusted so that the phosphorus pressure in the quartz ampoule was 0.5 atm.

第1図(a),(b),(c),(d)および(e)
は、インゴットの上部、中部、下部から切り出した各ウ
ェーハについてファン・デル・パウ(Van der Pauw)
法により抵抗率の面内分布(5mmピッチ)を調べた結果
を示す。第1図(a)は、アニール前のウェーハの抵抗
率を示し、第1図(b),(c),(d)ならびに
(e)はそれぞれ450℃,520℃,620℃ならびに720℃で5
時間アニールを行った後のウェーハの抵抗率を示す。第
1図(a),(b),(c),(d)ならびに(e)に
おいて、実線はインゴットの上部から切り出したウェー
ハの抵抗率を示し、一点鎖線はインゴットの中部から切
り出したウェーハの抵抗率を示し、さらに破線はインゴ
ットの下部から切り出したウェーハの抵抗率を示してい
る。第1図(a)〜(e)より、450℃,520℃および620
℃で熱処理を行ったウェーハ面内抵抗率のばらつきは熱
処理前に比べて大幅に減少し、また、720℃で熱処理す
ると抵抗率のばらつきは熱処理前とあまり変わらなくな
ることがわかる。
1 (a), (b), (c), (d) and (e)
For each wafer cut from the top, middle and bottom of the ingot, Van der Pauw
The results of examining the in-plane distribution of resistivity (5 mm pitch) by the method are shown below. 1 (a) shows the resistivity of the wafer before annealing, and FIGS. 1 (b), (c), (d) and (e) show the resistivity at 450 ° C., 520 ° C., 620 ° C. and 720 ° C., respectively. 5
The resistivity of the wafer after time annealing is shown. In FIGS. 1 (a), (b), (c), (d) and (e), the solid line shows the resistivity of the wafer cut out from the upper part of the ingot, and the one-dot chain line shows the wafer cut out from the middle part of the ingot. The resistivity is shown, and the broken line shows the resistivity of the wafer cut out from the lower part of the ingot. From Fig. 1 (a) to (e), 450 ℃, 520 ℃ and 620 ℃
It can be seen that the variation in the in-plane resistivity of the wafer subjected to the heat treatment at ℃ is significantly reduced as compared with that before the heat treatment, and that the heat resistance at 720 ° C. does not cause the variation in the resistivity to be substantially the same as that before the heat treatment.

また、第2図(a)および(b)は、インゴットの上部
から切り出したウェーハについて三端子ガード法により
抵抗率の面内分布(100μmピッチ)を調べた結果を示
す。第2図(a)に示すアニール前のウェーハの抵抗率
のばらつきは53%であり、第2図(b)に示す520℃で
5時間アニールを行った後のウェーハの抵抗率のばらつ
きは5%であった。さらに、図示しないが450℃および6
20℃で5時間アニールを行った後のウェーハの抵抗率の
ばらつきは5〜10%であった。
Further, FIGS. 2A and 2B show the results of examining the in-plane distribution (100 μm pitch) of the resistivity of the wafer cut out from the upper part of the ingot by the three-terminal guard method. The resistivity variation of the wafer before annealing shown in FIG. 2 (a) is 53%, and the resistivity variation of the wafer after annealing at 520 ° C. for 5 hours shown in FIG. 2 (b) is 5%. %Met. Further, although not shown, 450 ° C and 6
The variation in the resistivity of the wafer after annealing at 20 ° C. for 5 hours was 5 to 10%.

第1図(a)〜(e)および第2図(a),(b)から
明らかように、FeドープInP単結晶のウェーハを低温で
アニールすることにより、抵抗率のウェーハ面内均一性
が著しく向上することが判る。
As is clear from FIGS. 1 (a) to (e) and FIGS. 2 (a) and (b), by annealing the Fe-doped InP single crystal wafer at a low temperature, the in-plane uniformity of the resistivity of the wafer is improved. It turns out that it improves remarkably.

第3図は、インゴットから切出したウェーハを各々450
℃,520℃,620℃および700℃の温度で熱処理を行なった
場合の各ウェーハについてフォトルミネセンス(PL)強
度を測定した結果を示す。第3図から明らかなように、
従来の如く高温(700℃)でアニールを行なうと、長波
長側に数多くのピークが現われるが、400℃以上600℃以
下の温度でアニールを行なうと、良好な結果が得られ
る。
Figure 3 shows 450 wafers cut from the ingot.
The photoluminescence (PL) intensity of each wafer when heat-treated at temperatures of ℃, 520 ℃, 620 ℃ and 700 ℃ is shown. As is clear from FIG.
Although many peaks appear on the long wavelength side when annealing is performed at a high temperature (700 ° C.) as in the past, good results are obtained when annealing is performed at a temperature of 400 ° C. or more and 600 ° C. or less.

熱処理温度が700℃の場合に、長波長側に現われるピー
クが、単結晶中でのFeの析出物によるものと考えられ
る。
When the heat treatment temperature is 700 ° C., the peak appearing on the long wavelength side is considered to be due to Fe precipitates in the single crystal.

Fe以外のCo,Ti,Cr等の不純物を含有する化合物半導体に
ついても同様である。
The same applies to compound semiconductors containing impurities such as Co, Ti, and Cr other than Fe.

[発明の効果] 以上説明したようにこの発明は、Fe,Co,TiまたはCrのい
ずれか1種類以上の不純物を0.2ppmw以上含有したInP単
結晶インゴットを薄板もしくはブロック状に切断し、こ
の薄板もしくはブロックを、該InP単結晶の構成元素ま
たはその構成元素を含む別個の化合物半導体材料ととも
に石英アンプル内に真空封入した後、その石英アンプル
内を上記InP単結晶の解離圧以上の圧力にして400℃以上
690℃以下の温度で加熱するようにしたので、InP単結晶
を薄板またはブロック状に切断してから加熱を行うた
め、インゴットのまま行う場合に比べて結晶内熱分布が
均一になり易いとともに、InP単結晶の解離圧以上の圧
力下で加熱するため、熱処理中におけるInP単結晶の構
成元素の揮発を防止することができる。
[Effects of the Invention] As described above, the present invention cuts an InP single crystal ingot containing 0.2 ppmw or more of any one or more of Fe, Co, Ti, and Cr into a thin plate or a block, and cuts the thin plate. Alternatively, the block is vacuum-enclosed in a quartz ampoule together with the constituent element of the InP single crystal or a separate compound semiconductor material containing the constituent element, and the inside of the quartz ampoule is set to a pressure equal to or higher than the dissociation pressure of the InP single crystal. ℃ or more
Since the heating is performed at a temperature of 690 ° C. or lower, since the InP single crystal is cut into a thin plate or a block and then heated, the heat distribution in the crystal tends to be uniform as compared with the case of performing the ingot as it is, Since heating is performed under a pressure higher than the dissociation pressure of the InP single crystal, it is possible to prevent the constituent elements of the InP single crystal from volatilizing during the heat treatment.

また、690℃以下の低温で熱処理を行うこととしたの
で、FeやCo等のドーパントが結晶内で析出するのを防止
することができ、その結果、Fe,Co,Ti,Cr等の不純物を
含有するInP単結晶の電気的特性のウェーハ面内均一性
が大幅に向上されるという効果がある。
Moreover, since the heat treatment is performed at a low temperature of 690 ° C. or lower, it is possible to prevent the precipitation of dopants such as Fe and Co in the crystal, and as a result, the impurities such as Fe, Co, Ti, and Cr are removed. This has the effect of significantly improving the in-plane uniformity of the electrical properties of the contained InP single crystal in the wafer.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b),(c),(d)ならびに(e)
はVan der Pauw法による抵抗率のウェーハ面内分布の
グラフを示し、同図(a)はアニール前、同図(b),
(c),(d)ならびに(e)はそれぞれ450℃,520℃,
620℃ならびに720℃で5時間アニールしたウェーハの抵
抗率面内分布を示す。 第2図(a)および(b)は3端子ガード法による抵抗
率のウェーハ面内分布のグラフを示し、同図(a)はア
ニール前、(b)は520℃で5時間アニールしたもので
ある。 第3図はインゴットから切り出したウェーハを種々の温
度で熱処理した場合の各ウェーハについてのフォトルミ
ネセンス(PL)強度の測定結果を示すグラフである。
1 (a), (b), (c), (d) and (e)
Shows a graph of in-plane distribution of resistivity by Van der Pauw method. The figure (a) is before annealing, the figure (b),
(C), (d) and (e) are 450 ℃, 520 ℃,
The resistivity in-plane distribution of wafers annealed at 620 ° C and 720 ° C for 5 hours is shown. FIGS. 2 (a) and 2 (b) are graphs of the in-plane distribution of the resistivity by the three-terminal guard method. FIG. 2 (a) is before annealing, and FIG. 2 (b) is annealed at 520 ° C. for 5 hours. is there. FIG. 3 is a graph showing the results of measuring the photoluminescence (PL) intensity of each wafer when the wafer cut out from the ingot was heat-treated at various temperatures.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−195199(JP,A) 特開 昭58−213700(JP,A) 特開 昭56−85830(JP,A) 特開 昭49−107473(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-63-195199 (JP, A) JP-A-58-213700 (JP, A) JP-A-56-85830 (JP, A) JP-A-49- 107473 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Fe,Co,TiまたはCrのいずれか1種類以上の
不純物を0.2ppmw以上含有したInP単結晶インゴットを薄
板もしくはブロック状に切断し、この薄板もしくはブロ
ックを、該InP単結晶の構成元素またはその構成元素を
含む別個の化合物半導体材料とともに石英アンプル内に
真空封入した後、その石英アンプル内をInP単結晶の解
離圧以上のリン圧力にして400℃以上690℃以下の温度で
加熱することを特徴とするInP単結晶の熱処理方法。
1. An InP single crystal ingot containing 0.2 ppmw or more of one or more impurities of Fe, Co, Ti or Cr is cut into a thin plate or block, and the thin plate or block is cut into a thin film of the InP single crystal. After vacuum encapsulating in a quartz ampoule together with the constituent elements or a separate compound semiconductor material containing the constituent elements, the quartz ampoule is heated to a phosphorus pressure higher than the dissociation pressure of the InP single crystal at a temperature of 400 ° C to 690 ° C. A method for heat-treating an InP single crystal, comprising:
【請求項2】Fe,Co,TiまたはCrのいずれか1種以上の含
有濃度の合計が0.2ppmw以上1.0ppmw以下であることを特
徴とする請求項1に記載のInP単結晶の熱処理方法。
2. The heat treatment method for an InP single crystal according to claim 1, wherein the total content concentration of at least one of Fe, Co, Ti and Cr is 0.2 ppmw or more and 1.0 ppmw or less.
JP63334588A 1988-10-21 1988-12-28 InP single crystal heat treatment method Expired - Lifetime JPH0745360B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63334588A JPH0745360B2 (en) 1988-12-28 1988-12-28 InP single crystal heat treatment method
US07/421,680 US4929564A (en) 1988-10-21 1989-10-16 Method for producing compound semiconductor single crystals and method for producing compound semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63334588A JPH0745360B2 (en) 1988-12-28 1988-12-28 InP single crystal heat treatment method

Publications (2)

Publication Number Publication Date
JPH02180783A JPH02180783A (en) 1990-07-13
JPH0745360B2 true JPH0745360B2 (en) 1995-05-17

Family

ID=18279080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63334588A Expired - Lifetime JPH0745360B2 (en) 1988-10-21 1988-12-28 InP single crystal heat treatment method

Country Status (1)

Country Link
JP (1) JPH0745360B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718346B2 (en) * 1973-02-14 1982-04-16
JPS5685830A (en) * 1979-12-14 1981-07-13 Sumitomo Electric Ind Ltd Heat treatment of compound semiconductor
JPS58213700A (en) * 1982-06-03 1983-12-12 Fujitsu Ltd Heat-treating method for compound semiconductor crystal
JPS63195199A (en) * 1987-02-05 1988-08-12 Dowa Mining Co Ltd Production of gallium arsenide crystal
JP2754100B2 (en) * 1991-07-25 1998-05-20 シャープ株式会社 Solar cell manufacturing method

Also Published As

Publication number Publication date
JPH02180783A (en) 1990-07-13

Similar Documents

Publication Publication Date Title
Bonner InP synthesis and LEC growth of twin-free crystals
DE112014002781T5 (en) Oxygen precipitation in heavily doped silicon wafers cut from ingots grown by the Czochralski method
US5219632A (en) Compound semiconductor single crystals and the method for making the crystals, and semiconductor devices employing the crystals
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
DE3514294A1 (en) SEMI-INSULATING GALLIUM ARSENIDE CRYSTALS DOPED WITH INDIUM AND METHOD FOR THEIR PRODUCTION
US4929564A (en) Method for producing compound semiconductor single crystals and method for producing compound semiconductor devices
US5047370A (en) Method for producing compound semiconductor single crystal substrates
Cockayne et al. The growth and perfection of single crystal indium phosphide produced by the LEC technique
US4637854A (en) Method for producing GaAs single crystal
JPH0745360B2 (en) InP single crystal heat treatment method
JP2004026584A (en) METHOD OF MANUFACTURING GaAs SINGLE CRYSTAL AND GaAs SINGLE CRYSTAL
US4585511A (en) Method of growing gallium arsenide crystals using boron oxide encapsulant
EP0334684B1 (en) A method for heat-treating gallium arsenide monocrystals
JPH0671002B2 (en) Method for manufacturing compound semiconductor device
JP2545477B2 (en) Compound semiconductor single crystal, manufacturing method thereof, and semiconductor device using the same
CN115135817B (en) Method for manufacturing semiconductor silicon wafer
JPH09194300A (en) Production of gaas substrate
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
JPH0411518B2 (en)
JPH0380199A (en) Substrate made of single crystal of p type gaas, production thereof and semiconductor device using this substrate
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JP2610319B2 (en) Method for producing group II-VI compound semiconductor crystal
JPH0784360B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPS6358800B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 14