JPH0745278A - Hydrogen storage electrode and manufacture thereof - Google Patents

Hydrogen storage electrode and manufacture thereof

Info

Publication number
JPH0745278A
JPH0745278A JP5191283A JP19128393A JPH0745278A JP H0745278 A JPH0745278 A JP H0745278A JP 5191283 A JP5191283 A JP 5191283A JP 19128393 A JP19128393 A JP 19128393A JP H0745278 A JPH0745278 A JP H0745278A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
alloy powder
storage alloy
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5191283A
Other languages
Japanese (ja)
Inventor
Shinya Shiraiwa
信也 白岩
Takashi Ueda
高士 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5191283A priority Critical patent/JPH0745278A/en
Publication of JPH0745278A publication Critical patent/JPH0745278A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a cycle life by containing a water soluble high molecule and rubber resin in a binding agent of holding hydrogen storage alloy powder in an electrode, so as to prevent the hydrogen storage alloy powder from coming off from the electrode. CONSTITUTION:A binding agent containing a water soluble high molecule of methyl cellulose, polyvinyl alcohol, etc., in addition to rubber resin, is used. In the water soluble high molecule, since viscosity of slurry is increased, even without adding a large amount to the rubber system resin, viscosity of the active material slurry can be increased. Accordingly, a total amount of the binding agent is decreased, and charging density of a hydrogen storage alloy can be suppressed from decreasing. The slurry having sufficient fluidity is obtained, and it can be easily applied to an electrode supporter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵お
よび放出することのできる水素吸蔵合金粉末を備えた水
素吸蔵電極及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode provided with a hydrogen storage alloy powder capable of reversibly storing and releasing hydrogen and a method for producing the same.

【0002】[0002]

【従来の技術】従来からよく用いられる蓄電池としては
鉛電池及びニッケル−カドミウム電池が挙げられる。近
年これらの電池より軽量で且つ高容量で高エネルギー密
度となる可能性があるということで、負極活物質である
水素を可逆的に吸蔵及び放出することのできる水素吸蔵
合金粉末を備えた電極を負極に用い、水酸化ニッケル等
の金属酸化物を正極活物質とする電極を正極に用いたニ
ッケル−水素蓄電池が注目されている。
2. Description of the Related Art Lead batteries and nickel-cadmium batteries are examples of storage batteries that have been frequently used. In recent years, these batteries are lighter in weight, have higher capacity, and may have higher energy density. Therefore, an electrode provided with a hydrogen storage alloy powder capable of reversibly storing and releasing hydrogen, which is a negative electrode active material, has been developed. Attention has been paid to nickel-hydrogen storage batteries, which are used as a negative electrode and have an electrode using a metal oxide such as nickel hydroxide as a positive electrode active material for the positive electrode.

【0003】従来、このニッケル−水素蓄電池の負極に
備えられた水素吸蔵合金粉末の結着剤として、メチルセ
ルロースまたは、ポリビニールアルコールやポリビニー
ルピロリドン等の水溶性高分子が用いられてきたが、電
池内でアルカリ電解液に溶解あるいは電解液を吸収して
膨潤してしまい、結着剤としての性能が低下して水素吸
蔵合金粉末が極板から脱落し易いという欠点を有してい
た。
Conventionally, methyl cellulose or a water-soluble polymer such as polyvinyl alcohol or polyvinyl pyrrolidone has been used as a binder for the hydrogen storage alloy powder provided in the negative electrode of this nickel-hydrogen storage battery. However, it has a drawback that it dissolves in the alkaline electrolyte or absorbs the electrolyte and swells, the performance as a binder decreases, and the hydrogen-absorbing alloy powder easily falls off from the electrode plate.

【0004】また、特開昭2−234355号公報に
は、上記結着剤として、高分子ラテックスを用いること
が開示されている。しかしながら、高分子ラテックスと
水素吸蔵合金粉末を混合したペーストは流動性に欠ける
ため、芯体に塗着しにくく、塗着ムラが生じて水素吸蔵
合金粉末の充填密度が下がる。
Further, JP-A-2-234355 discloses that a polymer latex is used as the binder. However, since the paste obtained by mixing the polymer latex and the hydrogen-absorbing alloy powder lacks fluidity, it is difficult to apply the paste to the core body, and uneven coating occurs to reduce the packing density of the hydrogen-absorbing alloy powder.

【0005】そこで、通常はペーストに外力を加えて成
形した後で芯体に接着しているが、これでは、作業性が
悪いという欠点を有する。
Therefore, the paste is usually applied to the core body after being applied with an external force, and then the paste is adhered to the core body, but this has a drawback that workability is poor.

【0006】更に、充分な機械的強度を得るためには、
水素吸蔵合金粉末に対して、多量の高分子ラテックスを
添加しなければならないので、水素吸蔵合金粉末の充填
密度の低下は避けられなかった。
Further, in order to obtain sufficient mechanical strength,
Since a large amount of polymer latex has to be added to the hydrogen storage alloy powder, a decrease in the packing density of the hydrogen storage alloy powder cannot be avoided.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記に鑑みて
成されたもので、水素吸蔵合金粉末が電極から脱落する
のを防止すると共に、水素吸蔵合金粉末の電極への充填
密度を高くすることによって、この電極を備えた電池の
サイクル寿命を向上させようとすることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and prevents the hydrogen storage alloy powder from falling off the electrode and increases the packing density of the hydrogen storage alloy powder into the electrode. Therefore, it is an object to improve the cycle life of a battery provided with this electrode.

【0008】[0008]

【課題を解決するための手段】結着剤によって水素吸蔵
合金粉末を保持してなる水素吸蔵電極において、上記結
着剤が水溶性高分子とゴム系樹脂とを含有することを特
徴とする。
In a hydrogen storage electrode in which a hydrogen storage alloy powder is held by a binder, the binder contains a water-soluble polymer and a rubber resin.

【0009】また、水素吸蔵合金粉末を含む活物質スラ
リーを支持体に塗着して水素吸蔵電極を得る方法におい
て、上記活物質スラリー中に水溶性高分子とゴム系樹脂
を含有したディスパージョンとを添加することを特徴と
する。
Further, in a method for obtaining a hydrogen storage electrode by coating an active material slurry containing hydrogen storage alloy powder on a support, a dispersion containing a water-soluble polymer and a rubber-based resin in the active material slurry. Is added.

【0010】[0010]

【作用】水溶性高分子には、アルカリ電解液中に溶解す
るもの、または電解液を吸収して膨潤するものがある。
アルカリ電解液中に溶解するものとしては、メチルセル
ロース等があり、電解液を吸収して膨潤するものとして
はポリビニールアルコール、ポリビニールピロリドン等
がある。
The water-soluble polymer may be one that dissolves in the alkaline electrolyte or one that absorbs the electrolyte and swells.
Methyl cellulose and the like dissolve in the alkaline electrolyte, and polyvinyl alcohol, polyvinyl pyrrolidone, and the like absorb the electrolyte and swell.

【0011】結着剤として、このような水溶性高分子の
みを用いると、アルカリ電解液中に溶解するものは活物
質を保持する機能を失い、水素吸蔵合金粉末の脱落が著
しい。
If only such a water-soluble polymer is used as the binder, the one dissolved in the alkaline electrolyte loses the function of holding the active material, and the hydrogen-absorbing alloy powder is significantly detached.

【0012】また、電解液を吸収して膨潤するものも、
膨潤により活物質保持力が弱められて合金粉末の脱落は
免れない。
Also, the one that absorbs the electrolytic solution and swells,
The swelling weakens the ability to retain the active material, which inevitably causes the alloy powder to fall off.

【0013】一方、結着剤として、ゴム系樹脂のみ用い
られている場合には、水溶性高分子のように電解液に溶
解あるいは電解液を吸収して膨潤しないため、活物質保
持力を維持することができる。
On the other hand, when only a rubber-based resin is used as the binder, it does not swell by dissolving in the electrolytic solution or absorbing the electrolytic solution like a water-soluble polymer, so that the active material holding power is maintained. can do.

【0014】しかし、この場合は、水素吸蔵合金と結着
剤としてのゴム系樹脂とは比重が大きく異なり、且つゴ
ム系樹脂の粘性が非常に小さいために、活物質スラリー
を作製中に水素吸蔵合金粉末とゴム系樹脂とは分離し易
くなる。このように合金粉末とゴム系樹脂とが分離して
しまうと、ゴム系樹脂が均一に分散できず、活物質保持
力が低下する。
In this case, however, the hydrogen storage alloy and the rubber-based resin as the binder have a large specific gravity, and the viscosity of the rubber-based resin is very small. It becomes easy to separate the alloy powder and the rubber resin. If the alloy powder and the rubber-based resin are separated in this way, the rubber-based resin cannot be uniformly dispersed, and the active material holding power is reduced.

【0015】合金粉末とゴム系樹脂の分離を防止するた
めには活物質スラリーの粘度を高く維持する必要があ
り、多量のゴム系樹脂が要る。しかし、ゴム系樹脂を多
量に添加すると、水素吸蔵合金の充填密度の大幅な低下
を招く。
In order to prevent the separation of the alloy powder and the rubber resin, it is necessary to keep the viscosity of the active material slurry high, and a large amount of rubber resin is required. However, if a large amount of rubber-based resin is added, the packing density of the hydrogen storage alloy is significantly reduced.

【0016】これに対して、本発明では、ゴム系樹脂に
加えて水溶性高分子を含有した結着剤を用いており、水
溶性高分子がスラリーの粘度を増す働きをするため、ゴ
ム系樹脂を多量に添加しなくとも、活物質スラリーの粘
度を高めることができる。
On the other hand, in the present invention, the binder containing the water-soluble polymer in addition to the rubber-based resin is used, and the water-soluble polymer functions to increase the viscosity of the slurry. The viscosity of the active material slurry can be increased without adding a large amount of resin.

【0017】従って、結着剤の総量をゴム系樹脂のみ使
用した場合に比較して少なくすることが可能となるの
で、水素吸蔵合金の充填密度の低下を抑制できる。
Therefore, the total amount of the binder can be reduced as compared with the case where only the rubber-based resin is used, so that the reduction of the packing density of the hydrogen storage alloy can be suppressed.

【0018】更に、合金粉末と結着剤の分離を防止する
ことができ、ゴム系樹脂を均一に分散させることが可能
となるので、水素吸蔵合金の極板からの脱落を防止する
ことができる。
Further, the separation of the alloy powder and the binder can be prevented, and the rubber-based resin can be uniformly dispersed, so that the hydrogen storage alloy can be prevented from dropping from the electrode plate. .

【0019】結着剤としてゴム系樹脂のみを用い、合金
粉末と混合して活物質スラリーを作製した場合には、支
持体に活物質スラリーを均一に塗着することが困難であ
るが、本発明の製造方法は、活物質スラリー中にゴム系
樹脂を含有したディスパージョンと水溶性高分子を添加
しているので、充分な流動性を持った活物質スラリーが
得られる。この結果、支持体に容易に塗着することがで
き、塗着ムラも生じないので作業性が良い。
When only the rubber-based resin is used as the binder and the active material slurry is prepared by mixing with the alloy powder, it is difficult to uniformly coat the support with the active material slurry. According to the production method of the invention, since the dispersion containing the rubber resin and the water-soluble polymer are added to the active material slurry, an active material slurry having sufficient fluidity can be obtained. As a result, it can be easily applied to the support and no uneven coating is caused, resulting in good workability.

【0020】[0020]

【実施例】以下に本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.

【0021】最初に、水素吸蔵合金の原料金属として、
市販のミッシュメタル(Mm、希土類元素の混合物)、
ニッケル、コバルト、アルミニウム、マンガンが、元素
比1.0:3.2:1.0:0.2:0.6となるよう
に秤量した後、高周波誘導炉内で溶解、鋳造する。これ
により、MmNi3.2CoAl0.2Mn0.6という組成の
合金を得た。次いで、この金属塊を機械的に粉砕して平
均粒径が50μmの水素吸蔵合金粉末を作製した。
First, as the raw material metal of the hydrogen storage alloy,
Commercially available misch metal (Mm, mixture of rare earth elements),
Nickel, cobalt, aluminum and manganese are weighed so that the element ratio becomes 1.0: 3.2: 1.0: 0.2: 0.6, and then melted and cast in a high frequency induction furnace. As a result, an alloy having a composition of MmNi 3.2 CoAl 0.2 Mn 0.6 was obtained. Then, this metal block was mechanically pulverized to prepare a hydrogen storage alloy powder having an average particle size of 50 μm.

【0022】(実施例1)上記水素吸蔵合金粉末に対し
て、結着剤としてのポリビニールアルコール1重量部と
分散媒としての水10重量部を上記水素吸蔵合金粉末に
添加し、充分混合した。その後、重量比50%の天然ゴ
ムを含有したディスパージョン2重量部を上記混合物に
添加して、スラリーを作製した。
Example 1 1 part by weight of polyvinyl alcohol as a binder and 10 parts by weight of water as a dispersion medium were added to the hydrogen storage alloy powder and mixed well. . Then, 2 parts by weight of a dispersion containing 50% by weight of natural rubber was added to the mixture to prepare a slurry.

【0023】このスラリーをパンチングメタルからなる
導電性支持体表面に塗着した後、乾燥及び加圧を行い水
素吸蔵電極aを作製した。
This slurry was applied to the surface of a conductive support made of punching metal, dried and pressed to prepare a hydrogen storage electrode a.

【0024】(実施例2)上記水素吸蔵合金粉末に対し
て、結着剤としてのポリビニールアルコール1重量部と
分散媒としての水10重量部を上記水素吸蔵合金粉末に
添加し、充分混合した。その後、重量比50%のスチレ
ン−ブタジエン共重合体を含有したディスパージョン2
重量部を上記混合物に添加して、スラリーを作製した。
(Example 2) 1 part by weight of polyvinyl alcohol as a binder and 10 parts by weight of water as a dispersion medium were added to the hydrogen storage alloy powder and sufficiently mixed. . Then, a dispersion 2 containing 50% by weight of a styrene-butadiene copolymer.
Parts by weight were added to the above mixture to make a slurry.

【0025】このスラリーをパンチングメタルからなる
導電性支持体表面に塗着した後、乾燥及び加圧を行い水
素吸蔵電極bを作製した。
This slurry was applied to the surface of a conductive support made of punching metal, dried and pressed to prepare a hydrogen storage electrode b.

【0026】(比較例1)上記水素吸蔵合金粉末に対し
て、結着剤としてのポリビニールアルコール1重量部
と、分散媒としての水10重量部を上記水素吸蔵合金粉
末に添加して、スラリーを作製した。
(Comparative Example 1) 1 part by weight of polyvinyl alcohol as a binder and 10 parts by weight of water as a dispersion medium were added to the hydrogen storage alloy powder to obtain the slurry. Was produced.

【0027】このスラリーをパンチングメタルからなる
導電性支持体表面に塗着した後、乾燥及び加圧を行い水
素吸蔵電極xを作製した。
This slurry was applied to the surface of a conductive support made of punching metal, dried and pressed to prepare a hydrogen storage electrode x.

【0028】(比較例2)上記水素吸蔵合金粉末に対し
て、結着剤としてのスチレン−ブタジエン共重合体のデ
ィスパージョン20重量部と、分散媒としての水10重
量部を上記水素吸蔵合金粉末に加えスラリーを作製し
た。
Comparative Example 2 20 parts by weight of a dispersion of styrene-butadiene copolymer as a binder and 10 parts by weight of water as a dispersion medium were added to the above hydrogen storage alloy powder. And a slurry was prepared.

【0029】このスラリーをパンチングメタルからなる
導電性支持体表面に塗着した後、乾燥及び加圧を行い水
素吸蔵電極yを作製した。
After coating this slurry on the surface of a conductive support made of punching metal, it was dried and pressed to prepare a hydrogen storage electrode y.

【0030】上記水素吸蔵電極a、b、x、yについて
水素吸蔵電極の機械的強度および水素吸蔵合金粉末の充
填密度を比較し、その結果を表1に示す。
With respect to the hydrogen storage electrodes a, b, x and y, the mechanical strength of the hydrogen storage electrode and the packing density of the hydrogen storage alloy powder were compared, and the results are shown in Table 1.

【0031】ここで、水素吸蔵電極の機械的強度の試験
は、JIS K5400基盤目試験に基いておこなっ
た。この試験の概略を以下に記す。
Here, the mechanical strength test of the hydrogen storage electrode was carried out based on the JIS K5400 substrate test. The outline of this test is described below.

【0032】(イ) 試験法 導電性支持体表面上の水素吸蔵合金層を貫通して、導電
性支持体に達するまでの傷を、鋭利な刃で切りつけ水素
吸蔵合金層の剥離の大小によって、水素吸蔵電極の機械
的強度を評価する。
(B) Test method A flaw that penetrates the hydrogen storage alloy layer on the surface of the conductive support and reaches the conductive support is cut with a sharp blade to determine the degree of peeling of the hydrogen storage alloy layer. The mechanical strength of the hydrogen storage electrode is evaluated.

【0033】(ロ) 操作 水素吸蔵電極aのほぼ中央に、直交する縦横11本ずつ
の平行線を1mmの間隔で引いて1cm2の中に100
個の升目ができるように基盤目状の切り傷をつける。切
り傷をつけるにはカッターガイドなどを用いてカッター
ナイフの刃先を水素吸蔵合金電極aに対して35〜45
°の範囲の一定角度に保ち、切り傷1本について約0.
5秒/cmの等速度で引く。
(B) Operation At the center of the hydrogen storage electrode a, 11 parallel and 11 vertical and horizontal parallel lines are drawn at an interval of 1 mm to give 100 in 1 cm 2.
Make a base-shaped cut so that individual squares can be created. To make a cut, use a cutter guide or the like to cut the blade edge of the cutter knife from 35 to 45 with respect to the hydrogen storage alloy electrode a.
Keeping a constant angle in the range of 0 °, about 0 for each cut.
Pull at a constant speed of 5 seconds / cm.

【0034】(ハ) 機械的強度の評価 基盤目100個のうち、導電性支持体より水素吸蔵合金
層が脱落した個数で表示する。
(C) Evaluation of mechanical strength It is indicated by the number of the hydrogen-absorbing alloy layer dropped from the conductive support, out of 100 substrates.

【0035】上記の試験を他の水素吸蔵電極b、x、y
についても同様に行った。
The above test was carried out using another hydrogen storage electrode b, x, y.
The same was done for.

【0036】[0036]

【表1】 [Table 1]

【0037】表1より、本発明の水素吸蔵電極a、bは
結着剤添加量が少なく、しかも流動性の良いペーストを
用いているので、比較電極x、yに比べて水素吸蔵合金
の充填密度が高く、かつ機械的強度も優れていることが
わかる。
From Table 1, since the hydrogen storage electrodes a and b of the present invention use a paste having a small amount of the binder added and good fluidity, the hydrogen storage alloy is filled more than the comparison electrodes x and y. It can be seen that the density is high and the mechanical strength is excellent.

【0038】次に本発明の水素吸蔵電極a、b及び比較
電極x、yを、夫々公知のニッケル電極と組み合わせ、
30重量%の水酸化カリウム水溶液を電解液として用い
て、公称容量1000mAhの密閉型ニッケル−水素蓄
電池を作製した。こうして作製した電池を、使用した水
素吸蔵電極の符号に対応させて、夫々電池A、B、X、
Yとする。
Next, the hydrogen storage electrodes a and b of the present invention and the reference electrodes x and y are respectively combined with known nickel electrodes,
A 30 wt% potassium hydroxide aqueous solution was used as an electrolytic solution to prepare a sealed nickel-hydrogen storage battery having a nominal capacity of 1000 mAh. The batteries thus produced are made to correspond to the reference symbols of the hydrogen storage electrodes used, and the batteries A, B, X, and
Y

【0039】上記電池A、B、X、Yを、夫々1C(1
000mAの電流値)で満充電し、1時間の休止の後1
C(1000mAの電流値)で電池電圧が1.0Vにな
るまで放電するサイクルを繰り返し、初期放電容量に対
する各サイクルにおける放電容量の変化を調べ、その結
果を図1に示す。
Each of the batteries A, B, X and Y is replaced by 1C (1
Fully charged at a current value of 000 mA) and after 1 hour of rest, 1
The cycle of discharging at C (current value of 1000 mA) until the battery voltage became 1.0 V was repeated, and the change in the discharge capacity in each cycle with respect to the initial discharge capacity was examined. The results are shown in FIG.

【0040】図1より、本発明の電極a、bを備えた電
池A、Bは充放電サイクルを1000回繰り返した後で
も、初期放電容量の90%以上の放電容量が得られてお
り、優れたサイクル寿命特性を有していることがわか
る。
As shown in FIG. 1, the batteries A and B equipped with the electrodes a and b of the present invention were excellent in the discharge capacity of 90% or more of the initial discharge capacity even after 1000 charge / discharge cycles. It can be seen that it has excellent cycle life characteristics.

【0041】一方、比較電極xを備えた電池Xは結着剤
が水溶性のポリビニールアルコールのみであるため、こ
の結着剤がアルカリ電解液を吸収して膨潤することによ
り活物質を保持する力が弱くなり、サイクルの進行とと
もに合金が脱落し、放電容量が低下している。
On the other hand, in the battery X having the reference electrode x, since the binder is only water-soluble polyvinyl alcohol, the binder absorbs the alkaline electrolyte and swells to retain the active material. The force becomes weaker, the alloy drops off as the cycle progresses, and the discharge capacity decreases.

【0042】また、比較電極yを備えた電池Yは水素吸
蔵電極の合金充填密度が低く、正極と負極の容量比が十
分に確保できないため、充電末期に負極において水素ガ
スが発生し、電池内圧が上昇する。この結果、この水素
ガスが電池外へ放出される際に、電解液が漏れて、電解
液が減少するため放電容量が500サイクル経過後、著
しく低下している。
Further, in the battery Y equipped with the comparison electrode y, since the alloy packing density of the hydrogen storage electrode is low and a sufficient capacity ratio between the positive electrode and the negative electrode cannot be ensured, hydrogen gas is generated at the negative electrode at the end of charging and the battery internal pressure is increased. Rises. As a result, when this hydrogen gas is released to the outside of the battery, the electrolytic solution leaks and the electrolytic solution decreases, so that the discharge capacity significantly decreases after 500 cycles.

【0043】尚、本実施例では水溶性高分子としてポリ
ビニールアルコールを用いたが、ポリビニールピロリド
ン、メチルセルロース、カルボキシメチルセルロース、
ポリエチレンオキサイド等でも良い。更に、天然ゴムや
スチレン−ブタジエン共重合体等のディスパージョン以
外にシリコンゴムやイソプレンゴム等のディスパージョ
ンを用いても良い。
Although polyvinyl alcohol was used as the water-soluble polymer in this example, polyvinyl pyrrolidone, methyl cellulose, carboxymethyl cellulose,
Polyethylene oxide or the like may be used. Further, in addition to the dispersion of natural rubber or styrene-butadiene copolymer, the dispersion of silicon rubber or isoprene rubber may be used.

【0044】[0044]

【発明の効果】本発明の水素吸蔵電極は機械的強度及び
水素吸蔵合金粉末の充填密度が高く、この電極を備えた
電池は、優れたサイクル寿命特性を有する。
EFFECTS OF THE INVENTION The hydrogen storage electrode of the present invention has high mechanical strength and high packing density of hydrogen storage alloy powder, and a battery provided with this electrode has excellent cycle life characteristics.

【0045】また、本発明の製造方法では、水素吸蔵電
極を簡単に作業性良く製造することができる。
Further, according to the manufacturing method of the present invention, the hydrogen storage electrode can be easily manufactured with good workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極を備えた電池と比較電極を備えた
電池のサイクル寿命特性の比較図である。
FIG. 1 is a comparison diagram of cycle life characteristics of a battery including an electrode of the present invention and a battery including a comparison electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結着剤によって水素吸蔵合金粉末を保持
してなる水素吸蔵電極において、上記結着剤が水溶性高
分子とゴム系樹脂とを含有することを特徴とする水素吸
蔵電極。
1. A hydrogen storage electrode comprising a hydrogen storage alloy powder held by a binder, wherein the binder contains a water-soluble polymer and a rubber resin.
【請求項2】 水素吸蔵合金粉末を含む活物質スラリー
を支持体に塗着して水素吸蔵電極を得る製造方法におい
て、上記活物質スラリー中に水溶性高分子とゴム系樹脂
を含有したディスパージョンとを添加することを特徴と
する水素吸蔵電極の製造方法。
2. A method for producing a hydrogen storage electrode by coating an active material slurry containing hydrogen storage alloy powder on a support, wherein the active material slurry contains a water-soluble polymer and a rubber resin. A method for manufacturing a hydrogen storage electrode, characterized in that and are added.
JP5191283A 1993-08-02 1993-08-02 Hydrogen storage electrode and manufacture thereof Pending JPH0745278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5191283A JPH0745278A (en) 1993-08-02 1993-08-02 Hydrogen storage electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191283A JPH0745278A (en) 1993-08-02 1993-08-02 Hydrogen storage electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0745278A true JPH0745278A (en) 1995-02-14

Family

ID=16271990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191283A Pending JPH0745278A (en) 1993-08-02 1993-08-02 Hydrogen storage electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0745278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891510A (en) * 1996-07-31 1999-04-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method for manufacturing a hydrogen storage alloy electrode
JP2006172992A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Aqueous dispersion containing binder for electrode, hydrogen storage alloy electrode and method for manufacturing same, alkaline storage battery and lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891510A (en) * 1996-07-31 1999-04-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method for manufacturing a hydrogen storage alloy electrode
JP2006172992A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Aqueous dispersion containing binder for electrode, hydrogen storage alloy electrode and method for manufacturing same, alkaline storage battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
WO1992022934A1 (en) Nickel electrode for alkali storage batteries
JP3138120B2 (en) Metal hydride storage battery
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0745278A (en) Hydrogen storage electrode and manufacture thereof
JPH11297352A (en) Alkaline storage battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JP3588933B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2797554B2 (en) Nickel cadmium storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2001093518A (en) Hydrogen storage alloy electrode and nickel-hydrogen battery
JPS63266768A (en) Manufacture of hydrogen storage electrode
JPH08148179A (en) Nickel-hydrogen storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH1021904A (en) Alkaline storage battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JP2823273B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000123832A (en) Manufacture of paste type electrode for storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2925591B2 (en) Method for producing hydrogen storage electrode
JPH11204112A (en) Nickel hydrogen battery
JP2983135B2 (en) Alkaline secondary battery
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JP3268013B2 (en) Hydrogen storage alloy electrode
JPH08264175A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP3614567B2 (en) Sealed nickel metal hydride battery