JPH0737609B2 - Refrigerant composition - Google Patents

Refrigerant composition

Info

Publication number
JPH0737609B2
JPH0737609B2 JP1295945A JP29594589A JPH0737609B2 JP H0737609 B2 JPH0737609 B2 JP H0737609B2 JP 1295945 A JP1295945 A JP 1295945A JP 29594589 A JP29594589 A JP 29594589A JP H0737609 B2 JPH0737609 B2 JP H0737609B2
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerant
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1295945A
Other languages
Japanese (ja)
Other versions
JPH03157477A (en
Inventor
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1295945A priority Critical patent/JPH0737609B2/en
Priority to AU57132/90A priority patent/AU627587B2/en
Priority to KR1019900008800A priority patent/KR960009238B1/en
Priority to US07/538,617 priority patent/US5062985A/en
Priority to EP90111338A priority patent/EP0402937B1/en
Priority to DE69012664T priority patent/DE69012664D1/en
Priority to CA002019096A priority patent/CA2019096C/en
Priority to MYPI90001000A priority patent/MY106740A/en
Priority to BR909002854A priority patent/BR9002854A/en
Publication of JPH03157477A publication Critical patent/JPH03157477A/en
Publication of JPH0737609B2 publication Critical patent/JPH0737609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷凍装置に用いられ、且つ、オゾン層を破壊す
る危険性がなく、且つ、毒性の危惧がない冷媒組成物に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigerant composition which is used in a refrigeration system, has no risk of depleting the ozone layer, and has no risk of toxicity.

(ロ)従来の技術 従来、冷凍機の冷媒として用いられているものにはR12
(ジクロロジフルオロメタン)とR500(R12とR152a(1,
1−ジフルオロエタン)との共沸混合物)が多い。R12の
沸点は約−30で、R500の沸点は約−33℃であり通常の冷
凍装置に好適である。更に圧縮機への吸込温度が比較的
高くても吐出温度が圧縮機のオイルスラッジを引き起こ
す程高くならない。更に又、R12は圧縮機のオイルと相
溶性が良く、冷媒回路中のオイルを圧縮機まで引き戻す
役割も果たす。
(B) Conventional technology R12 is one of the conventional refrigerants for refrigerators.
(Dichlorodifluoromethane) and R500 (R12 and R152a (1,
Azeotropic mixture with 1-difluoroethane) is common. R12 has a boiling point of about -30 and R500 has a boiling point of about -33 ° C, which is suitable for ordinary refrigeration equipment. Further, even if the suction temperature to the compressor is relatively high, the discharge temperature does not become so high as to cause oil sludge in the compressor. Furthermore, R12 has good compatibility with the oil of the compressor, and also plays a role of returning the oil in the refrigerant circuit to the compressor.

(ハ)発明が解決しようとする課題 然し乍ら上記各冷媒はオゾン層を破壊する恐れがあると
され、その使用が規制されることとなって来た。これら
規制冷媒の代替冷媒として研究されているのがR22(ク
ロロジフルオロメタン)とR142b(1−クロロ−1,1−ジ
フルオロエタン)の混合冷媒が考えられている。R22の
沸点は約−40℃、R142bの沸点は約−9.8℃である。又、
R22は圧縮機の吸込温度を相当低くしなければ吐出温度
の上昇を抑えられないのでR142bを混合することによっ
て叶出温度を下げている。即ち、R142bは吸込温度が比
較的高くても吐出温度が上がらないからである。
(C) Problems to be Solved by the Invention However, it is said that each of the above refrigerants may destroy the ozone layer, and the use thereof has been restricted. A mixed refrigerant of R22 (chlorodifluoromethane) and R142b (1-chloro-1,1-difluoroethane) is considered as an alternative refrigerant to these regulated refrigerants. The boiling point of R22 is about -40 ° C, and the boiling point of R142b is about -9.8 ° C. or,
R22 cannot suppress the rise in discharge temperature unless the suction temperature of the compressor is made considerably low, so the mixing temperature is reduced by mixing R142b. That is, the discharge temperature of R142b does not rise even if the suction temperature is relatively high.

更にR142bは可燃性であるがR22と混合することによって
不燃組成を構成し、安全性を高めることができる 然し乍ら上記R22及びR142bは圧縮機オイルとの相溶性が
悪く、その為冷媒回路の蒸発器中で二相分離(オイルと
冷媒の分離)が発生し、圧縮機にオイルが戻されずに焼
付きが生ずる危険性がある。
Furthermore, although R142b is flammable, it can form a non-flammable composition by mixing with R22 to enhance safety, but the above R22 and R142b have poor compatibility with the compressor oil and therefore the evaporator of the refrigerant circuit. Two-phase separation (separation of oil and refrigerant) occurs therein, and there is a risk that seizure may occur without returning the oil to the compressor.

これを防止するためには、R22とR142bの混合物にジクロ
ロモノフルオロメタン(R21)を混入することが考えら
れる。このR21は圧縮機オイルとの相溶性に富むため、
オイルを圧縮機に帰還せしめて焼付きを防止でき、又、
オゾン層を破壊する危険性もない。
In order to prevent this, it is considered that dichloromonofluoromethane (R21) is mixed in the mixture of R22 and R142b. Because this R21 is highly compatible with compressor oil,
Oil can be returned to the compressor to prevent seizure, and
There is no danger of destroying the ozone layer.

然し乍らこのR21はその慢性毒性について問題視する国
もあり、オゾン層破壊とは別に使用が規制される問題が
ある。又、沸点が高いので冷凍装置内の冷媒の蒸発温度
が高くなり、所要の冷凍能力が得られなくなる危険性も
ある。
However, in some countries, this R21 has a problem regarding its chronic toxicity, and there is a problem that its use is regulated separately from ozone layer depletion. Further, since the boiling point is high, the evaporation temperature of the refrigerant in the refrigerating apparatus becomes high, and there is a risk that the required refrigerating capacity cannot be obtained.

本発明は係る問題点を解決することを目的とする。The present invention aims to solve such problems.

(ニ)課題を解決するための手段 本発明は圧縮機オイルとしてアルキルベンゼン系オイル
が用いられる冷凍装置に使用するものであって、クロロ
ジフルオロメタン(R22)、1−クロロ−1,1−ジフルオ
ロエタン(R142b)及び1,1,1,2−テトラフルオロエタン
(R134a)から冷媒組成物を構成したものである。
(D) Means for Solving the Problems The present invention is used for a refrigerating apparatus in which an alkylbenzene oil is used as a compressor oil, and includes chlorodifluoromethane (R22) and 1-chloro-1,1-difluoroethane ( A refrigerant composition comprising R142b) and 1,1,1,2-tetrafluoroethane (R134a).

又、上記冷媒組成物においてR134aを圧縮機オイルに溶
ける限界以内で混入したものである。
Further, in the above refrigerant composition, R134a is mixed within the limit of dissolving in compressor oil.

更に、前記冷媒組成物においてR22が70重量%、R142bが
25重量%、R134aが5重量%としたものである。
Furthermore, in the refrigerant composition, R22 is 70% by weight, R142b is
25% by weight and R134a 5% by weight.

(ホ)作 用 R134aはオゾン層破壊問題における規制の対象となって
おらず、また、その沸点は約−26℃であり、冷凍装置に
蒸発器における蒸発温度を低くすることができる。
(E) Operation R134a is not subject to regulations regarding the ozone depletion problem, and its boiling point is approximately -26 ° C, which makes it possible to lower the evaporation temperature in the evaporator of the refrigeration system.

又、R134aはアルキルベンゼン系オイルには所定の範囲
で溶ける為、オイル戻しの機能も発揮させられる。
Further, R134a dissolves in the alkylbenzene-based oil within a predetermined range, so that the oil returning function can be exerted.

特に、実験によればR22が70重量%、R142bが25重量%、
R134aが5重量%とすれば大気圧における蒸発温度を−3
0℃以下とすることができた。
In particular, according to experiments, R22 is 70% by weight, R142b is 25% by weight,
If R134a is 5% by weight, the evaporation temperature at atmospheric pressure is -3
The temperature could be set to 0 ° C or lower.

(ヘ)実験例 次に画面において実施例を説明する。図面はR22、R142b
及び134aの混合冷媒を用いた場合の冷媒回路を示してい
る。圧縮機1の吐出側配管2は凝縮器3に接続され、凝
縮器3は気液分離器4に接続されている。気液分離器4
から出た液相配管5はキャピラリチューブ6に接続さ
れ、キャピラリチューブ6は中間熱交換器7に接続され
る。気液分離器4から出た気相配管8は中間熱交換器7
中を通過してキャピラリチューブ9に接続され、キャピ
ラリチューブ9は蒸発器10に接続される。中間熱交換器
7から出た配管11と蒸発器10から出た配管12は接続点P
にて合流せられ、圧縮機1の吸込側配管13に接続され
る。
(F) Experimental Example Next, an example will be described on the screen. The drawing shows R22, R142b
2 shows a refrigerant circuit in the case of using the mixed refrigerant of Nos. And 134a. The discharge side pipe 2 of the compressor 1 is connected to the condenser 3, and the condenser 3 is connected to the gas-liquid separator 4. Gas-liquid separator 4
The liquid-phase pipe 5 exiting from is connected to a capillary tube 6, and the capillary tube 6 is connected to an intermediate heat exchanger 7. The gas-phase pipe 8 exiting from the gas-liquid separator 4 is an intermediate heat exchanger 7
It passes through the inside and is connected to the capillary tube 9, and the capillary tube 9 is connected to the evaporator 10. The pipe 11 from the intermediate heat exchanger 7 and the pipe 12 from the evaporator 10 are connected at a connection point P.
Are joined together and connected to the suction side pipe 13 of the compressor 1.

冷媒回路内にはR22、R142b及びR134aの非共沸混合冷媒
が充填される。次に動作を説明する。圧縮機1から吐出
された高温高圧のガス状冷媒混合物は凝縮器3に流入し
て放熱し、その内のR142b及びR134aの多くは液化して気
液分離器4に入る。そこで液状のR142bとR134aは液相配
管5へ、また、未だ気体のR22は気相配管8へと分離さ
れる。液相配管5に流入したR142bとR134aはキャピラリ
チューブ6にて減圧されて中間熱交換器7に流入し、そ
こで蒸発する。一方、気相配管8に流入したR22は中間
熱交換器7内を通過する過程で、そこで蒸発するR142b
とR134aに冷却されて凝縮し、キャピラリチューブ9で
減圧されて蒸発器10に流入し、そこで蒸発して周囲を冷
却する。中間熱交換器7から出たR142bとR134aは配管11
を通り、また、蒸発器10を出たR22は配管12を通り、接
続点Pにて合流し再びR22、R142b、及びR134aの混合物
となって圧縮機1に帰還する。
The refrigerant circuit is filled with a non-azeotropic mixed refrigerant of R22, R142b and R134a. Next, the operation will be described. The high-temperature high-pressure gaseous refrigerant mixture discharged from the compressor 1 flows into the condenser 3 to radiate heat, and most of R142b and R134a in the mixture are liquefied and enter the gas-liquid separator 4. There, the liquid R142b and R134a are separated into the liquid phase pipe 5, and the still gas R22 is separated into the gas phase pipe 8. R142b and R134a that have flowed into the liquid phase pipe 5 are decompressed by the capillary tube 6 and flow into the intermediate heat exchanger 7, where they are evaporated. On the other hand, R22 flowing into the gas-phase pipe 8 evaporates there while passing through the intermediate heat exchanger 7 R142b
And R134a to be condensed and condensed, the pressure is reduced by the capillary tube 9 and flows into the evaporator 10, where it is evaporated to cool the surroundings. R142b and R134a from the intermediate heat exchanger 7 are pipes 11
R22 that has passed through the evaporator 10 passes through the pipe 12, joins at the connection point P, and returns again to the compressor 1 as a mixture of R22, R142b, and R134a.

冷媒回路中を循環する圧縮機1のオイルはR134aに溶け
込んだ状態で圧縮機1に戻される。この時、R134aはナ
フテン系オイルには溶けないため、圧縮機1のオイルに
はアルキルベンゼン系オイルを用いる。
The oil of the compressor 1 which circulates in the refrigerant circuit is returned to the compressor 1 while being dissolved in R134a. At this time, R134a is insoluble in the naphthene-based oil, so the alkylbenzene-based oil is used as the oil of the compressor 1.

又、R134aはアルキルベンゼン系オイルにも所定量しか
溶けないため、冷媒回路内に封入される冷媒混合物の組
成を決定するに際しては、R134aが圧縮機1のオイルに
溶ける限界内で決定されなければならない。
Further, since R134a dissolves only in a predetermined amount in the alkylbenzene oil, the composition of the refrigerant mixture sealed in the refrigerant circuit must be determined within the limit in which R134a dissolves in the oil of the compressor 1. .

実験により134aの混入比率は全体の冷媒重量に対して5
%程が適切であることを導き出した。従って、冷媒混合
物の組成はR22が70重量%、R142bが25重量%、R134aが
5重量%とした。この組成による実験によれば蒸発器10
での蒸発温度は大気圧で−30℃の低温が得られ、且つ、
R134aも圧縮機1のオイルに溶け、オイル戻し機能につ
いても期待した効果が得られた。
According to the experiment, the mixing ratio of 134a was 5 with respect to the total weight of the refrigerant.
It was derived that %% is appropriate. Therefore, the composition of the refrigerant mixture was 70% by weight of R22, 25% by weight of R142b and 5% by weight of R134a. According to the experiment with this composition, the evaporator 10
As for the evaporation temperature at, a low temperature of −30 ° C. was obtained at atmospheric pressure, and
R134a also dissolved in the oil of the compressor 1, and the expected effect was obtained for the oil return function.

(ト)発明の効果 本発明によれば毒性による規制の危険性がなく汎用性に
富むと共に、1,1,1,2−テトラフルオロエタンが圧縮機
のオイルを戻す役目を果たし、更に圧縮機の吐出温度の
上昇も抑えられるので圧縮機の焼付けが生じない。又、
蒸発温度を低下させるので冷凍装置において所要の冷凍
能力を発揮できる等、オゾン層を破壊しない冷媒混合物
として種々の有益な効果を発揮できる。
(G) Effect of the Invention According to the present invention, there is no danger of regulation due to toxicity and it is versatile, and 1,1,1,2-tetrafluoroethane plays a role of returning the oil of the compressor, and further, the compressor. Since the rise in the discharge temperature of is suppressed, the compressor does not burn. or,
Since the evaporation temperature is lowered, a desired refrigerating capacity can be exerted in a refrigerating device, and various beneficial effects can be exerted as a refrigerant mixture that does not destroy the ozone layer.

【図面の簡単な説明】[Brief description of drawings]

図面は冷媒回路図である。 1……圧縮機、4……気液分離器、7……中間熱交換
器、10……蒸発器。
The drawing is a refrigerant circuit diagram. 1 ... Compressor, 4 ... Gas-liquid separator, 7 ... Intermediate heat exchanger, 10 ... Evaporator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機オイルとしてアルキルベンゼン系オ
イルが用いられる冷凍装置に使用するものであって、ク
ロロジフルオロメタンが70重量%、1−クロロ−1,1−
ジフルオロエタンが25重量%及び1,1,1,2−テトラフル
オロエタンが5重量%の割合としたことを特徴とする冷
媒組成物。
1. A refrigeration system using an alkylbenzene oil as a compressor oil, which comprises 70% by weight of chlorodifluoromethane and 1-chloro-1,1-
A refrigerant composition comprising 25% by weight of difluoroethane and 5% by weight of 1,1,1,2-tetrafluoroethane.
JP1295945A 1989-06-16 1989-11-14 Refrigerant composition Expired - Lifetime JPH0737609B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1295945A JPH0737609B2 (en) 1989-11-14 1989-11-14 Refrigerant composition
AU57132/90A AU627587B2 (en) 1989-06-16 1990-06-14 Refrigerant composition
KR1019900008800A KR960009238B1 (en) 1989-06-16 1990-06-15 Refrigerant composition
US07/538,617 US5062985A (en) 1989-06-16 1990-06-15 Refrigerant composition containing dichloromonofluoromethane
EP90111338A EP0402937B1 (en) 1989-06-16 1990-06-15 Refrigerant composition
DE69012664T DE69012664D1 (en) 1989-06-16 1990-06-15 Cold compositions.
CA002019096A CA2019096C (en) 1989-06-16 1990-06-15 Refrigerant composition
MYPI90001000A MY106740A (en) 1989-06-16 1990-06-15 Refrigerant composition.
BR909002854A BR9002854A (en) 1989-06-16 1990-06-18 REFRIGERANT COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295945A JPH0737609B2 (en) 1989-11-14 1989-11-14 Refrigerant composition

Publications (2)

Publication Number Publication Date
JPH03157477A JPH03157477A (en) 1991-07-05
JPH0737609B2 true JPH0737609B2 (en) 1995-04-26

Family

ID=17827142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295945A Expired - Lifetime JPH0737609B2 (en) 1989-06-16 1989-11-14 Refrigerant composition

Country Status (1)

Country Link
JP (1) JPH0737609B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7708731A (en) * 1976-08-13 1978-02-15 Montedison Spa PROCESS FOR THE PREPARATION OF NEW DRIVER COMPOSITIONS FOR AEROSOLS.
JPS5959779A (en) * 1982-09-30 1984-04-05 Daikin Ind Ltd Refrigerant
JPS61287979A (en) * 1985-06-15 1986-12-18 Hitachi Ltd Refrigerant composition

Also Published As

Publication number Publication date
JPH03157477A (en) 1991-07-05

Similar Documents

Publication Publication Date Title
US10731898B2 (en) Binary refrigerating apparatus
US5265443A (en) Refrigerating unit
US7624585B2 (en) Freezer unit
US5351499A (en) Refrigerant composition and binary refrigeration system using it
JP2017096503A (en) Binary refrigeration device
JPH08170074A (en) Working fluid
EP0821046A1 (en) Difluoromethane/hydrocarbon refrigerant mixture and refrigeration cycle plant using the same
KR960000866B1 (en) Refrigerant composition
JPH0925480A (en) Hydraulic fluid
JPH0959611A (en) Refrigerant composition
JPH0737609B2 (en) Refrigerant composition
JP3433197B2 (en) Refrigerant circuit
US6951115B2 (en) Refrigerant composition and refrigerating circuit using the same
JPH0660306B2 (en) Refrigerant composition
JP2562723B2 (en) Refrigerant composition and refrigeration system
JPH0655944B2 (en) Refrigerant composition
JPH09221664A (en) Working fluid
JPH08170075A (en) Working fluid
JP3327705B2 (en) Refrigerant composition and refrigeration apparatus using the same
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JPH0418486A (en) Refrigerant composition
JP2983969B2 (en) Cooling method
JPH08200866A (en) Air conditioner
JP3469855B2 (en) Refrigerant circuit
JPH07208818A (en) Freezing device