JPH0744850B2 - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPH0744850B2
JPH0744850B2 JP61103562A JP10356286A JPH0744850B2 JP H0744850 B2 JPH0744850 B2 JP H0744850B2 JP 61103562 A JP61103562 A JP 61103562A JP 10356286 A JP10356286 A JP 10356286A JP H0744850 B2 JPH0744850 B2 JP H0744850B2
Authority
JP
Japan
Prior art keywords
vibration wave
electrode
electrostrictive element
vibrating body
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61103562A
Other languages
Japanese (ja)
Other versions
JPS62260567A (en
Inventor
河合  徹
仁 向島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61103562A priority Critical patent/JPH0744850B2/en
Publication of JPS62260567A publication Critical patent/JPS62260567A/en
Publication of JPH0744850B2 publication Critical patent/JPH0744850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、進行性振動波により移動体を駆動する振動波
モーターに関し、特に該モーターへの給電実装に関す
る。
Description: TECHNICAL FIELD The present invention relates to a vibration wave motor that drives a moving body by a progressive vibration wave, and more particularly to mounting power supply to the motor.

〔従来技術〕[Prior art]

振動波モータは、電歪素子等の電気−機械エネルギー変
換素子に周波電圧を印加したときに生ずる振動運動を回
転運動又は一次元運動に変換するもので、従来の電磁モ
ータに比べて巻線を必要としないため、構造が簡単で小
型になり、低速回転時にも高トルクが得られるという利
点があり、近年注目されている。
A vibration wave motor converts an oscillating motion generated when a frequency voltage is applied to an electro-mechanical energy conversion device such as an electrostrictive device into a rotary motion or a one-dimensional motion. Since it is not necessary, the structure is simple and compact, and high torque can be obtained even at low speed rotation.

第3図、第4図は振動波モータの駆動原理を示すもの
で、第3図は上記モータの振動波の発生状態を示してい
る。振動体1(通常は金属)に接着された電歪素子2a,2
bは、振動体1の片側、適度に離れた所に、空間的にλ/
4の位相ずれを満足するように配置されている。
3 and 4 show the driving principle of the vibration wave motor, and FIG. 3 shows the generation state of the vibration wave of the motor. Electrostrictive elements 2a, 2 bonded to vibrator 1 (usually metal)
b is spatially λ / on one side of the vibrating body 1 and at an appropriate distance.
They are arranged so as to satisfy the phase shift of 4.

振動体1を電歪素子2a,2bの一方の面の電極とし、他方
の面には夫々電極を施し、電歪素子2aには、交流電源3a
からV=Vo sinωt、電歪素子2bには90゜移相器3bを通
してλ/4位相のずれたV=Vo sin(ωt±π/2)交流電
圧を印加する。前記式中の(+)(−)が移動体6を動
かす方向によつて移相器3bで切換えられる。今、これを
(−)側に切換えてあり、電歪素子2bにはV=Vo sin
(ωt±π/2)の電圧が印加されているとする。電歪素
子2aだけが単独で電圧V=Vo sinωtにより振動した場
合は、同図(a)に示すような定在波による振動が起
り、電歪素子2bだけが単独で電圧V=Vo sin(ωt−π
/2)により振動した場合は、同図(b)に示すような定
在波による振動が起る。上記位相のずれた2つの交流電
圧を同時に各々の電歪素子2a,2bに印加すると振動波は
進行性になる。(イ)は時間t=2nπ/ω、(ロ)はt
=π/2ω+2nπ/ω、(ハ)はt=π/ω+2nπ/ω、
(ニ)はt=3π/2ω+2nπ/ωの時のもので、振動波
の波面はx方向に進行する。
The vibrating body 1 is used as an electrode on one surface of the electrostrictive elements 2a and 2b, and electrodes are provided on the other surface of the electrostrictive element 2a.
Therefore, V = Vo sin ωt, and V = Vo sin (ωt ± π / 2) AC voltage having a phase shift of λ / 4 is applied to the electrostrictive element 2b through the 90 ° phase shifter 3b. (+) (-) In the above equation is switched by the phase shifter 3b depending on the direction in which the moving body 6 is moved. Now, this is switched to the (-) side, and the electrostrictive element 2b has V = Vo sin
It is assumed that a voltage of (ωt ± π / 2) is applied. When only the electrostrictive element 2a vibrates by the voltage V = Vo sin ωt alone, vibration due to a standing wave as shown in FIG. 7A occurs, and only the electrostrictive element 2b independently voltage V = Vo sin ( ωt-π
/ 2) vibrates due to standing waves as shown in FIG. When two AC voltages having the above-mentioned phase shifts are simultaneously applied to the respective electrostrictive elements 2a, 2b, the vibration wave becomes progressive. (A) is time t = 2nπ / ω, (b) is t
= Π / 2ω + 2nπ / ω, (c) is t = π / ω + 2nπ / ω,
(D) is for t = 3π / 2ω + 2nπ / ω, and the wavefront of the vibration wave advances in the x direction.

このような進行性の振動波は縦波と横波を伴なつてお
り、第4図に示すように振動体1の質点Aについて着目
すると、縦振幅uと横振幅wで反時計方向の回転楕円運
動をしている。振動体1の表面には移動体6が加圧接触
しており振動面の頂点にだけ接触をすることになるから
(実際には、ある幅をもつて面接触している)、頂点に
おける質点A,A′…の楕円運動の縦振幅uの成分に駆動
され、移動体6は矢印N方向に移動する。90゜移相器に
より+90゜位相をずらせば振動波は−x方向に進行し、
移動体6はN方向と逆向きに移動する。
Such a progressive oscillatory wave is accompanied by a longitudinal wave and a transverse wave. Focusing on the mass point A of the vibrating body 1 as shown in FIG. 4, a counterclockwise spheroid with a longitudinal amplitude u and a transverse amplitude w. I am exercising. Since the moving body 6 is in pressure contact with the surface of the vibrating body 1 and comes into contact only with the apex of the vibrating surface (actually, it is in surface contact with a certain width), so that the mass point at the apex. The moving body 6 moves in the arrow N direction by being driven by the component of the vertical amplitude u of the elliptic motion of A, A ′ .... If the 90 ° phase shifter shifts the phase by + 90 °, the vibration wave advances in the -x direction,
The moving body 6 moves in the direction opposite to the N direction.

この種の振動波モータを駆動するには、上述のように電
歪素子2a,2bに互いに位相の異なる周波電圧を印加する
必要があり、このため電歪素子に給電するための導電部
材を電歪素子の電極に接触しなければならないが、この
場合、電歪素子の電極自体にも振動波が発生しているた
め接触不良を生じる恐れがあつた。
In order to drive this type of vibration wave motor, it is necessary to apply frequency voltages having different phases to the electrostrictive elements 2a and 2b as described above. Although it is necessary to contact the electrode of the strain element, in this case, the electrode itself of the electrostrictive element itself generates a vibration wave, which may cause a contact failure.

〔発明の目的〕[Object of the Invention]

本発明は、振動波モータにおける電気−機械エネルギー
変換素子(例えば電歪素子)の電極に接触する給電用導
電部材が振動による接触不良を生じないようにすること
を目的とするものである。
An object of the present invention is to prevent a contact failure due to vibration from occurring in a conductive member for power supply, which contacts an electrode of an electro-mechanical energy conversion element (for example, an electrostrictive element) in a vibration wave motor.

〔発明の概要〕[Outline of Invention]

本発明は、振動波モータにおいて、給電用のフレキシブ
ルプリント板を常時電気−機械エネルギー変換素子の電
極に圧接するように設け、このフレキシブルプリント板
の導体パターンを櫛歯状にすることによつて、上述の目
的を達成するものである。
The present invention, in the vibration wave motor, by providing a flexible printed board for power feeding so as to be constantly in pressure contact with the electrode of the electro-mechanical energy conversion element, by forming the conductor pattern of the flexible printed board into a comb tooth shape, The above object is achieved.

〔実施例〕〔Example〕

第5図は本発明の一実施例に係る振動波モーターの一部
断面図を示している。図において、1は断面が台形状と
なつているリング状の振動体である。該振動体の底面に
はリング状の圧電体としての電歪素子2が一体に接着さ
れている。ここでリング状というのは、第5図において
上から見たときリング状をなしているという意味であ
る。
FIG. 5 is a partial sectional view of a vibration wave motor according to an embodiment of the present invention. In the figure, 1 is a ring-shaped vibrating body having a trapezoidal cross section. An electrostrictive element 2 as a ring-shaped piezoelectric body is integrally bonded to the bottom surface of the vibrating body. Here, the ring shape means that it has a ring shape when viewed from above in FIG.

第6図(a)は電歪素子2の分極状態を示す図であり、
該電歪素子2には、A,B2相の分極処理部を有している。
この分極処理部A,Bは周方向に波長λ/4ずれており、
(+)(−)は互いに分極処理の方向が異なることを示
している。(+)部と(−)部によつて定まる長さは入
力する周波数によつて定まる一定長λ分の長さに相当す
る。該電歪素子2の上記振動体1の底面との接着面すな
わち第5図で見て電歪素子2の上面は第6図(b)の如
く全面電極2−1となつており、又、該素子2の逆側の
面すなわち下面は第6図(c)の如く、A相部に対応し
て電極パターン2Aが又、B相部に対して電極パターン2B
が設けられると共に、電歪素子の振動状態を検知するセ
ンサー用電極S(振動体の振動により電歪素子に発生す
る逆起電圧を検知する電極)並びに共通電極Cが設けら
れている。該共通電極Cと第6図(b)に示した電極と
は導電性樹脂により導通している。
FIG. 6 (a) is a diagram showing the polarization state of the electrostrictive element 2,
The electrostrictive element 2 has polarization processing portions of A and B2 phases.
The polarization processing parts A and B are deviated in wavelength λ / 4 in the circumferential direction,
(+) And (-) indicate that the directions of polarization treatment are different from each other. The length determined by the (+) part and the (-) part corresponds to the constant length λ determined by the input frequency. The surface of the electrostrictive element 2 that is bonded to the bottom surface of the vibrating body 1, that is, the upper surface of the electrostrictive element 2 as seen in FIG. 5, is a full-surface electrode 2-1 as shown in FIG. As shown in FIG. 6 (c), the opposite surface of the element 2, that is, the lower surface, has an electrode pattern 2A corresponding to the A phase portion and an electrode pattern 2B for the B phase portion.
In addition, a sensor electrode S for detecting a vibration state of the electrostrictive element (an electrode for detecting a counter electromotive voltage generated in the electrostrictive element due to vibration of the vibrating body) and a common electrode C are provided. The common electrode C and the electrode shown in FIG. 6 (b) are electrically connected by a conductive resin.

第5図に戻り、11は給電用フレキシブルプリント回路板
(以下FPC板と称す。)で、該FPC板は上記電歪素子の下
面の上記各電極と接続し、各電極に上記位相差の異なる
駆動周波電圧を供給する。該FPC板11は第2図に示され
る如く櫛歯状の導体パターン(例えば銅製)11′が印刷
されている。
Returning to FIG. 5, 11 is a flexible printed circuit board for power supply (hereinafter referred to as FPC board), which is connected to each electrode on the lower surface of the electrostrictive element, and each electrode has a different phase difference. Supply drive frequency voltage. As shown in FIG. 2, the FPC board 11 is printed with a comb-shaped conductor pattern (for example, made of copper) 11 '.

第1図はFPC板11の導体パターンと電歪素子2の第6図
(a),(c)にて示した電極パターンとの当接位置関
係を示す配設図であり、FPC板の導体パターンは第1図
に示す位置関係で電歪素子に当接している。該FPC板11
はフエルト等の材質から成る振動吸収体4を介して皿バ
ネ等の圧接部材5にて上下方向に振動体1等の自重より
も十分に大きな力で電歪素子2に対して加圧されてい
る。
FIG. 1 is an arrangement diagram showing the contact position relationship between the conductor pattern of the FPC board 11 and the electrode pattern of the electrostrictive element 2 shown in FIGS. 6 (a) and 6 (c). The pattern is in contact with the electrostrictive element in the positional relationship shown in FIG. The FPC board 11
Is pressed against the electrostrictive element 2 by a pressing member 5 such as a disc spring through a vibration absorber 4 made of a material such as felt in a vertical direction with a force sufficiently larger than its own weight. There is.

6は前記移動体を成すリング状の回転体で、該回転体の
鍔部6aは上記振動体1の上面1aと当接し、振動体1に発
生する進行性振動波にて回動する。該回転体には溝部6b
が設けられ、該溝部とハウジング10に設けられたボール
押え環9およびボール受け8にて形成される軸受け部と
にてボール7を受けており、回転体の回転の円滑化をは
かつている。又、ハウジング10には切欠部10aが設けら
れFPC板の一端を外部に引出している。
Reference numeral 6 denotes a ring-shaped rotating body which constitutes the moving body, and a flange portion 6a of the rotating body contacts the upper surface 1a of the vibrating body 1 and is rotated by a progressive vibration wave generated in the vibrating body 1. Groove 6b is formed on the rotating body.
Is provided, and the ball 7 is received by the groove portion and the bearing portion formed by the ball retainer ring 9 and the ball receiver 8 provided in the housing 10, thereby achieving smooth rotation of the rotating body. Further, the housing 10 is provided with a cutout portion 10a, and one end of the FPC plate is pulled out to the outside.

進行性振動波を発生している状態においては電歪素子表
面にも進行性振動波が発生しているので、電歪素子電極
とFPC板との密着性が悪くなり易いが、本実施例では上
述のようにFPC板の導体を櫛歯状パターンとすることに
より電歪素子電極との接触部を多点とし且つフレキシビ
リテイを高め、接触不良を防止している。櫛歯状パター
ンの各櫛歯は細いほどよい。
In the state where the progressive vibration wave is generated, since the progressive vibration wave is also generated on the electrostrictive element surface, the adhesion between the electrostrictive element electrode and the FPC plate is likely to deteriorate, but in this embodiment, As described above, by forming the conductor of the FPC plate in a comb-tooth pattern, the contact portion with the electrostrictive element electrode is provided at multiple points, flexibility is increased, and contact failure is prevented. It is better that each comb tooth of the comb-shaped pattern is thinner.

他の実施例として、多点接触を実現するために櫛歯状パ
ターンの代りにFPC板の導体パターンに複数の小突起を
設けてもよい。すなわち第7図に示すように進行性振動
波の進む方向に一列状又は複数列の小突起をFPC板の導
体パターン表面に突出させる。第8図はその要部断面を
示し、12′は銅箔、12″はベースフイルムである。突起
のピツチは振動波に対し十分小さくすることが振動に対
しての悪影響が減るので好ましい。
As another embodiment, a plurality of small protrusions may be provided on the conductor pattern of the FPC board in place of the comb-shaped pattern in order to realize multi-point contact. That is, as shown in FIG. 7, a single row or a plurality of rows of small protrusions are projected on the surface of the conductor pattern of the FPC plate in the direction in which the progressive vibration wave advances. Fig. 8 shows a cross section of the main part, 12 'is a copper foil and 12 "is a base film. It is preferable that the pitch of the protrusion is sufficiently small for the vibration wave because the adverse effect on the vibration is reduced.

尚、以上の実施例におけるFPC板の銅パターン及びフイ
ルムの厚さは薄いほど損失が少ないものであり、可能な
限り薄膜に形成したFPCが好ましい。
In addition, the thinner the copper pattern and the film of the FPC plate in the above examples, the smaller the loss, and the FPC formed in the thinnest possible film is preferable.

〔発明の効果〕〔The invention's effect〕

本発明によれば、振動波モータ給電用のフレキシブルプ
リント板のフレキシビリテイを増し且つ多点接触となる
ので進行性振動波の発生中でも密着性を高めることがで
きる。また、フレキシブルプリント板の銅箔面積が減
り、質量が減少するので振動の損失を減らし、駆動効率
の低下を少くする効果もある。
According to the present invention, the flexibility of the flexible printed board for feeding the vibration wave motor is increased and the multi-point contact is made, so that the adhesion can be improved even when the progressive vibration wave is generated. Further, since the copper foil area of the flexible printed board is reduced and the mass is reduced, there is an effect that vibration loss is reduced and driving efficiency is lessened.

【図面の簡単な説明】 第1図は本発明の一実施例におけるフレキシブルプリン
ト板と電歪素子電極との配設関係を示す図、第2図は該
フレキシブルプリント板の平面図、第3図および第4図
は振動波モータの原理説明図、第5図は本発明の一実施
例の振動波モータの一部を示す断面図、第6図(a),
(b),(c)は同実施例における電歪素子区画および
上面および下面の電極配置を示す図、第7図および第8
図は本発明の他の実施例に係るフレキシブルプリント板
の平面図および一部断面図である。 1……振動体、2……電歪素子 4……フエルト、5……皿バネ 6……回転体、7……ボール 10……ハウジング 11……フレキシブルプリント板 11′……櫛歯状導体パターン。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an arrangement relationship between a flexible printed board and an electrostrictive element electrode in one embodiment of the present invention, FIG. 2 is a plan view of the flexible printed board, and FIG. FIG. 4 is an explanatory view of the principle of the vibration wave motor, FIG. 5 is a sectional view showing a part of the vibration wave motor of one embodiment of the present invention, FIG. 6 (a),
FIGS. 7B and 7C are diagrams showing the electrostrictive element section and the electrode arrangement on the upper and lower surfaces in the same embodiment, FIGS.
The drawings are a plan view and a partial cross-sectional view of a flexible printed board according to another embodiment of the present invention. 1 ... Vibrating body, 2 ... Electrostrictive element, 4 ... Felt, 5 ... Disc spring, 6 ... Rotating body, 7 ... Ball, 10 ... Housing, 11 ... Flexible printed board, 11 '... Comb-shaped conductor pattern.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】振動体上に複数区画をなす電気−機械エネ
ルギー変換素子を配設し、該電気−機械エネルギー変換
素子の電極に周波電圧を印加して該振動体に進行性振動
波を発生させ、該振動体に加圧接触している移動体を相
対的に摩擦駆動する振動波モーターにおいて、櫛歯状導
体パターンを有するフレキシブルプリント板の櫛歯状導
体パターンを上記電気−機械エネルギー変換素子の電極
に圧接し、該櫛歯状導体パターンを介して電気−機械エ
ネルギー変換素子への給電を行うことを特徴とする振動
波モーター。
1. An electro-mechanical energy conversion element forming a plurality of sections on a vibrating body, and a frequency voltage is applied to an electrode of the electro-mechanical energy converting element to generate a progressive vibration wave in the vibrating body. In a vibration wave motor that relatively frictionally drives a moving body that is in pressure contact with the vibrating body, the comb-tooth-shaped conductor pattern of the flexible printed board having the comb-tooth-shaped conductor pattern is formed into the electro-mechanical energy conversion element. A vibration wave motor, which is press-contacted with the electrode and supplies electric power to the electromechanical energy conversion element through the comb-shaped conductor pattern.
JP61103562A 1986-05-06 1986-05-06 Vibration wave motor Expired - Lifetime JPH0744850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103562A JPH0744850B2 (en) 1986-05-06 1986-05-06 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103562A JPH0744850B2 (en) 1986-05-06 1986-05-06 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS62260567A JPS62260567A (en) 1987-11-12
JPH0744850B2 true JPH0744850B2 (en) 1995-05-15

Family

ID=14357246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103562A Expired - Lifetime JPH0744850B2 (en) 1986-05-06 1986-05-06 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPH0744850B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529875Y2 (en) * 1987-02-16 1997-03-19 オリンパス光学工業株式会社 Ultrasonic motor
JPH01120794U (en) * 1988-02-10 1989-08-16
JPH01123488U (en) * 1988-02-15 1989-08-22
JP2604862B2 (en) * 1989-09-06 1997-04-30 キヤノン株式会社 Vibration wave drive
JPH03190573A (en) * 1989-12-13 1991-08-20 Canon Inc Oscillation wave motor
JPH11191970A (en) 1997-12-25 1999-07-13 Asmo Co Ltd Ultrasonic motor
WO2021095637A1 (en) 2019-11-15 2021-05-20 株式会社村田製作所 Ultrasonic motor

Also Published As

Publication number Publication date
JPS62260567A (en) 1987-11-12

Similar Documents

Publication Publication Date Title
US4504760A (en) Piezoelectrically driven vibration wave motor
US4587452A (en) Vibration wave motor having a vibrator of non-uniform elastic modulus
US4678956A (en) Vibration wave motor
US4484099A (en) Piezoelectric vibration wave motor with multiple traveling wave generating members
US4893045A (en) Ultrasonic driving device
US5402030A (en) Vibration wave driven apparatus
EP0301430B1 (en) An ultrasonic driving device
JPH0744850B2 (en) Vibration wave motor
JPH0421371A (en) Oscillation wave motor
JPS63316675A (en) Piezoelectric linear motor
JPH0710188B2 (en) Vibration wave motor
US6198201B1 (en) Vibration wave apparatus
JPS62201072A (en) Oscillatory wave motor
JP2004304963A (en) Piezoelectric actuator
SU853711A1 (en) Vibromotor
JPH0332377A (en) Ultrasonic motor
JP2586045B2 (en) Vibration motor
JP2671480B2 (en) Ultrasonic motor
JPH01177878A (en) Oscillatory wave motor
JPH0681523B2 (en) Vibration wave motor
JPS62203571A (en) Vibration wave motor
JP2996494B2 (en) Vibration type motor device
JP3089324B2 (en) Ultrasonic motor
JPH0251379A (en) Ultrasonic motor
JPH07274549A (en) Ultrasonic motor and driving apparatus therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term