JPH0743356A - Thermal conductivity detector - Google Patents

Thermal conductivity detector

Info

Publication number
JPH0743356A
JPH0743356A JP5208558A JP20855893A JPH0743356A JP H0743356 A JPH0743356 A JP H0743356A JP 5208558 A JP5208558 A JP 5208558A JP 20855893 A JP20855893 A JP 20855893A JP H0743356 A JPH0743356 A JP H0743356A
Authority
JP
Japan
Prior art keywords
filament
metal
thermal conductivity
lead wire
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5208558A
Other languages
Japanese (ja)
Other versions
JP2827831B2 (en
Inventor
Hironori Karasawa
広紀 柄沢
Koji Inoue
光二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5208558A priority Critical patent/JP2827831B2/en
Publication of JPH0743356A publication Critical patent/JPH0743356A/en
Application granted granted Critical
Publication of JP2827831B2 publication Critical patent/JP2827831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To ultraminiaturize a filament element and a layout space and to achieve an accurate detection by welding and joining filament to a lead wire which is plated by a corrosion-resistance metal. CONSTITUTION:A lead wire 4 which is plated by a corrosion-resistant metal and an extremely thin filament 8 of a filament element 1 are spot-welded. In this case, the metal at the plated part melts and covers and bonds the joint part, thus preventing the joined part from being disconnected easily for stabilizing state and hence ultraminiaturizing the element 1. The element 1 is laid out at a space 10a of a metal block 10 individually and a flange part 3b is welded to the block 10 airtightly, thus sealing the element 1 into the block 10. At this time, the electrical output of the filament 8 is connected to a detection circuit. Then, when a reference gas and a sample gas are introduced to one space 10a and the other, respectively, the thermal conductivity differs due to introduction of the sample gas. A compensation current flows for keeping constant temperature and a sample is detected from the value, thus ultraminiaturizing the detector and achieving an accurate detection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ガスクロマトグラフ
の検出器として用いられる熱伝導度検出器、特に超小型
とすることが可能な熱伝導度検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal conductivity detector used as a detector for a gas chromatograph, and more particularly to a thermal conductivity detector which can be miniaturized.

【0002】[0002]

【従来の技術】ガスクロマトグラフの検出器の一種であ
る熱伝導度検出器は、所定の容器内に独立して設けた一
定容量(大体、290μl)の二つの空間のそれぞれ
に、封着端子にフィラメントを取付けてなるフィラメン
ト素子を固定して配置し、一方の空間には基準ガスを他
方の空間にはキャリヤガスを流すようにしてある。そし
て前記二つのフィラメント素子はブリッジ回路とした検
出回路の一部を構成させ、キャリヤガスを流す空間に試
料ガスが流入すると熱伝導度に差が生じ、これを補正電
流による検出ピ−クとして取り出すことによって試料の
検出を行うようにしてある。
2. Description of the Related Art A thermal conductivity detector, which is a type of detector for a gas chromatograph, is provided with a sealed terminal in each of two spaces having a fixed volume (approximately 290 μl) independently provided in a predetermined container. A filament element having a filament attached thereto is fixedly arranged, and a reference gas flows in one space and a carrier gas flows in the other space. The two filament elements form a part of a detection circuit which is a bridge circuit, and when the sample gas flows into the space in which the carrier gas flows, a difference in thermal conductivity occurs, and this is taken out as a detection peak by the correction current. By doing so, the sample is detected.

【0003】[0003]

【発明が解決しようとする課題】従来の熱伝導度検出器
は、フィラメント自身が比較的大きく製作され該フィラ
メントを取付けたフィラメント素子を配置する空間は高
温状態となり且つ機密構造としなければならないため構
造が複雑で容量も大きくなっている。従って熱伝導度検
出器の全体的形状も大きく、それだけデッドボリュ−ム
も大きくなる。このように熱伝導度検出器のフィラメン
ト素子を配置する空間が大きくなると応答速度が遅くな
り、またフィラメントや検出器全体が大きいと熱容量も
大きくなり安定するまでに時間がかかり、測定に要する
時間も長くなる。更にデッドボリュ−ムが大きいと残余
ガスの影響で精度が低くなり検出ピ−クのテ−リングも
大きくなるという問題がある。このように熱伝導度検出
器ではフィラメントを始めフィラメント素子や容器空間
等全てが大きくなると検出精度に影響を及ぼすことにな
るが、フィラメントとリ−ド線の接合は極めて難しいた
めフィラメント素子等を小型化することは難しい。
The conventional thermal conductivity detector has a structure in which the filament itself is made relatively large, and the space for arranging the filament element to which the filament is attached must be in a high temperature state and must be a sealed structure. However, it is complicated and has a large capacity. Therefore, the overall shape of the thermal conductivity detector is large, and the dead volume is accordingly large. When the space for arranging the filament element of the thermal conductivity detector becomes large in this way, the response speed becomes slow, and when the filament and the entire detector are large, the heat capacity also becomes large and it takes time to stabilize, and the time required for measurement also increases. become longer. Further, if the dead volume is large, there is a problem that the accuracy is lowered due to the influence of the residual gas and the tailing of the detection peak is increased. As described above, in the thermal conductivity detector, if the filament element, the container element, and the container space all increase in size, the detection accuracy will be affected. However, since it is extremely difficult to join the filament and the lead wire, the filament element and the like can be downsized. It is difficult to make it.

【0004】この発明は上記する課題に鑑みてなされた
ものであり、その目的とするところはフィラメント及び
該フィラメントを配置する空間を極力小さくすることが
可能で検出精度を良くした熱伝導度検出器を提供するこ
とにある。
The present invention has been made in view of the above problems, and an object thereof is a thermal conductivity detector in which the filament and the space in which the filament is arranged can be made as small as possible and the detection accuracy is improved. To provide.

【0005】[0005]

【課題を解決するための手段】即ち、この考案は上記す
る課題を解決するために、独立して設けた二つの空間内
のそれぞれにリ−ド線にフィラメントを取付けてなるフ
ィラメント素子を固定して配置し該二つのフィラメント
素子を検出回路の一部として組込んだ熱伝導度検出器に
おいて、前記フィラメント素子を、金属ベ−スと該金属
ベ−スに絶縁体を介して通し表面を耐腐食金属でメッキ
した二本のリ−ド線と該リ−ド線に溶着接合したフィラ
メントとで構成し、且つ該フィラメント素子を金属ブロ
ックに設けたガス流通空間に密封して配置したことを特
徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention fixes a filament element having a filament attached to a lead wire in each of two independently provided spaces. In a thermal conductivity detector in which the two filament elements are arranged as a part of a detection circuit, the filament element is passed through the metal base and the metal base via an insulator, and the surface is protected. It is characterized in that it is composed of two lead wires plated with a corrosive metal and a filament weld-bonded to the lead wires, and that the filament element is hermetically arranged in a gas flow space provided in a metal block. And

【0006】[0006]

【作用】熱伝導度検出器を上記手段とすると、例えば耐
腐食金属として金メッキしたリ−ド線とフィラメントと
をスポット溶接すると、メッキ部分の金が溶けてリ−ド
線とフィラメントとの接合部を覆いしっかり接着する作
用を果たし該接合部は断線しにくく安定した状態とな
る。このようにリ−ド線と極細のフィラメントとの安定
したスポット溶接が可能となるとフィラメント素子を超
小型化することが可能となり、従って熱伝導度検出器も
超小型化することが出来る。
When the thermal conductivity detector is used as the above means, for example, when a lead wire and a filament plated with gold as a corrosion resistant metal are spot-welded, the gold in the plated portion is melted and the joint portion between the lead wire and the filament is melted. The bonded portion is covered with the adhesive layer and firmly adhered to the bonded portion, and the bonded portion is hard to be broken and is in a stable state. When stable spot welding of the lead wire and the ultra-fine filament is possible in this way, the filament element can be miniaturized, and therefore the thermal conductivity detector can be miniaturized.

【0007】[0007]

【実施例】以下、この発明の具体的実施例について図面
を参照して説明する。図1(A)はこの発明で用いられ
るフィラメント素子1の縦断面図、図1(B)は該フィ
ラメント素子1を図1(A)の下側から見た平面図であ
る。このフィラメント素子1は、封着端子2と、極細の
フィラメント8とより構成され、更に該封着端子2は金
属ベ−ス3と該金属ベ−ス3に穿設した孔3a及び3a
に通したリ−ド線4及び4と該孔3aに埋設したガラス
やセラミックス等の絶縁体5及び5とで構成される。そ
して該リ−ド線4には金(耐腐食性金属)7によるメッ
キ層が施されている。また前記金属ベ−ス3の周囲には
フランジ部3bを形成し、後述するように金属ブロック
10との密着性を良くするため該フランジ部3bに環状
突起部3cが設けられることもある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. FIG. 1 (A) is a longitudinal sectional view of a filament element 1 used in the present invention, and FIG. 1 (B) is a plan view of the filament element 1 seen from the lower side of FIG. 1 (A). The filament element 1 is composed of a sealing terminal 2 and an ultrafine filament 8. The sealing terminal 2 is further provided with a metal base 3 and holes 3a and 3a formed in the metal base 3.
It is composed of lead wires 4 and 4 which are passed through, and insulators 5 and 5 which are buried in the hole 3a, such as glass and ceramics. The lead wire 4 is plated with gold (corrosion resistant metal) 7. A flange portion 3b may be formed around the metal base 3, and an annular projection 3c may be provided on the flange portion 3b in order to improve adhesion with the metal block 10 as described later.

【0008】次に、前記フィラメント素子1のリ−ド線
4とフィラメント8との接合方法について述べる。図2
はリ−ド線4とフィラメント8との接合部分を拡大した
図であり、図3は更に該リ−ド線4とフィラメント8と
の接合状態を示す拡大図である。通常、フィラメント8
の線径は0.020mm、リ−ド線4の線径は0.35
mm、程度でありスポット溶接は難しい。即ち、このよ
うな細いリ−ド線4と極細のフィラメント8をスポット
溶接して両者を接合しても接合部Mの腐食、加熱と冷却
の繰り返しによる接合部の劣化や断線等により接合部M
の寿命が短く問題がある。
Next, a method of joining the lead wire 4 of the filament element 1 and the filament 8 will be described. Figure 2
FIG. 3 is an enlarged view of a joined portion between the lead wire 4 and the filament 8, and FIG. 3 is an enlarged view showing a joined state between the lead wire 4 and the filament 8. Usually filament 8
Has a diameter of 0.020 mm, and the lead wire 4 has a diameter of 0.35
mm, and spot welding is difficult. That is, even if such a thin lead wire 4 and an ultrafine filament 8 are spot-welded and joined together, the joint M is corroded, the joint is deteriorated due to repeated heating and cooling, and the joint M is broken.
Has a short life and has problems.

【0009】しかし、例えば耐腐食金属として金7によ
ってメッキしたリ−ド線4とフィラメント8とをスポッ
ト溶接すると、メッキ部分の金7が溶けてリ−ド線4と
フィラメント8との接合部Mを覆いしっかり接着する作
用を果たし該接合部は断線しにくく安定した状態とな
る。このようにリ−ド線4と極細のフィラメント8との
安定したスポット溶接が可能となるとフィラメント素子
1を超小型化することが可能となり、従って熱伝導度検
出器も超小型化することが出来る。尚、前記リ−ド線4
は金メッキの他白金や銀によるメッキであっても良い。
次に、この超小形化した熱伝導度検出器の実施例につい
て述べる。
However, for example, when the lead wire 4 plated with gold 7 as a corrosion-resistant metal and the filament 8 are spot-welded, the gold 7 in the plated portion is melted and the joining portion M between the lead wire 4 and the filament 8 is melted. The bonded portion is covered with the adhesive layer and firmly adhered to the bonded portion, and the bonded portion is hard to be broken and is in a stable state. If stable spot welding of the lead wire 4 and the ultrafine filament 8 is possible in this way, the filament element 1 can be made extremely compact, and therefore the thermal conductivity detector can also be made extremely compact. . Incidentally, the lead wire 4
May be plated with platinum or silver instead of gold.
Next, an embodiment of this ultra-small thermal conductivity detector will be described.

【0010】図4は前記フィラメント素子1を組込んだ
超小形の熱伝導度検出器の実施例の平面図、図5は図4
のA−A矢視断面拡大図である。この熱伝導度検出器に
は、前記フィラメント素子1がステンレス或いはKOV
AR製(ニッケルコバルト合金、但し材質はこれらに限
られない)の金属ブロック10に二個組込まれるが、こ
の場合該金属ブロック10内には独立した二つの空間1
0aが設けられ、フィラメント素子1はこの空間10a
にそれぞれ別個に配置される。この空間10aの容積は
10μl以下とすることが可能となる。また前記金属ブ
ロック10の空間10aにはガス流路10bが設けられ
ここに金属製チュ−ブ11が嵌め込まれ該金属ブロック
10と溶接接合され一体としてある。この場合金属ブロ
ック10の空間10aに配置される前記フィラメント素
子1のフィラメント8はなるべくガスの流路中心部に置
くようにする。また、これらの金属製チュ−ブ11には
コネクタ12が取付けられキャリヤガスや基準ガスを導
入、排出する他の管路に接続されるようにしてある。
FIG. 4 is a plan view of an embodiment of an ultra-small thermal conductivity detector incorporating the filament element 1, and FIG. 5 is FIG.
3 is an enlarged cross-sectional view taken along the line AA of FIG. In this thermal conductivity detector, the filament element 1 is made of stainless steel or KOV.
Two metal blocks 10 made of AR (nickel-cobalt alloy, but the material is not limited to these) are assembled. In this case, two independent spaces 1 are provided in the metal block 10.
0a is provided, and the filament element 1 has the space 10a.
To be placed separately. The volume of this space 10a can be 10 μl or less. A gas flow path 10b is provided in the space 10a of the metal block 10, and a metal tube 11 is fitted therein and welded and integrated with the metal block 10. In this case, the filament 8 of the filament element 1 arranged in the space 10a of the metal block 10 is placed as close to the center of the gas passage as possible. Further, a connector 12 is attached to these metallic tubes 11 so as to be connected to another pipeline for introducing and discharging a carrier gas and a reference gas.

【0011】次に、前記金属ブロック10の空間10a
に配置されたフィラメント素子1は金属ベ−ス3のフラ
ンジ部3bを金属ブロック10に機密溶接する。こうし
てフィラメント素子1は金属ブロック10の二つの空間
に独立して配置され密封されることになる。13は前記
リ−ド線4に接合されたリ−ド線であり他端部には端子
14が取付けられ検出回路に接続するようにしてある。
以上のようにして構成された超小形熱伝導度検出器のフ
ィラメント素子を配置した金属ブロック10の一方の空
間10aには基準ガスを流し、他方の空間10aにはキ
ャリヤガスを流して分析する試料ガスを導入する。そし
て二つのフィラメント8の電気出力は定温度回路又は定
電流回路で構成される検出回路に入り、試料ガスの導入
によって生じた熱伝導度の差によって一定温度又は一定
電流になるように補正電流が流れる。この補正電流を検
出することにより試料の検出を行うのである。
Next, the space 10a of the metal block 10
In the filament element 1 arranged in the above, the flange portion 3b of the metal base 3 is airtightly welded to the metal block 10. In this way, the filament element 1 is independently arranged and sealed in the two spaces of the metal block 10. A lead wire 13 is joined to the lead wire 4, and a terminal 14 is attached to the other end of the lead wire so as to be connected to a detection circuit.
Sample to be analyzed by flowing a reference gas in one space 10a of the metal block 10 in which the filament elements of the ultra-small thermal conductivity detector configured as described above are flown and a carrier gas is flown in the other space 10a Introduce gas. Then, the electric outputs of the two filaments 8 enter a detection circuit composed of a constant temperature circuit or a constant current circuit, and a correction current is adjusted so that a constant temperature or a constant current is obtained due to the difference in thermal conductivity caused by the introduction of the sample gas. Flowing. The sample is detected by detecting this correction current.

【0012】図6は、同様に前記フィラメント素子1を
組込んだ他の実施例の超小形の熱伝導度検出器の平面
図、図7は図6のB−B矢視断面拡大図である。この実
施例では上記例と同様に、金属ブロック10には二つの
空間10aを設けそれぞれ別個にフィラメント素子1を
配置する。該金属ブロック10には金属チュ−ブ11を
固着して基準ガスやキャリヤガスが流通するようにして
ある。そして更に該金属ブロック10は雌ねじ15a、
15aを設けた取付板15に載せ、該金属ブロック10
の空間10bにフィラメント素子1のフィラメント8を
配置して金属ベ−ス3のフランジ部3bと金属ブロック
10との間に金属ガスケット16を挟み上から押さえ板
17を載せてボルト18、18を前記雌ねじ15a、1
5aに螺合させて締め付け押さえた構成としてある。
FIG. 6 is a plan view of a microminiature thermal conductivity detector of another embodiment in which the filament element 1 is similarly incorporated, and FIG. 7 is an enlarged sectional view taken along the line BB of FIG. . In this embodiment, similar to the above-mentioned example, two spaces 10a are provided in the metal block 10 and the filament elements 1 are separately arranged. A metal tube 11 is fixed to the metal block 10 so that a reference gas and a carrier gas can flow. Further, the metal block 10 has a female screw 15a,
The metal block 10 is mounted on the mounting plate 15 provided with 15a.
The filament 8 of the filament element 1 is placed in the space 10b, and the metal gasket 16 is sandwiched between the flange portion 3b of the metal base 3 and the metal block 10 and the pressing plate 17 is placed from above to attach the bolts 18, 18 to the above. Female screws 15a, 1
It is configured to be screwed into 5a and clamped.

【0013】この実施例では、図6(B)に示すよう
に、フィラメント素子1を構成する金属ベ−ス3の環状
突起3cが金属ガスケット16にしっかり食い込み金属
ブロック10の空間10aを密封する役目をする。上記
実施例がフィラメント素子1の分解不能形であるのに対
してこの変形実施例は分解可能形である。即ち、前記フ
ィラメント素子1のリ−ド線4とフィラメント8との接
合部M(図3参照)が若し外れて断線してもボルト15
を外して押さえ板17を外せば封着端子2は外すことが
出来る。そこで外れたリ−ド線4とフィラメント8を溶
接し修理したり、交換すれば再度使用することが出来
る。
In this embodiment, as shown in FIG. 6B, the annular projection 3c of the metal base 3 which constitutes the filament element 1 bites into the metal gasket 16 to seal the space 10a of the metal block 10. do. Whereas the above embodiment is a non-decomposable form of the filament element 1, this modified embodiment is a decomposable form. That is, even if the joining portion M (see FIG. 3) between the lead wire 4 of the filament element 1 and the filament 8 is dislocated, the bolt 15
The sealing terminal 2 can be removed by removing and pressing plate 17. Then, the detached lead wire 4 and the filament 8 can be welded and repaired, or can be reused if replaced.

【0014】この熱伝導度検出器の実施例は以上のよう
であり、前記フィラメント素子1の金属ベ−ス3は小判
形(楕円形)としたが、円形や多角形等他の形状であっ
ても良い。また、フィラメントは直線状の単線や複線又
はリボン線等種々の形状とすることが出来る。
The embodiment of this thermal conductivity detector is as described above, and the metal base 3 of the filament element 1 has an oval shape (elliptical shape), but may have other shapes such as a circular shape and a polygonal shape. May be. Further, the filament may have various shapes such as a linear single wire, a double wire or a ribbon wire.

【0015】[0015]

【発明の効果】この発明の熱伝導度検出器は以上詳述し
たような構成としたので次のような多くの優れた効果が
生じる。即ち、 (1)熱伝導度検出器を超小形熱伝導度検出器として従
来よりは遙に小型の熱伝導度検出器として構成すること
が出来る。 (2)内部構造が簡単となり、且つ熱容量も小さくする
ことが出来るので安定化させるまでの時間を短縮するこ
とが出来る。 (3)フィラメントを配置する空間を小さくすることが
出来るので少量の基準ガスやキャリヤガスで試料ガスを
分析することが可能となり応答速度も早い。 (4)デッドボリュ−ムが殆どないので試料ガスの検出
ピ−クのテ−リングがなくなり分解能が極めて高くな
る。 (5)検出器を分解可能とした場合、フィラメントが断
線しても容易に交換や修理が可能となる。
Since the thermal conductivity detector of the present invention is constructed as described above in detail, the following many excellent effects are produced. That is, (1) the thermal conductivity detector can be configured as an ultra-small thermal conductivity detector that is much smaller than conventional thermal conductivity detectors. (2) Since the internal structure is simple and the heat capacity can be reduced, the time required for stabilization can be shortened. (3) Since the space for arranging the filament can be made small, the sample gas can be analyzed with a small amount of the reference gas and the carrier gas, and the response speed is fast. (4) Since there is almost no dead volume, the tailing of the sample gas detection peak is eliminated and the resolution is extremely high. (5) If the detector can be disassembled, it can be easily replaced or repaired even if the filament is broken.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)はこの発明で用いられるフィラメン
ト素子の縦断面図であり、図1(B)は該フィラメント
素子を図1(A)の下側から見た平面図である。
1 (A) is a longitudinal sectional view of a filament element used in the present invention, and FIG. 1 (B) is a plan view of the filament element as seen from the lower side of FIG. 1 (A).

【図2】リ−ド線とフィラメントとの接合部分を拡大し
た図である。
FIG. 2 is an enlarged view of a joint portion between a lead wire and a filament.

【図3】リ−ド線とフィラメントとの接合状態を示す拡
大図である。
FIG. 3 is an enlarged view showing a joined state of a lead wire and a filament.

【図4】フィラメント素子を組込んだ超小形の熱伝導度
検出器の平面図である。
FIG. 4 is a plan view of a microminiature thermal conductivity detector incorporating a filament element.

【図5】図4のA−A矢視断面拡大図である。5 is an enlarged cross-sectional view taken along the line AA of FIG.

【図6】フィラメント素子を組込んだ他の実施例の超小
形の熱伝導度検出器の平面図である。
FIG. 6 is a plan view of another embodiment of a microminiature thermal conductivity detector incorporating a filament element.

【図7】図7(A)は図6のB−B矢視断面拡大図であ
り、図7(B)は金属ベ−スと金属ブロックと金属ガス
ケット部分の拡大図である。
7 (A) is an enlarged view of a cross section taken along the line BB of FIG. 6, and FIG. 7 (B) is an enlarged view of a metal base, a metal block, and a metal gasket portion.

【符号の説明】 1 フィラメント素子 2 封着端子 3 金属ベ−ス 4 リ−ド線 5 絶縁体 7 金メッキ 8 フィラメント 10 金属ブロック 10a 金属ブロック内空間 15 取付板 16 金属ガスケッ
ト 17 押さえ板 18 ボルト M 接合部
[Explanation of Codes] 1 Filament element 2 Sealed terminal 3 Metal base 4 Lead wire 5 Insulator 7 Gold plating 8 Filament 10 Metal block 10a Metal block inner space 15 Mounting plate 16 Metal gasket 17 Holding plate 18 Bolt M connection Department

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 独立して設けた二つの空間内のそれぞれ
にリ−ド線にフィラメントを取付けてなるフィラメント
素子を固定して配置し該二つのフィラメント素子を検出
回路の一部として組込んだ熱伝導度検出器において、 前記フィラメント素子を、金属ベ−スと該金属ベ−スに
絶縁体を介して通し表面を耐腐食金属でメッキしたリ−
ド線と該リ−ド線に溶着接合したフィラメントとで構成
し、かつ該フィラメント素子を金属ブロックに設けたガ
ス流通空間に密封して配置したことを特徴とする熱伝導
度検出器。
1. A filament element formed by attaching a filament to a lead wire is fixedly arranged in each of two independently provided spaces, and the two filament elements are incorporated as a part of a detection circuit. In a thermal conductivity detector, the filament element is passed through the metal base and the metal base through an insulator, and the surface thereof is plated with a corrosion-resistant metal.
A thermal conductivity detector comprising a lead wire and a filament welded to the lead wire, and the filament element is hermetically disposed in a gas flow space provided in a metal block.
JP5208558A 1993-07-30 1993-07-30 Thermal conductivity detector Expired - Lifetime JP2827831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208558A JP2827831B2 (en) 1993-07-30 1993-07-30 Thermal conductivity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208558A JP2827831B2 (en) 1993-07-30 1993-07-30 Thermal conductivity detector

Publications (2)

Publication Number Publication Date
JPH0743356A true JPH0743356A (en) 1995-02-14
JP2827831B2 JP2827831B2 (en) 1998-11-25

Family

ID=16558178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208558A Expired - Lifetime JP2827831B2 (en) 1993-07-30 1993-07-30 Thermal conductivity detector

Country Status (1)

Country Link
JP (1) JP2827831B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228647A (en) * 2001-01-31 2002-08-14 Shimadzu Corp Gas chromatograph
JP2002310971A (en) * 2001-04-17 2002-10-23 Yokogawa Electric Corp Heat conductivity detector
JP2011169778A (en) * 2010-02-19 2011-09-01 Yokogawa Electric Corp Thermal conductivity detector
JP2018125249A (en) * 2017-02-03 2018-08-09 岩崎電気株式会社 lamp
US10330651B2 (en) 2014-10-10 2019-06-25 Shimadzu Corporation Thermal conductivity detector and gas chromatograph
JP2020041990A (en) * 2018-09-13 2020-03-19 株式会社島津製作所 Thermal conductivity detector and gas chromatograph having the same
US11268939B2 (en) 2018-09-13 2022-03-08 Shimadzu Corporation Thermal conductivity detector and gas chromatograph equipped with the same
US11454598B2 (en) 2016-03-07 2022-09-27 Shimadzu Corporation Thermal conductivity detector
US11815432B2 (en) 2018-09-21 2023-11-14 Shimadzu Corporation Thermal conductivity detector and gas chromatograph including same
CN117434193A (en) * 2023-12-20 2024-01-23 福建省巨颖高能新材料有限公司 High-sensitivity TCD detector for corrosive gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100690A (en) * 1972-04-05 1973-12-19
JPS5333697A (en) * 1976-09-10 1978-03-29 Yokogawa Hokushin Electric Corp Detector of thermal conduction type for gas chromatograph
JPS63170871A (en) * 1987-01-09 1988-07-14 住友電気工業株式会社 Nickel plated metal terminal for spot welding
JPH01146235A (en) * 1987-12-02 1989-06-08 Toshiba Corp Cathode composition of x-ray tube and its manufacture
JPH04138348A (en) * 1990-09-29 1992-05-12 Shimadzu Corp Thermal conductivity detector having flow-rate measuring function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100690A (en) * 1972-04-05 1973-12-19
JPS5333697A (en) * 1976-09-10 1978-03-29 Yokogawa Hokushin Electric Corp Detector of thermal conduction type for gas chromatograph
JPS63170871A (en) * 1987-01-09 1988-07-14 住友電気工業株式会社 Nickel plated metal terminal for spot welding
JPH01146235A (en) * 1987-12-02 1989-06-08 Toshiba Corp Cathode composition of x-ray tube and its manufacture
JPH04138348A (en) * 1990-09-29 1992-05-12 Shimadzu Corp Thermal conductivity detector having flow-rate measuring function

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228647A (en) * 2001-01-31 2002-08-14 Shimadzu Corp Gas chromatograph
JP2002310971A (en) * 2001-04-17 2002-10-23 Yokogawa Electric Corp Heat conductivity detector
JP2011169778A (en) * 2010-02-19 2011-09-01 Yokogawa Electric Corp Thermal conductivity detector
US10330651B2 (en) 2014-10-10 2019-06-25 Shimadzu Corporation Thermal conductivity detector and gas chromatograph
US11454598B2 (en) 2016-03-07 2022-09-27 Shimadzu Corporation Thermal conductivity detector
JP2018125249A (en) * 2017-02-03 2018-08-09 岩崎電気株式会社 lamp
JP2020041990A (en) * 2018-09-13 2020-03-19 株式会社島津製作所 Thermal conductivity detector and gas chromatograph having the same
US11268939B2 (en) 2018-09-13 2022-03-08 Shimadzu Corporation Thermal conductivity detector and gas chromatograph equipped with the same
US11428676B2 (en) 2018-09-13 2022-08-30 Shimadzu Corporation Thermal conductivity detector and gas chromatograph including same
US11815432B2 (en) 2018-09-21 2023-11-14 Shimadzu Corporation Thermal conductivity detector and gas chromatograph including same
CN117434193A (en) * 2023-12-20 2024-01-23 福建省巨颖高能新材料有限公司 High-sensitivity TCD detector for corrosive gas
CN117434193B (en) * 2023-12-20 2024-03-01 福建省巨颖高能新材料有限公司 High-sensitivity TCD detector for corrosive gas

Also Published As

Publication number Publication date
JP2827831B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
CA2031427C (en) Pressure sensor and method of manufacturing same
EP0890830B1 (en) Pressure sensor
KR101883499B1 (en) Capacitance type pressure sensor
JPH0743356A (en) Thermal conductivity detector
EP0877240A2 (en) Semiconductive pressure sensor
US5309762A (en) Mass flowmeter with hermetically sealed housing
US5847282A (en) Piezoresistive pressure sensor or pressure detector assembly
US5458003A (en) Electromagnetic flow meter
JPH0612275B2 (en) Electromagnetic flow meter electrode structure
JPH0471445B2 (en)
US4403207A (en) Durable titania exhaust gas sensor
EP0281966B1 (en) Thermal conductivity detector
EP3748326A1 (en) Pressure sensor and production method therefor
CN87104155A (en) Diaphragm type High Temperature High Pressure flow media pressure transducer
JP2020008306A (en) Pressure detection unit and pressure sensor using the same
US11293822B2 (en) Pressure sensor having base member and housing being joined together and manufacturing method of the same
US6895822B2 (en) Apparatus and method for interconnecting leads in a high temperature pressure transducer
JPH01109230A (en) Pressure detector
JPS6219955Y2 (en)
JP4264156B2 (en) Pirani vacuum gauge
JPH0511478Y2 (en)
JP2764713B2 (en) How to connect a thin tube to a block
JPH09318480A (en) Pressure sensor
JPH10111198A (en) Pressure sensor
JPH1183569A (en) Electromagnetic flowmeter detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14