JPH0740032A - Metal mold casting method and its device - Google Patents

Metal mold casting method and its device

Info

Publication number
JPH0740032A
JPH0740032A JP18629493A JP18629493A JPH0740032A JP H0740032 A JPH0740032 A JP H0740032A JP 18629493 A JP18629493 A JP 18629493A JP 18629493 A JP18629493 A JP 18629493A JP H0740032 A JPH0740032 A JP H0740032A
Authority
JP
Japan
Prior art keywords
cavity
hydrogen
molten metal
vacuum
introducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18629493A
Other languages
Japanese (ja)
Inventor
Atsushi Ota
厚 太田
Yasuyuki Arakawa
恭行 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18629493A priority Critical patent/JPH0740032A/en
Publication of JPH0740032A publication Critical patent/JPH0740032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a metal mold casting method and its device, in which casting defect is not developed even not in high vacuum. CONSTITUTION:In this die casting method, the molten metal 7 is filed up into a cavity 3 which is made to be in the condition of reduced pressure hydrogen atmosphere, and pressurized and solidified, and a hydrogen introducing means 5 for supplying the hydrogen into the cavity 3 is attached to the metallic mold casting device composed of a vacuum die casting device or a vacuum casting device. The reduced pressure hydrogen atmosphere is made by introducing the hydrogen into the cavity 3 and the molten metal 7 is filled up into there and pressurized and solidified. As the hydrogen is dissolved into the molten metal 7 in the high pressure even if the hydrogen is entraped in some degree, the casting defect is not developed. The high vacuum can be made to be the low vacuum by introducing the hydrogen, and the casting cycle time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金型のキャビティに溶湯
を充填し加圧凝固させる金型鋳造法とその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a die casting method and apparatus for filling a cavity of a die with molten metal and solidifying it under pressure.

【0002】[0002]

【従来の技術】アルミニウム、マグネシウム等の軽金
属、およびその合金の金型鋳造において、溶湯をキャビ
ティに充填する場合、湯まわりを向上するためある程度
充填速度を上げると、溶湯がキャビティ内の空気を巻き
込んで鋳巣を生じる問題がある。その防止方法として、
キャビティ内の空気を酸素で置換するPF(ポアフリ
ー)法、キャビティを真空(ほぼ100torr程度)
にして溶湯をシリンダにて高速充填する真空ダイカスト
法等が行なわれてきた。また、極く最近、本出願人によ
り、キャビティを真空(50torrより高真空)に
し、溶湯ドームに溶湯を押し上げて一時保留し、ゲート
を開いて溶湯ドームから大気圧と真空の差圧を利用して
溶湯を高速で真空キャビティに充填し、キャビティ内溶
湯を遮断して加圧凝固させる真空鋳造法も提案されてい
る(特開平2−155557号公報参照)。
2. Description of the Related Art In mold casting of light metals such as aluminum and magnesium, and their alloys, when filling a molten metal into a cavity, the molten metal entrains air in the cavity when the filling speed is increased to some extent in order to improve the circumference of the molten metal. There is a problem that porosity occurs. To prevent this,
PF (pore-free) method to replace air in the cavity with oxygen, vacuum the cavity (approximately 100 torr)
Then, a vacuum die casting method or the like has been performed in which the molten metal is charged at high speed in a cylinder. In addition, very recently, the applicant has made the cavity a vacuum (higher than 50 torr), pushes up the molten metal to the molten metal dome to temporarily hold it, and opens the gate to use the differential pressure between atmospheric pressure and vacuum from the molten metal dome. There is also proposed a vacuum casting method in which a molten metal is filled into a vacuum cavity at a high speed, and the molten metal in the cavity is blocked to solidify under pressure (see Japanese Patent Application Laid-Open No. 2-155557).

【0003】[0003]

【発明が解決しようとする課題】しかし、PF法には未
反応酸素の問題(未反応酸素によるポアが生成する問
題)があり、真空ダイカスト法および真空鋳造法には高
真空度の確保が難しいという問題がある。とくに真空鋳
造法ではキャビティ内を10torr程度の高真空にす
るため、高真空を出すのに時間がかかり鋳造サイクルが
長くなり、作業能率低下によりコストアップを招く。こ
れを避けるために真空度を低くすると、溶湯のキャビテ
ィへの高速充填中に、溶湯によるキャビティ内残留空気
の巻き込みが生じ、凝固が早いため巻き込んだ空気が浮
上分離しにくく、鋳巣を形成してしまう。本発明の目的
は、高真空にしなくても鋳巣を生じない金型鋳造法とそ
の装置を提供することにある。
However, the PF method has a problem of unreacted oxygen (a problem that pores are generated by unreacted oxygen), and it is difficult to secure a high degree of vacuum in the vacuum die casting method and the vacuum casting method. There is a problem. In particular, in the vacuum casting method, since the inside of the cavity is set to a high vacuum of about 10 torr, it takes time to generate the high vacuum, the casting cycle is lengthened, and the work efficiency is lowered, resulting in cost increase. If the degree of vacuum is lowered to avoid this, the residual air in the cavity will be entrained by the molten metal during high-speed filling of the molten metal into the cavity, and the entrained air is difficult to float and separate due to rapid solidification, forming a porosity. Will end up. An object of the present invention is to provide a die casting method and an apparatus for the die casting method, which do not cause porosity even if a high vacuum is not applied.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する、本
発明の金型鋳造法とその装置は、次の方法、装置から成
る。 (1) キャビティ内を減圧された水素雰囲気とし、該
キャビティに溶湯を充填し、加圧凝固させる金型鋳造
法。 (2) キャビティ内を減圧し、減圧したキャビティに
水素を導入し、再びキャビティを減圧し、該キャビティ
に溶湯を充填し、加圧凝固させる金型鋳造法。 (3) 鋳造する溶湯を予め脱ガスし溶湯の水素濃度を
下げておく(1)または(2)記載の金型鋳造法。 (4) キャビティを真空にできる金型と、前記キャビ
ティに接続されキャビティを減圧する減圧手段と、前記
キャビティに接続されキャビティに水素を導入する水素
導入手段と、溶湯を加圧凝固させる溶湯加圧手段と、を
備えた金型鋳造装置。 (5) 前記減圧手段の真空引き口と前記水素導入手段
の水素導入口をキャビティに対して互いに反対側に設
け、前記水素導入手段の水素導入口をキャビティへの溶
湯供給側に配置した(4)記載の金型鋳造装置。
The mold casting method and apparatus of the present invention for achieving the above object comprises the following method and apparatus. (1) A metal mold casting method in which a depressurized hydrogen atmosphere is filled in the cavity, a molten metal is filled in the cavity, and pressure solidification is performed. (2) A die casting method in which the inside of the cavity is depressurized, hydrogen is introduced into the depressurized cavity, the cavity is depressurized again, the molten metal is filled in the cavity, and the mixture is pressurized and solidified. (3) The mold casting method according to (1) or (2), wherein the molten metal to be cast is degassed in advance to reduce the hydrogen concentration of the molten metal. (4) A mold that can evacuate the cavity, a decompression unit that is connected to the cavity and decompresses the cavity, a hydrogen introduction unit that is connected to the cavity and that introduces hydrogen into the cavity, and a molten metal pressurization that pressurizes and solidifies the molten metal. And a die casting apparatus. (5) The vacuum inlet of the decompression unit and the hydrogen inlet of the hydrogen introducing unit are provided on opposite sides of the cavity, and the hydrogen inlet of the hydrogen introducing unit is arranged on the molten metal supply side to the cavity (4 ) The die casting machine described.

【0005】[0005]

【作用】水素は溶湯中に0.5〜0.7cc/100g
溶け込んでおり、常圧下の凝固においてはポロシティの
原因となるが、高圧下での凝固においては水素のアルミ
への溶解量が増加し、ポロシティは発生しない。このた
め、水素をある程度巻き込んでも加圧すると溶湯中に溶
け込み欠陥は発生しない。上記(1)〜(5)の方法ま
たは装置では、キャビティを減圧かつ水素雰囲気として
おき、そこに溶湯を充填し、加圧して高圧下で凝固させ
る。減圧のため巻き込み気体の量は僅かであり、水素雰
囲気のため巻き込み気体は主に水素である。したがっ
て、水素を少量巻き込んでも溶湯を加圧することによ
り、巻き込んだ水素気泡は溶湯に溶け込み欠陥を発生し
ない。溶湯の脱ガスを行なえば、水素濃度は低減され、
さらに効果がある。水素雰囲気にしたことにより真空度
は従来のように高真空でなくてもよくなり、減圧時間が
短くなり、鋳造サイクルを短くできる。
[Function] Hydrogen is 0.5 to 0.7 cc / 100 g in the molten metal
It is melted and causes porosity in solidification under normal pressure, but in solidification under high pressure, the amount of hydrogen dissolved in aluminum increases and porosity does not occur. For this reason, even if hydrogen is involved to some extent, when it is pressurized, it does not melt into the melt and no defect occurs. In the method or apparatus of (1) to (5) above, the cavity is depressurized and kept in a hydrogen atmosphere, the molten metal is filled therein, and pressurized to solidify under high pressure. Due to the reduced pressure, the amount of entrained gas is small, and because of the hydrogen atmosphere, the entrained gas is mainly hydrogen. Therefore, even if a small amount of hydrogen is involved, the hydrogen gas entrained does not melt into the melt and generate defects by pressurizing the melt. Degassing the molten metal reduces the hydrogen concentration,
It is even more effective. Since the hydrogen atmosphere is used, the degree of vacuum does not have to be a high vacuum as in the conventional case, the decompression time is shortened, and the casting cycle can be shortened.

【0006】[0006]

【実施例】図1〜図3は本発明実施例の金型鋳造装置を
示しており、図1は従来の真空ダイカスト装置に水素導
入手段を加説した本発明の第1実施例の装置を、図2は
本出願人が先に提案した真空鋳造装置に水素導入手段を
加説した本発明の第2実施例の装置を、図3は水素導入
位置を図1と変えて溶湯供給側に配置した本発明の第3
実施例の装置を、それぞれ示している。はじめに、第1
〜第3実施例に共通な構成(請求項4に対応)を説明す
る。金型鋳造装置は、キャビティ3を真空にできる金型
1、2(可動型1および固定型2)と、キャビティ3に
接続されキャビティ3を減圧する減圧手段4と、キャビ
ティ3に接続されキャビティ3に水素を導入する水素導
入手段5と、溶湯7を加圧下で凝固させる溶湯加圧手段
6と、を備えている。減圧手段4は、図示略の真空ポン
プと、該真空ポンプとキャビティ3とを接続する通路
と、該通路を開閉する減圧バルブ8を有する。また、水
素導入手段5は、水素を入れた水素タンク9と、水素タ
ンク9とキャビティ3とを接続する通路と、該通路を開
閉する水素導入バルブ10を有する。
1 to 3 show a mold casting apparatus according to an embodiment of the present invention, and FIG. 1 shows an apparatus according to a first embodiment of the present invention in which hydrogen introducing means is added to a conventional vacuum die casting apparatus. FIG. 2 shows the apparatus of the second embodiment of the present invention in which hydrogen introducing means is added to the vacuum casting apparatus previously proposed by the present applicant, and FIG. 3rd of this invention arrange | positioned
The devices of the examples are each shown. First, the first
A configuration common to the third embodiment (corresponding to claim 4) will be described. The mold casting apparatus includes molds 1 and 2 (movable mold 1 and fixed mold 2) capable of evacuating the cavity 3, decompression means 4 connected to the cavity 3 to decompress the cavity 3, and a cavity 3 connected to the cavity 3. It is provided with a hydrogen introducing means 5 for introducing hydrogen into and a molten metal pressurizing means 6 for solidifying the molten metal 7 under pressure. The decompression unit 4 has a vacuum pump (not shown), a passage connecting the vacuum pump and the cavity 3, and a decompression valve 8 that opens and closes the passage. Further, the hydrogen introducing means 5 has a hydrogen tank 9 containing hydrogen, a passage connecting the hydrogen tank 9 and the cavity 3, and a hydrogen introducing valve 10 opening / closing the passage.

【0007】つぎに、第1〜第3実施例の各実施例に特
有の構成を説明する。第1実施例(請求項4に対応)は
本発明が真空ダイカスト装置に適用された場合である。
図1において、可動型1、固定型2は、ダイカストマシ
ンの可動プラテン、固定プラテンにとりつけられ、キャ
ビティ3は可動型1を移動させることにより開閉可能で
ある。キャビティ3は減圧手段4の真空ポンプにより減
圧可能である。溶湯加圧手段6は、プランジャシリンダ
12内に往復動可能に挿入されたプランジャ11からな
り、プランジャロッドは図示略の油圧シリンダに連結さ
れている。溶湯供給口13からプランジャシリンダ12
内に溶湯7を供給シ、プランジャ11を前進させてキャ
ビティ3内に溶湯7を高速で供給すると共に、シャット
オフピン14を閉めた状態で溶湯7を高圧に加圧する。
この高圧は、水素を溶湯に溶け込み可能とするために、
約300kg/cm2 以上とする。水素導入手段5は、
従来の真空ダイカスト装置が具備しなかった手段であ
る。水素導入手段5は、キャビティ3に対して、減圧手
段4と同じ側でかつ溶湯供給と反対側に設けられてお
り、水素導入バルブ10とキャビティ3とを接続する通
路は、減圧バルブ8とキャビティ3とを接続する通路
と、一部共用されている。
Next, the structure peculiar to each of the first to third embodiments will be described. The first embodiment (corresponding to claim 4) is a case where the present invention is applied to a vacuum die casting apparatus.
In FIG. 1, a movable die 1 and a fixed die 2 are attached to a movable platen and a fixed platen of a die casting machine, and a cavity 3 can be opened and closed by moving the movable die 1. The cavity 3 can be depressurized by the vacuum pump of the depressurizing means 4. The molten metal pressurizing means 6 comprises a plunger 11 reciprocally inserted into a plunger cylinder 12, and a plunger rod is connected to a hydraulic cylinder (not shown). From the melt supply port 13 to the plunger cylinder 12
The molten metal 7 is supplied into the cavity 3, and the plunger 11 is moved forward to supply the molten metal 7 into the cavity 3 at a high speed, and the molten metal 7 is pressurized to a high pressure with the shutoff pin 14 closed.
This high pressure makes it possible to dissolve hydrogen into the melt,
About 300 kg / cm 2 or more. The hydrogen introducing means 5 is
This is a means that the conventional vacuum die casting device does not have. The hydrogen introducing means 5 is provided on the same side as the pressure reducing means 4 with respect to the cavity 3 and on the side opposite to the molten metal supply, and the passage connecting the hydrogen introducing valve 10 and the cavity 3 is provided with the pressure reducing valve 8 and the cavity. It is partly shared with the passage that connects 3 and 3.

【0008】第2実施例(請求項4に対応)は本発明が
真空鋳造装置に適用された場合である。図2において、
固定型2の上側に可動型1があり、可動型1が上下され
てキャビティ3が開閉される。キャビティ3は溶湯ドー
ム15のまわりにたとえば放射状に延びており、溶湯ド
ーム15の下端のゲート16があけられたときに、溶湯
ドーム15内の溶湯7が、溶湯ドーム内の大気圧とキャ
ビティ3の真空との差圧で、高速でキャビティ3に充填
されるようになっている。溶湯ドーム15には、溶湯保
持炉17の溶湯面に圧力をかけて溶湯がストーク18を
介して押し上げられる。キャビティ3に充填された溶湯
7を加圧する溶湯加圧手段6は、キャビティに臨まされ
た加圧ピンから成り、シャットオフピン19を閉じてキ
ャビティ内溶湯を溶湯ドームから遮断した後加圧ピンを
降下させて溶湯の局部加圧を行なう。この加圧によっ
て、溶湯7を凝固時に約300kg/cm2 以上に加圧
する。
The second embodiment (corresponding to claim 4) is a case where the present invention is applied to a vacuum casting apparatus. In FIG.
The movable die 1 is above the fixed die 2, and the movable die 1 is moved up and down to open and close the cavity 3. The cavities 3 extend, for example, radially around the molten metal dome 15, and when the gate 16 at the lower end of the molten metal dome 15 is opened, the molten metal 7 in the molten metal dome 15 is separated from the atmospheric pressure in the molten metal dome and the cavity 3. The cavity 3 is filled at a high speed with a pressure difference from the vacuum. The molten metal dome 15 is pushed up through the stalk 18 by applying pressure to the molten metal surface of the molten metal holding furnace 17. The molten metal pressurizing means 6 for pressurizing the molten metal 7 filled in the cavity 3 is composed of a pressure pin facing the cavity. The shutoff pin 19 is closed to shut off the molten metal in the cavity from the molten metal dome and then press the pressure pin. It is lowered and the molten metal is locally pressurized. By this pressurization, the molten metal 7 is pressed to about 300 kg / cm 2 or more during solidification.

【0009】第3実施例(請求項4および5に対応)
は、図3に示すように、水素導入手段5の配置が第1実
施例と異なり、その他は第1実施例に準じている。第3
実施例では、水素導入手段5による水素導入口20を、
減圧手段4による真空引き口21から分離して、両者2
0、21をキャビティ3に対して互いに反対側に設け、
水素導入口20をキャビティ3への溶湯導入側に配置し
てある。この理由は、水素導入時に水素の風がキャビテ
ィ3を通過するので、キャビティ3内の空気の水素への
置換を促進できるからである。
Third embodiment (corresponding to claims 4 and 5)
As shown in FIG. 3, the arrangement of the hydrogen introducing means 5 is different from that of the first embodiment, and the others are in accordance with the first embodiment. Third
In the embodiment, the hydrogen introducing port 20 by the hydrogen introducing means 5 is
Separated from the vacuum port 21 by the pressure reducing means 4,
0 and 21 are provided on opposite sides of the cavity 3,
The hydrogen inlet 20 is arranged on the side of the molten metal that is introduced into the cavity 3. The reason for this is that the hydrogen air passes through the cavity 3 when hydrogen is introduced, and therefore the replacement of the air in the cavity 3 with hydrogen can be promoted.

【0010】つぎに、上記金型鋳造装置を用いて行なわ
れる本発明の金型鋳造法の実施例を説明する。第4実施
例(請求項1に対応)の方法は、図1〜図3の何れの装
置を用いても実施できる。第4実施例の方法は、キャビ
ティ3内を減圧された水素雰囲気とし、その後このキャ
ビティ3に溶湯7を充填し、加圧凝固させる方法から成
る。減圧された水素雰囲気の形成は、キャビティ3を減
圧バルブ8を開いて減圧した後減圧バルブ8を閉じ、つ
いで水素導入バルブ10を開いて減圧されたキャビティ
3に所定量の水素を導入することによって形成してもよ
いし、あるいは先に水素導入バルブ10を開いてキャビ
ティ3内のエアを水素で置換し、その後水素導入バルブ
10を閉じ、ついで減圧バルブ8を開いて減圧すること
によって形成してもよい。減圧された水素雰囲気の圧力
は約90torrとし、水素分圧は約80%とした。こ
こで、90torrとするのは、高真空な程品質は増加
するが、高真空にするとサイクル時間が増加するので、
良品質が得られてしかもサイクル時間を短縮できるよう
にするためである。また、水素以外のガスは高圧にして
も溶湯に溶け込まないので、分圧は100%に近い方が
よいが、100%に置換するには時間がかかるので、生
産性との関係で80%とした。キャビティ3に充填され
た溶湯7の加圧は、図1、図3の装置ではプランジャ加
圧であり、図2の装置では加圧ピンによる加圧である。
溶湯7は約300kg/cm2 以上に加圧され、この高
圧下では、水素の巻き込みがあっても、巻き込まれた水
素は溶湯に溶け込む。
Next, an embodiment of the die casting method of the present invention which is carried out using the die casting apparatus will be described. The method of the fourth embodiment (corresponding to claim 1) can be carried out by using any of the devices shown in FIGS. The method according to the fourth embodiment is a method in which the inside of the cavity 3 is depressurized in a hydrogen atmosphere, and then the molten metal 7 is filled in the cavity 3 and solidified under pressure. The depressurized hydrogen atmosphere is formed by opening the depressurizing valve 8 to depressurize the cavity 3 and then closing the depressurizing valve 8, and then opening the hydrogen introducing valve 10 to introduce a predetermined amount of hydrogen into the depressurized cavity 3. It may be formed by first opening the hydrogen introducing valve 10 to replace the air in the cavity 3 with hydrogen, then closing the hydrogen introducing valve 10 and then opening the pressure reducing valve 8 to reduce the pressure. Good. The pressure of the reduced hydrogen atmosphere was about 90 torr, and the hydrogen partial pressure was about 80%. Here, 90 torr means that the quality increases as the vacuum becomes higher, but the cycle time increases as the vacuum becomes higher, so
This is because good quality can be obtained and the cycle time can be shortened. In addition, since gases other than hydrogen do not dissolve in the molten metal even at high pressure, the partial pressure should be close to 100%, but it takes time to replace it with 100%. did. The pressurization of the molten metal 7 with which the cavity 3 is filled is the plunger pressurization in the apparatus of FIGS. 1 and 3, and the pressurization by the pressurizing pin in the apparatus of FIG.
The molten metal 7 is pressurized to about 300 kg / cm 2 or more, and under this high pressure, even if hydrogen is entrained, the entrained hydrogen dissolves in the molten metal.

【0011】図4は本発明方法と従来法とのブリスタ
(溶湯中ガスが膨張してできる欠陥)の発生率を比較し
たものである。試験では、溶湯はアルミ(JISAC4
CH)溶湯で、溶湯温度は680℃、型温は160℃で
あった。図4からわかるように、本発明方法のブリスタ
発生頻度は10%以下であり、従来法(90torr全
量がエア)では90%以上であり、本発明により欠陥発
生が激減するのがわかる。
FIG. 4 compares the occurrence rates of blisters (defects caused by expansion of gas in the molten metal) between the method of the present invention and the conventional method. In the test, the molten metal was aluminum (JIS AC4
CH) melt, the melt temperature was 680 ° C., and the mold temperature was 160 ° C. As can be seen from FIG. 4, the frequency of blister generation in the method of the present invention is 10% or less, and 90% or more in the conventional method (the total amount of 90 torr is air), which shows that the present invention drastically reduces the occurrence of defects.

【0012】第5実施例(請求項2に対応)の方法は、
図1〜図3の何れの装置を用いても実施できる。第5実
施例の方法は、キャビティ3内を減圧し、減圧したキャ
ビティ3に水素を導入し、再びキャビティ3を減圧し、
該キャビティ3に溶湯7を充填し、加圧凝固させる方法
から成る。たとえば、図1、図3の装置で、最初3秒で
キャビティ3を10torrまで減圧し、その後の2秒
で600torrまで水素を入れ、さらにその後の3秒
で90torrまで減圧した。その他は第4実施例と同
様、キャビティ3に溶湯を充填し、加圧、凝固させた。
図2の装置で第5実施例の方法を行なう場合、溶湯ドー
ム15を下降させゲート16を閉じて、減圧バルブ8を
開いて、キャビティ3内を真空に引く。その後減圧バル
ブ8を閉じ、水素導入バルブ10を開いて水素をキャビ
ティ3に導入する。その後、溶湯7を溶湯ドーム15内
に押し上げるとともに、水素導入バルブ10を閉じ減圧
バルブ8を開けて、キャビティ3を真空に引く。溶湯7
が溶湯ドーム15内に入りゲート16部分のシールを完
全にする。ゲート16が開き溶湯7がキャビティ3に充
填される。その後シャットオフピン19が働き、溶湯7
をキャビティ3内に密閉し、その後加圧ピン6を作動さ
せ、加圧凝固させる。水素ガスを導入する場合、溶湯に
近いキャビティに通じる通路から行うようにする。図
1、図3の装置でも、図2の装置でも、図4に示すと同
様のブリスタ不良低下が得られた。
The method of the fifth embodiment (corresponding to claim 2) is as follows.
It can be implemented using any of the devices shown in FIGS. In the method of the fifth embodiment, the inside of the cavity 3 is depressurized, hydrogen is introduced into the depressurized cavity 3, and the cavity 3 is depressurized again.
The cavity 3 is filled with the molten metal 7 and solidified under pressure. For example, in the apparatus shown in FIGS. 1 and 3, the cavity 3 was first depressurized to 10 torr in 3 seconds, hydrogen was introduced to 600 torr in 2 seconds thereafter, and depressurized to 90 torr in 3 seconds thereafter. Others were the same as in the fourth example except that the cavity 3 was filled with the molten metal, pressurized and solidified.
When performing the method of the fifth embodiment with the apparatus of FIG. 2, the molten metal dome 15 is lowered, the gate 16 is closed, the pressure reducing valve 8 is opened, and the inside of the cavity 3 is evacuated. Thereafter, the pressure reducing valve 8 is closed and the hydrogen introducing valve 10 is opened to introduce hydrogen into the cavity 3. Then, the molten metal 7 is pushed up into the molten metal dome 15, the hydrogen introduction valve 10 is closed, the decompression valve 8 is opened, and the cavity 3 is evacuated. Molten metal 7
Enters the molten metal dome 15 and completely seals the gate 16 part. The gate 16 opens and the molten metal 7 is filled in the cavity 3. After that, the shut-off pin 19 works and the molten metal 7
Is sealed in the cavity 3, and then the pressure pin 6 is operated to solidify under pressure. When introducing hydrogen gas, it should be performed from a passage leading to a cavity close to the molten metal. The same blister defect reduction as shown in FIG. 4 was obtained by the apparatus of FIGS. 1 and 3 and the apparatus of FIG.

【0013】第6実施例(請求項3に対応)の方法は、
図1〜図3の何れの装置を用いても実施できる。第6実
施例の方法は、鋳造する溶湯7を、キャビティ3に充填
する前に、予め脱ガスし、溶湯7の水素濃度を下げてお
く方法から成る。これによって、溶け込み可能な水素量
を増加できる。脱ガスの方法自体は従来公知の方法によ
ればよく、たとえばアルゴンガス等の不活性ガスでバブ
リングしたり、真空脱ガス等で行なうことができる。本
方法で自動車部品を試作してみた。溶湯はJISAC4
CHのアルミで、溶湯温度720℃、型温120℃であ
る。溶湯は鋳造前に脱ガスし、水素濃度を低下させた。
キャビティ3の真空度は最初は90torrまで引き、
その後550torrまで水素を入れ、その後90to
rrまで引き、鋳造した。図5は脱ガス+真空の場合、
および真空のみの場合とのガス欠陥発生率を示している
が、図5からわかるように、脱ガスを併用した場合は、
真空のみの10torrの場合とほぼ同様の効果があ
る。したがって、脱ガスしておけば、90torrでも
真空のみの場合の10torrと同じ効果があり、サイ
クルタイムを大幅に短縮できる。
The method of the sixth embodiment (corresponding to claim 3) is as follows:
It can be implemented using any of the devices shown in FIGS. The method of the sixth embodiment comprises degassing the molten metal 7 to be cast before filling the cavity 3 to reduce the hydrogen concentration of the molten metal 7. As a result, the amount of hydrogen that can be dissolved can be increased. The degassing method itself may be a conventionally known method, for example, bubbling with an inert gas such as argon gas or vacuum degassing. I made a prototype of automobile parts by this method. The molten metal is JIS AC4
CH aluminum, with a melt temperature of 720 ° C and a mold temperature of 120 ° C. The molten metal was degassed before casting to reduce the hydrogen concentration.
The vacuum degree of the cavity 3 is initially pulled to 90 torr,
After that, add hydrogen to 550 torr and then 90 to
It was pulled to rr and cast. Figure 5 shows the case of degassing + vacuum,
And the gas defect occurrence rate in the case of only vacuum is shown, but as can be seen from FIG.
There is almost the same effect as the case of 10 torr with only vacuum. Therefore, if degassed, even 90 torr has the same effect as 10 torr in the case of only vacuum, and the cycle time can be greatly shortened.

【0014】[0014]

【発明の効果】請求項1、2、4の何れか一によれば、
キャビティを減圧、水素雰囲気にしてそこに溶湯を充填
し、加圧凝固させるので、水素をたとえ少量巻き込んで
も巻き込まれた水素は高圧下で溶湯に溶け込むので、欠
陥を発生しない。また、少量の減圧水素の存在は許され
ることになるため、キャビティの真空度は90torr
程度の低真空でよくなり、高真空にする必要がなくサイ
クルタイムを短縮できる。請求項3によれば、溶湯を予
め脱ガスするようにしたので、溶け込み可能な水素量を
増加させることができ、鋳造欠陥の発生防止および鋳造
サイクルタイムの短縮を、さらに促進できる。請求項5
によれば、水素導入口を溶湯供給側に配置したので、水
素のガス流れがキャビティを通過し空気との置換が進
む。また、最も巻き込まれ易い溶湯導入部分の水素濃度
が高まるので、置換効果が強まる。
According to any one of claims 1, 2, and 4,
Since the cavity is decompressed and the atmosphere of hydrogen is filled with the molten metal and solidified under pressure, even if a small amount of hydrogen is entrained, the entrained hydrogen will melt into the molten metal under high pressure, and no defects will occur. In addition, the presence of a small amount of decompressed hydrogen is allowed, so the degree of vacuum in the cavity is 90 torr.
A low vacuum is enough, and it is not necessary to make a high vacuum, and the cycle time can be shortened. According to the third aspect, since the molten metal is degassed in advance, it is possible to increase the amount of hydrogen that can be melted, and it is possible to further prevent the occurrence of casting defects and shorten the casting cycle time. Claim 5
According to this, since the hydrogen inlet is arranged on the molten metal supply side, the hydrogen gas flow passes through the cavity and the replacement with the air proceeds. Further, since the hydrogen concentration in the molten metal introduction portion, which is most likely to be involved, is increased, the substitution effect is enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金型鋳造法を実施する本発明の第1実
施例に係わる金型鋳造装置の概略断面図である。
FIG. 1 is a schematic sectional view of a mold casting apparatus according to a first embodiment of the present invention for carrying out the mold casting method of the present invention.

【図2】本発明の金型鋳造法を実施する本発明の第2実
施例に係わる金型鋳造装置の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a mold casting apparatus according to a second embodiment of the present invention for carrying out the mold casting method of the present invention.

【図3】本発明の金型鋳造法を実施する本発明の第3実
施例に係わる金型鋳造装置の概略断面図である。
FIG. 3 is a schematic cross-sectional view of a die casting apparatus according to a third embodiment of the present invention for carrying out the die casting method of the present invention.

【図4】本発明方法と従来法とのブリスタ発生頻度比較
図である。
FIG. 4 is a blister occurrence frequency comparison diagram between the method of the present invention and the conventional method.

【図5】本発明の脱ガスを行なう方法と真空のみの場合
におけるガス欠陥発生率比較図である。
FIG. 5 is a comparison diagram of gas defect occurrence rates in the case of the degassing method of the present invention and only in vacuum.

【符号の説明】[Explanation of symbols]

1 金型(可動型) 2 金型(固定型) 3 キャビティ 4 減圧手段 5 水素導入手段 6 溶湯加圧手段 7 溶湯 8 減圧バルブ 9 水素タンク 10 水素導入バルブ 11 プランジャ 12 プランジャシリンダ 13 溶湯供給口 14 シャットオフピン 15 溶湯ドーム 16 ゲート 19 シャットオフピン 20 水素導入口 21 真空引き口 1 Mold (movable type) 2 Mold (fixed type) 3 Cavity 4 Pressure reducing means 5 Hydrogen introducing means 6 Molten metal pressurizing means 7 Molten metal 8 Pressure reducing valve 9 Hydrogen tank 10 Hydrogen introducing valve 11 Plunger 12 Plunger cylinder 13 Molten metal supply port 14 Shut-off pin 15 Molten dome 16 Gate 19 Shut-off pin 20 Hydrogen inlet 21 Vacuum outlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 キャビティ内を減圧された水素雰囲気と
し、該キャビティに溶湯を充填し、加圧凝固させること
を特徴とする金型鋳造法。
1. A mold casting method, characterized in that the inside of a cavity is depressurized in a hydrogen atmosphere, and the cavity is filled with a molten metal and solidified under pressure.
【請求項2】 キャビティ内を減圧し、減圧したキャビ
ティに水素を導入し、再びキャビティを減圧し、該キャ
ビティに溶湯を充填し、加圧凝固させることを特徴とす
る金型鋳造法。
2. A metal mold casting method comprising depressurizing the inside of a cavity, introducing hydrogen into the depressurized cavity, depressurizing the cavity again, filling the cavity with a molten metal, and solidifying under pressure.
【請求項3】 鋳造する溶湯を予め脱ガスし溶湯の水素
濃度を下げておく請求項1および2の何れか1項記載の
金型鋳造法。
3. The mold casting method according to claim 1, wherein the molten metal to be cast is degassed in advance to reduce the hydrogen concentration of the molten metal.
【請求項4】 キャビティを真空にできる金型と、前記
キャビティに接続されキャビティを減圧する減圧手段
と、前記キャビティに接続されキャビティに水素を導入
する水素導入手段と、溶湯を加圧凝固させる溶湯加圧手
段と、を備えたことを特徴とする金型鋳造装置。
4. A mold capable of evacuating a cavity, a decompression unit connected to the cavity for decompressing the cavity, a hydrogen introducing unit connected to the cavity for introducing hydrogen into the cavity, and a melt for press-solidifying the melt. A die casting apparatus comprising: a pressurizing unit.
【請求項5】 前記減圧手段の真空引き口と前記水素導
入手段の水素導入口をキャビティに対して互いに反対側
に設け、前記水素導入手段の水素導入口をキャビティへ
の溶湯供給側に配置した請求項4記載の金型鋳造装置。
5. The vacuum inlet of the decompression unit and the hydrogen inlet of the hydrogen introducing unit are provided on opposite sides of the cavity, and the hydrogen inlet of the hydrogen introducing unit is arranged on the melt supply side to the cavity. The mold casting apparatus according to claim 4.
JP18629493A 1993-07-28 1993-07-28 Metal mold casting method and its device Pending JPH0740032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18629493A JPH0740032A (en) 1993-07-28 1993-07-28 Metal mold casting method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18629493A JPH0740032A (en) 1993-07-28 1993-07-28 Metal mold casting method and its device

Publications (1)

Publication Number Publication Date
JPH0740032A true JPH0740032A (en) 1995-02-10

Family

ID=16185803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18629493A Pending JPH0740032A (en) 1993-07-28 1993-07-28 Metal mold casting method and its device

Country Status (1)

Country Link
JP (1) JPH0740032A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902664B1 (en) * 2007-08-27 2009-06-15 주식회사 앤케이디씨 A valve housing manufacturing method for power steering in the car
JP2011007705A (en) * 2009-06-29 2011-01-13 Ube Kosan Wheel Kk Method for analyzing hydrogen in molten metal of aluminum alloy
CN102901659A (en) * 2012-09-06 2013-01-30 中国科学院金属研究所 Preparation method for metal alloy test rod
CN103212687A (en) * 2012-01-19 2013-07-24 香港生产力促进局 Casting device and casting method for wheel disc workpieces
CN104785745A (en) * 2014-01-21 2015-07-22 通用汽车环球科技运作有限责任公司 Metal pouring method for die casting process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902664B1 (en) * 2007-08-27 2009-06-15 주식회사 앤케이디씨 A valve housing manufacturing method for power steering in the car
JP2011007705A (en) * 2009-06-29 2011-01-13 Ube Kosan Wheel Kk Method for analyzing hydrogen in molten metal of aluminum alloy
CN103212687A (en) * 2012-01-19 2013-07-24 香港生产力促进局 Casting device and casting method for wheel disc workpieces
CN102901659A (en) * 2012-09-06 2013-01-30 中国科学院金属研究所 Preparation method for metal alloy test rod
CN104785745A (en) * 2014-01-21 2015-07-22 通用汽车环球科技运作有限责任公司 Metal pouring method for die casting process

Similar Documents

Publication Publication Date Title
JP2519416B2 (en) Die casting method and die casting equipment
US6308766B1 (en) Process for die-casting light-weight metals
JP2004249334A (en) High vacuum die-casting method using oxygen shield
JPS6211942B2 (en)
US3382910A (en) Pore-free die casting
JPH0740032A (en) Metal mold casting method and its device
JP2007532313A (en) Hydraulic forming
JPS61182868A (en) Method and device for vacuum and pressure casting
JPS6195760A (en) Method and device for casting
JPH03198969A (en) Metallic mold casting apparatus
JP3271678B2 (en) Die casting machine
JPH0957422A (en) Reduced pressure casting method
JPH06114533A (en) Suction differential pressure casting method
JPH0716728A (en) Vacuum casting apparatus
JP2001105121A (en) Casting method and casting apparatus using gypsum mold
CN112775407A (en) Vacuum die casting method and die for vacuum die casting
KR20200132216A (en) Auxiliary device for diecasting
JP2001225159A (en) Method for die casting of light metal
JPH06277817A (en) Low pressure casting device
JPH07116815A (en) Die casting apparatus for casting non-blow hole product
JPS5884661A (en) Method and device for pressure casting
JPH0227065B2 (en)
JPH0233468B2 (en)
JPS63132760A (en) Gas venting method for high-quality die casting
JP2836327B2 (en) Low pressure casting method