JPH0418486A - Refrigerant composition - Google Patents

Refrigerant composition

Info

Publication number
JPH0418486A
JPH0418486A JP2121975A JP12197590A JPH0418486A JP H0418486 A JPH0418486 A JP H0418486A JP 2121975 A JP2121975 A JP 2121975A JP 12197590 A JP12197590 A JP 12197590A JP H0418486 A JPH0418486 A JP H0418486A
Authority
JP
Japan
Prior art keywords
isobutane
compressor
refrigerant
composition
pentane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2121975A
Other languages
Japanese (ja)
Inventor
Kazuo Takemasa
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2121975A priority Critical patent/JPH0418486A/en
Publication of JPH0418486A publication Critical patent/JPH0418486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To provide a refrigerant composition composed of chlorodifluoroethane, 1-chloro-1,1-difluoroethane, isobutane, etc., usable without causing the problem of ozonosphere destruction and explosion hazard and capable of preventing the seizing of a compressor and the generation of oil sludge. CONSTITUTION:The objective composition is composed of (A) preferably 70wt.% of chlorodifluoroethane (R22), (B) preferably 25wt.% of 1-chloro-1,1-difluoroethane (R142b) and (C) preferably 5wt.% of isobutane or n-pentane. The composition having the above mixing ratios has a cooling capacity of about -40 deg.C.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷凍装置に用いられ、且つ、オゾン層を破壊す
る危険性のない冷媒組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigerant composition that is used in refrigeration equipment and has no risk of destroying the ozone layer.

(ロ)従来の技術 従来、冷凍機の冷媒として用いられているものにはR1
2(ジクロロジフルオロメタン)とR500(R12と
R152a (1,1−ジフルオロエタン)との共沸混
合物)が多い。R12の沸点は約−30℃で、R500
の沸点は約−33℃であり通常の冷凍装置に好適である
。更に圧縮機への吸込温度が比較的高くても吐出温度が
圧縮機のオイルスラッジを引き起こす程高くならない。
(b) Conventional technology Conventionally, the refrigerants used in refrigerators include R1.
2 (dichlorodifluoromethane) and R500 (azeotropic mixture of R12 and R152a (1,1-difluoroethane)). The boiling point of R12 is approximately -30°C, and R500
The boiling point of is about -33°C, which is suitable for ordinary refrigeration equipment. Furthermore, even though the suction temperature to the compressor is relatively high, the discharge temperature does not become high enough to cause oil sludge in the compressor.

更に又、R12は圧縮機のオイルと相溶性が良く、冷媒
回路中のオイルを圧縮機まで引き戻す役割も果たす。
Furthermore, R12 has good compatibility with the oil of the compressor, and also plays the role of drawing the oil in the refrigerant circuit back to the compressor.

(ハ)発明が解決しようとする課題 然し乍ら上記各冷媒はオゾン層を破壊する恐れがあると
され、その使用が規制されることとなって来た。これら
規制冷媒の代替冷媒として研究されているのがR22(
クロロジフルオロメタン)とR142b(1−クロロ−
1,1−ジフルオロエタン)の混合冷媒が考えられてい
る。R22の沸点は約−40℃、R142bの沸点は約
−9゜8℃である。又、R22は圧縮機の吸込温度を相
当低くしなければ吐出温度の上昇を抑えられないのでR
142bを混合することによって吐出温度を下げている
。即ち、R142b i、lt吸込温度が比較的高くて
も吐出温度が上がらないからである。
(c) Problems to be Solved by the Invention However, each of the above-mentioned refrigerants is said to have the potential to destroy the ozone layer, and their use has been regulated. R22 is being researched as an alternative refrigerant to these regulated refrigerants.
chlorodifluoromethane) and R142b (1-chloro-
1,1-difluoroethane) mixed refrigerants are being considered. The boiling point of R22 is about -40°C, and the boiling point of R142b is about -9°8°C. In addition, R22 cannot suppress the rise in discharge temperature unless the suction temperature of the compressor is considerably lowered.
By mixing 142b, the discharge temperature is lowered. That is, even if the R142b i,lt suction temperature is relatively high, the discharge temperature does not rise.

更にRI42bは可燃性であるがR22と混合すること
によって不燃組成を構成し、安全性を高めている。第2
図にR142bとR22及び空気の混合比率に対する可
燃性を示し、図中斜線部分が可燃域を、他の部分は不燃
域を示している。即ち、R22を10重量%以上混合す
ることでR142bの可燃域を避けることができる。
Furthermore, RI42b is flammable, but when mixed with R22, it forms a nonflammable composition, increasing safety. Second
The figure shows flammability with respect to the mixing ratio of R142b, R22, and air, with the hatched area showing the flammable range and the other areas showing the non-flammable range. That is, by mixing 10% by weight or more of R22, it is possible to avoid the flammable range of R142b.

然し乍ら、上記R22及びR142bは何も圧縮機オイ
ルとの相溶性が悪く、その為冷媒回路の蒸発器中で二相
分離(オイルと冷媒の分離)が発生し、圧縮機にオイル
が戻されずに焼付きが生ずる危険性がある。
However, R22 and R142b have poor compatibility with compressor oil, so two-phase separation (separation of oil and refrigerant) occurs in the evaporator of the refrigerant circuit, and the oil is not returned to the compressor. There is a risk of burn-in.

本発明は係る問題点を解決することを目的とする。The present invention aims to solve such problems.

(ニ)課題を解決するための手段 本発明はクロロジフルオロメタン(R22)と1−クロ
ロ−1,1−ジフルオロエタン(R142b)とイソブ
タンとから冷媒組成物を構成したものである。
(d) Means for Solving the Problems In the present invention, a refrigerant composition is composed of chlorodifluoromethane (R22), 1-chloro-1,1-difluoroethane (R142b), and isobutane.

また、クロロジフルオロメタン(R22)と1−クロロ
−1,1−ジフルオロエタン(R142b)とn−ペン
タンとから冷媒組成物を構成したものである。
Further, the refrigerant composition was composed of chlorodifluoromethane (R22), 1-chloro-1,1-difluoroethane (R142b), and n-pentane.

(ホ)作用 イソブタン(i−C,H,。)及びn−ペンタン(Cs
H+□)はオゾン層を破壊する危険性はなくまた、沸点
はそれぞれイソブタンが大気圧で−11,65℃、n−
ペンタンが+36.07℃である。更に、イソブタン、
n−ペンタン共に圧縮機のオイルとの相溶性が良好であ
り、冷媒回路中のオイルを溶は込ませて圧縮機に帰還せ
しめる働きをする。尚、イソブタンは圧縮機で蒸発して
それを冷却する働きもする。
(e) Action isobutane (i-C,H,.) and n-pentane (Cs
H+□) has no danger of destroying the ozone layer, and the boiling points of isobutane are -11 and 65℃ at atmospheric pressure, and n-
Pentane is +36.07°C. Furthermore, isobutane,
Both n-pentane and n-pentane have good compatibility with compressor oil, and function to dissolve the oil in the refrigerant circuit and return it to the compressor. Note that isobutane is evaporated in the compressor and also serves to cool it.

以上のオイル戻し効果はイソブタンやn−ペンタンの重
量比率が高いほど大きくなるが、これらの沸点は高く、
可燃性のため、入れ過ぎれば今度は所要の冷却温度が得
られなくなり、また、爆発の危険性が高まる。
The above oil return effect increases as the weight ratio of isobutane and n-pentane increases, but their boiling points are high,
Because it is flammable, if you add too much, you will not be able to achieve the required cooling temperature, and the risk of explosion will increase.

実験によればイソブタン成るいはn−ペンタンをR14
2bの5重量%以上20重量%以下混合することで、冷
却能力を損うことなく爆発の危険性を避けることができ
る。
Experiments have shown that isobutane or n-pentane is
By mixing 5% by weight or more and 20% by weight or less of 2b, the danger of explosion can be avoided without impairing the cooling ability.

出願人は更なる鋭意研究の結果、最も安全性が高く、且
つ、所要の冷凍温度(少なくとも一40℃以下の冷却温
度)が得られる比率を割り出し、R22が70重量%、
R142bが25重量%、イソブタン成るいはn−ペン
タンが5重量%であることを導き出した。
As a result of further intensive research, the applicant determined the ratio that would provide the highest safety and the required freezing temperature (cooling temperature of at least 40°C or less), and found that R22 was 70% by weight,
It was determined that R142b was 25% by weight and isobutane or n-pentane was 5% by weight.

(へ)実施例 次に図面において実施例を説明する。第1図はR22、
R142b及びイソブタンの混合冷媒を用いた場合の冷
媒回路を示している。圧縮機1の吐出側配管5は凝縮器
2に接続され、凝縮器2は気液分離S6に接続されてい
る。気液分離器6から出た液相配管7はキャピラリチュ
ーブ8に接続されキャピラリチューブ8は中間熱交換器
9に接続される。気液分jII器6から出た気相配fl
Oは中間熱交換器9中を通過してキャピラリチューブ1
1に接続され、キャピラリチューブ11は蒸発器4に接
続される。中間熱交換器9から出た配管12と蒸発器4
から出た配管13は接続点Pにて合流せられ、圧縮機1
の吸込側に接続される。
(f) Embodiments Next, embodiments will be explained with reference to the drawings. Figure 1 shows R22,
A refrigerant circuit using a mixed refrigerant of R142b and isobutane is shown. A discharge side pipe 5 of the compressor 1 is connected to a condenser 2, and the condenser 2 is connected to a gas-liquid separation S6. A liquid phase pipe 7 coming out of the gas-liquid separator 6 is connected to a capillary tube 8, and the capillary tube 8 is connected to an intermediate heat exchanger 9. Gas-liquid fraction j II gas phase fl
O passes through the intermediate heat exchanger 9 and enters the capillary tube 1.
1, and the capillary tube 11 is connected to the evaporator 4. Piping 12 coming out of intermediate heat exchanger 9 and evaporator 4
The pipes 13 coming out of the
connected to the suction side of the

冷媒回路内にはR22、R142b及びイソブタンの非
共沸混合冷媒が充填される。次に動作を説明する。圧縮
機1から吐出された高温高圧のガス状冷媒混合物は凝縮
器2に流入して放熱し、その内のR142b及びイソブ
タンの多くは液化して気液分離器6に入る。そこで液状
のR142bとイソブタンは液相配管7へ、また、未だ
気体のR22は気相配管10へと分離される。液相配管
7に流入したR142bとイソブタンはキャビラjチュ
ーブ8にて減圧されて中間熱交換器9に流入しR142
bとイソブタンはそこで蒸発する。
The refrigerant circuit is filled with a non-azeotropic mixed refrigerant of R22, R142b and isobutane. Next, the operation will be explained. The high-temperature, high-pressure gaseous refrigerant mixture discharged from the compressor 1 flows into the condenser 2 and radiates heat, and most of R142b and isobutane therein are liquefied and enter the gas-liquid separator 6. There, the liquid R142b and isobutane are separated into the liquid phase pipe 7, and the still gaseous R22 is separated into the gas phase pipe 10. The R142b and isobutane that have flowed into the liquid phase pipe 7 are depressurized in the cabin j tube 8 and flow into the intermediate heat exchanger 9, where they become R142.
b and isobutane evaporate there.

一方、気相配管10に流入したR22は中間熱交換器9
内を通過する過程で、そこで蒸発するR】42bとイソ
ブタンに冷却されて凝縮し、キャピラリチューブ11で
減圧されて蒸発器4に流入しそこで蒸発して周囲を冷却
する。中間熱交換器9から出たR142bとイソブタン
は配管12を通り、また、蒸発器4を出たR22は配管
13を通り接続点Pにて合流し、再びR22、R142
b及びイソブタンの混合物となって圧縮機lに帰還する
On the other hand, R22 flowing into the gas phase pipe 10 is transferred to the intermediate heat exchanger 9
In the process of passing through the evaporator, it is cooled and condensed into R]42b and isobutane, which are depressurized in the capillary tube 11 and flow into the evaporator 4, where they evaporate and cool the surroundings. R142b and isobutane coming out of the intermediate heat exchanger 9 pass through the pipe 12, and R22 coming out of the evaporator 4 passes through the pipe 13 and joins at the connection point P, where R22 and R142 come together again.
B and isobutane become a mixture and return to the compressor L.

冷媒回路中を循環する圧縮機1のオイルはイソブタンに
溶は込んだ状態で圧縮機1に戻される。
The oil of the compressor 1 circulating in the refrigerant circuit is returned to the compressor 1 in a state dissolved in isobutane.

冷媒回路内に封入される冷媒混合物の組成を決定するに
際しては、イソブタンが多ければオイル戻し機能が向上
するが、逆に蒸発器4における冷却能力が低下し、且つ
爆発危険性が高くなり冷凍装置の実用に供せなくなるこ
とを考慮する必要がある。この様な状況から出願人はこ
の組成をイソブタンがR142bの5重量%以上15重
量%以下と設定し、冷媒回路内に封入する冷媒混合物の
組成をR22が70重量%、R142bが25重量%、
イソブタンが5重量%とした。この組成による実験によ
れば蒸発器4にて一40℃の冷却能力が得られ、且つ、
爆発の危険性を回避できた。
When determining the composition of the refrigerant mixture sealed in the refrigerant circuit, it is important to note that if there is a large amount of isobutane, the oil return function will improve, but on the other hand, the cooling capacity in the evaporator 4 will decrease, and the risk of explosion will increase. It is necessary to consider that it may become impossible to put it into practical use. Under these circumstances, the applicant has set the composition of isobutane to be 5% by weight or more and 15% by weight or less of R142b, and the composition of the refrigerant mixture sealed in the refrigerant circuit is 70% by weight of R22, 25% by weight of R142b,
Isobutane was 5% by weight. According to experiments with this composition, a cooling capacity of -40°C was obtained in the evaporator 4, and
The risk of explosion was avoided.

次に、R22、R142b及びn−ヘンタンの非共沸混
合冷媒を充填する場合の動作を説明すると、液相配管7
にはR142bとn−ペンタンが流入することになるが
、n−ペンタンは沸点が高いので中間熱交換器9で蒸発
するのはR142bのみとなる。その他の動作はイソブ
タンを混入する場合と略同様と考えて良い。
Next, to explain the operation when filling the non-azeotropic mixed refrigerant of R22, R142b and n-hentane, the liquid phase pipe 7
R142b and n-pentane flow into the reactor, but since n-pentane has a high boiling point, only R142b evaporates in the intermediate heat exchanger 9. Other operations can be considered to be almost the same as when mixing isobutane.

また、各冷媒の混合比率も同様の理由からR22が70
重量%、R142bが25重量%、n−ペンタンが5重
量%とした。この組成による実験によって蒸発器4にて
略−40℃の冷却能力が得られ、且つ、爆発の危険性を
回避できた。
Also, for the same reason, the mixing ratio of each refrigerant is 70 for R22.
R142b was 25% by weight, and n-pentane was 5% by weight. Through experiments using this composition, a cooling capacity of approximately -40° C. was obtained in the evaporator 4, and the danger of explosion could be avoided.

(ト)発明の効果 本発明の冷媒組成物によればオゾン層を破壊する危険性
がなく、また、爆発の危険性も回避し乍ら所要の冷凍能
力を確保できる。特にインブタン成るいはn−ペンタン
によって圧縮機オイルを帰還せしめられるので、焼付き
も生じず、又、イソブタンにより圧縮機を冷却できるの
で、オイルスラ・・lジの発生を防止できる。
(g) Effects of the Invention According to the refrigerant composition of the present invention, there is no danger of destroying the ozone layer, and the required refrigerating capacity can be ensured while avoiding the danger of explosion. In particular, since the compressor oil can be returned using imbutane or n-pentane, seizure does not occur, and since the compressor can be cooled with isobutane, the generation of oil sludge can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷媒回路図、第2図はR142b、R22及び
空気の組成によるR142bの可燃域を示す図である。 1・・圧縮機、4・・・蒸発器、6・・・気液分離器、
9・中間熱交換器。
FIG. 1 is a refrigerant circuit diagram, and FIG. 2 is a diagram showing the flammable range of R142b depending on the composition of R142b, R22, and air. 1... Compressor, 4... Evaporator, 6... Gas-liquid separator,
9. Intermediate heat exchanger.

Claims (1)

【特許請求の範囲】 1)クロロジフルオロメタン、1−クロロ−1,1−ジ
フルオロエタン及びイソブタンから成る冷媒組成物。 2)クロロジフルオロメタン、1−クロロ−1,1−ジ
フルオロエタン及びn−ペンタンから成る冷媒組成物。
[Claims] 1) A refrigerant composition comprising chlorodifluoromethane, 1-chloro-1,1-difluoroethane and isobutane. 2) A refrigerant composition consisting of chlorodifluoromethane, 1-chloro-1,1-difluoroethane and n-pentane.
JP2121975A 1990-05-11 1990-05-11 Refrigerant composition Pending JPH0418486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121975A JPH0418486A (en) 1990-05-11 1990-05-11 Refrigerant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121975A JPH0418486A (en) 1990-05-11 1990-05-11 Refrigerant composition

Publications (1)

Publication Number Publication Date
JPH0418486A true JPH0418486A (en) 1992-01-22

Family

ID=14824492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121975A Pending JPH0418486A (en) 1990-05-11 1990-05-11 Refrigerant composition

Country Status (1)

Country Link
JP (1) JPH0418486A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287979A (en) * 1985-06-15 1986-12-18 Hitachi Ltd Refrigerant composition
JPS63105088A (en) * 1986-10-20 1988-05-10 Sanyo Electric Co Ltd Blended refrigerant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287979A (en) * 1985-06-15 1986-12-18 Hitachi Ltd Refrigerant composition
JPS63105088A (en) * 1986-10-20 1988-05-10 Sanyo Electric Co Ltd Blended refrigerant

Similar Documents

Publication Publication Date Title
US5265443A (en) Refrigerating unit
JP5927339B2 (en) Dual refrigeration equipment
US7624585B2 (en) Freezer unit
JPH07504889A (en) Refrigerant composition and method of use thereof
US5351499A (en) Refrigerant composition and binary refrigeration system using it
CN110511726A (en) A kind of reachable -150 DEG C of minimum temperature of hybrid refrigeration agent prescription
CN114058334B (en) Mixed refrigerant and refrigeration system
JPH08170074A (en) Working fluid
JPH0925480A (en) Hydraulic fluid
KR960000866B1 (en) Refrigerant composition
JPH0418486A (en) Refrigerant composition
CA1092755A (en) Constant boiling mixtures of 1-chloro-2,2,2- trifluoroethane and hydrocarbons
JPH0660306B2 (en) Refrigerant composition
JP3433197B2 (en) Refrigerant circuit
US6951115B2 (en) Refrigerant composition and refrigerating circuit using the same
Bolaji et al. Thermodynamic analysis of performance of vapour compression refrigeration system working with R290 and R600a mixtures
JP2562723B2 (en) Refrigerant composition and refrigeration system
JPH09221664A (en) Working fluid
JPH0737609B2 (en) Refrigerant composition
JPH03269083A (en) Refrigerant composition
JP2983969B2 (en) Cooling method
JPH08170075A (en) Working fluid
JP2014196869A (en) Cascade refrigeration system
JP2865475B2 (en) Refrigerant composition and binary refrigeration apparatus using the same
JPH03260557A (en) Binary refrigerating plant