JPH0735434A - Absorption type freezer - Google Patents

Absorption type freezer

Info

Publication number
JPH0735434A
JPH0735434A JP5179111A JP17911193A JPH0735434A JP H0735434 A JPH0735434 A JP H0735434A JP 5179111 A JP5179111 A JP 5179111A JP 17911193 A JP17911193 A JP 17911193A JP H0735434 A JPH0735434 A JP H0735434A
Authority
JP
Japan
Prior art keywords
absorption
concentration
liquid
absorbing
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5179111A
Other languages
Japanese (ja)
Inventor
Tomoko Kikuchi
智子 菊池
Kazumi Fujii
和美 藤井
Masahiko Ito
雅彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5179111A priority Critical patent/JPH0735434A/en
Publication of JPH0735434A publication Critical patent/JPH0735434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve an accuracy in monitoring a concentration, and further improve a reliability in monitoring a concentration by a method wherein a concentration of absorption liquid in an absorption type freezer is directly and actually measured more than that of the prior art. CONSTITUTION:An electrode part 22 (including an active electrode, reference electrode and a thermocouple or the like) is arranged at a proper location in an absorption liquid circulating passage in an absorption type freezer. The active electrode may generate an oxidization and reducing reaction together with substances contained in the absorption liquid. A potential difference between the active electrode and the reference electrode is calculated by a potentiometer 23 so as to calculate an oxidization and reducing potential. The potential is corrected in reference to a temperature by a converting device 24 on the basis of a measured temperature value of the thermocouple. A solution liquid pump 8a and a refrigerant pump 8b are controlled by a control device 25 in reference to the measured concentration of the absorption liquid and then a diluting operation at the time of stopping operation is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に係り、さ
らに詳細には、吸収液の濃度を測定する技術及び測定さ
れた吸収液濃度を監視して吸収液の稀釈運転等の濃度管
理を行う技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to a technique for measuring the concentration of an absorption liquid and monitoring the measured concentration of the absorption liquid to control the concentration such as dilution operation of the absorption liquid. Related to the technology of doing.

【0002】[0002]

【従来の技術】一般に吸収式冷凍機は、吸収媒体として
臭化リチウム、および冷媒として水が使用される。臭化
リチウムは腐食性が高いので、吸収液中には構成金属材
料の腐食を抑制するために腐食抑制剤が添加されてい
る。
2. Description of the Related Art Generally, an absorption refrigerator uses lithium bromide as an absorption medium and water as a refrigerant. Since lithium bromide is highly corrosive, a corrosion inhibitor is added to the absorbing liquid to suppress the corrosion of the constituent metal materials.

【0003】しかし、吸収液中に腐食抑制剤が含まれて
いても、吸収式冷凍機の腐食によるトラブルを完全に回
避することができない。これは、運転停止時の吸収液の
稀釈が不十分なことに起因する吸収液の結晶化が大きな
要因とされる。
However, even if the absorption liquid contains a corrosion inhibitor, it is not possible to completely avoid troubles due to corrosion of the absorption refrigerator. This is largely due to the crystallization of the absorption liquid due to the insufficient dilution of the absorption liquid when the operation was stopped.

【0004】すなわち、吸収液の稀釈が不十分である
と、運転停止時の温度低下に伴い腐食抑制剤を含まない
吸収媒体(例えば臭化リチウム)の結晶と腐食抑制剤を
含んだ稀薄吸収液(例えば温度が低下したときの飽和臭
化リチウム水溶液)の2つに吸収液が分離し、冷凍機の
再運転時に結晶化した臭化リチウムが解け溶融塩に近い
濃厚な臭化リチウム水溶液になり、これと腐食抑制剤を
含んだ稀薄吸収液との比重の差が大きいため、分離した
2つの液が均一になるには時間がかかる。その結果、溶
融塩に近い濃厚臭化リチウム水溶液は腐食抑制剤が含ま
れていない状態となり、金属材料の腐食促進および防食
の役目をしていた酸化皮膜を局部的に破壊する原因とな
る。
That is, if the absorption liquid is not sufficiently diluted, the diluted absorption liquid containing the corrosion inhibitor-free crystals of the absorption medium (for example, lithium bromide) that does not contain the corrosion inhibitor along with the temperature decrease when the operation is stopped. (For example, saturated lithium bromide aqueous solution when the temperature drops) The absorbing liquid is separated into two, and when the refrigerator is restarted, the crystallized lithium bromide is dissolved and becomes a concentrated aqueous lithium bromide solution close to the molten salt. However, since there is a large difference in specific gravity between this and the diluted absorbent containing the corrosion inhibitor, it takes time for the two separated liquids to become uniform. As a result, the concentrated lithium bromide aqueous solution, which is close to the molten salt, is in a state of not containing a corrosion inhibitor, which causes local destruction of the oxide film that serves to promote corrosion and prevent corrosion of the metal material.

【0005】上記問題に対処するため、吸収式冷凍機の
運転停止時に稀釈のための運転が行われるが、従来は稀
釈運転をタイマ等を用いて一定時間行うか、特開平2−
213659号のように高温再生器の温度に対応して稀
釈運転時間を設定したり、特開昭63−243663号
のように冷媒供給配管に取り付けたフロート式流量制御
弁により高温再生器の圧力から制御弁の開閉を行って稀
釈運転をしたり、特開昭60−2858号、特開昭60
−162162号、特開昭61−101765号、特開
昭61−70350号、特開昭63−187075号、
特開平1−123960号、特開平2−40459号等
に開示されるように、吸収液の濃度を吸収液の何らかの
状態(例えば、比重,温度,圧力等)から算出して、所
定濃度となるように稀釈運転を制御する技術が提案され
ている。
In order to deal with the above problem, an operation for dilution is performed when the absorption refrigerating machine is stopped. Conventionally, the dilution operation is performed for a fixed time by using a timer or the like.
No. 213659, the dilution operation time is set according to the temperature of the high temperature regenerator, or the pressure of the high temperature regenerator is adjusted by the float type flow control valve attached to the refrigerant supply pipe as in JP-A-63-243663. The control valve is opened / closed to perform a dilution operation, or disclosed in JP-A-60-2858 and JP-A-60.
-162162, JP-A-61-101765, JP-A-61-70350, JP-A-63-187075,
As disclosed in JP-A-1-123960, JP-A-2-40459, etc., the concentration of the absorbing liquid is calculated from some state of the absorbing liquid (eg, specific gravity, temperature, pressure, etc.) to obtain a predetermined concentration. As described above, a technique for controlling the dilution operation has been proposed.

【0006】そのほか、稀釈運転以外でも、例えば特開
昭59−122871号に記載の吸収冷凍機における発
生器の熱源熱量制御、特開昭60−78262号の熱源
供給停止時刻制御、特開昭61−17872号の吸収液
の結晶化予防技術、特開昭63−297970号の吸収
式冷凍機の運転監視技術等に吸収液の濃度を吸収液の何
らかの状態から求める技術が開示されている。
In addition to the dilution operation, for example, heat source heat quantity control of a generator in an absorption chiller described in JP-A-59-122871, heat source supply stop time control in JP-A-60-78262, and JP-A-61. No. 17872 discloses a technique for preventing crystallization of an absorbing solution, and JP-A No. 63-297970 discloses a technique for monitoring the operation of an absorption chiller, which discloses a technique for determining the concentration of the absorbing solution from some state of the absorbing solution.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術のうち、
吸収液の稀釈運転等の濃度管理を行うには、吸収液の濃
度を測定して行うのが最も信頼性があり好ましい。特に
吸収液の濃度を直接検出することが理想とされるが、実
際にはどのようにして直接濃度を検出するか具体的な手
法が開発されておらず、その代わりとして吸収液の物理
状態(例えば、特開昭60−2858号では吸収液の温
度測定及び比重測定、特開昭60−162162号では
吸収液の比重測定、特開昭61−17872号では吸収
液の温度と圧力及び冷媒の温度、特開昭61−1017
65号では冷凍機の負荷,発生器の加熱量,冷媒量等、
特開昭61−70350号,特開平1−123960号
では吸収液の飽和蒸気圧と温度、特開平2−40459
号では凝縮器の熱媒体温度と移送管の再生器出口,熱回
収器の吸収液の温度等)から濃度換算を行う間接的な濃
度測定法が提案されていた。
Of the above-mentioned conventional techniques,
In order to control the concentration such as dilution operation of the absorbing solution, it is most reliable and preferable to measure the concentration of the absorbing solution. In particular, it is ideal to directly detect the concentration of the absorption liquid, but in practice, no specific method has been developed to directly detect the concentration, and instead, the physical state of the absorption liquid ( For example, in JP-A-60-2858, the temperature and specific gravity of the absorbent are measured, in JP-A-60-162162, the specific gravity of the absorbent is measured, and in JP-A-61-17872, the temperature and pressure of the absorbent and the refrigerant are measured. Temperature, JP-A-61-1017
In No. 65, refrigerator load, generator heating amount, refrigerant amount, etc.
In JP-A-61-70350 and JP-A-1-123960, the saturated vapor pressure and temperature of the absorbing liquid are described in JP-A-2-40459.
In this issue, an indirect concentration measurement method was proposed in which the concentration was converted from the heat medium temperature of the condenser, the regenerator outlet of the transfer pipe, the temperature of the absorbing liquid of the heat recovery unit, etc.).

【0008】本発明の目的は、この種の吸収式冷凍機の
吸収液の濃度を従来以上に直接的に実測することで、そ
の濃度モニタの精度ひいては濃度管理の信頼性を高める
ことにある。
An object of the present invention is to directly measure the concentration of the absorption liquid of this type of absorption refrigerator and to improve the accuracy of the concentration monitor and thus the reliability of concentration control.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明は上記目的を達成するため、基本的な課題
解決手段として、吸収式冷凍機において、前記吸収液の
循環経路の一部に吸収液に含まれる成分と酸化還元反応
を生じる部材を作用電極として参照電極と共に配置し、
該作用電極と参照電極との電位差から前記吸収液の酸化
還元電位を測定する手段と、前記吸収液の温度を測定す
る手段と、前記酸化還元電位の測定値を温度補正して吸
収液濃度に変換する手段とを備えたものを提案する。
(1) In order to achieve the above object, the present invention is, as a basic means for solving the problem, a member in an absorption refrigerating machine that causes a redox reaction with a component contained in the absorption liquid in a part of the circulation path of the absorption liquid. Is arranged with the reference electrode as a working electrode,
Means for measuring the redox potential of the absorbing solution from the potential difference between the working electrode and the reference electrode, means for measuring the temperature of the absorbing solution, and temperature-correcting the measured value of the redox potential to obtain the absorbing solution concentration. And a means for converting are proposed.

【0010】例えば、吸収式冷凍機の吸収液として、L
iBrが用いられ、吸収液に含まれる腐食抑制剤とし
て、K,Na,Li等のアルカリ金属からなるモリブデ
ン酸塩、クロム酸塩、バナジン酸塩、タングステン酸
塩、塩化ルテニウム、Co,Sb,Y,Ti等の塩化
物、臭化物、ヨウ化物等のうち少なくとも一つが含まれ
る。
For example, as the absorption liquid of the absorption refrigerator, L
iBr is used, and as a corrosion inhibitor contained in the absorbing solution, molybdate, chromate, vanadate, tungstate, ruthenium chloride, Co, Sb, Y made of an alkali metal such as K, Na or Li is used. , Ti, etc., and at least one of chloride, bromide, iodide, etc. is contained.

【0011】作用電極としては、その吸収液中で酸化還
元反応を起こすMo,Cr,V,W,Ru,Co,S
b,Y,Ti等の金属または、酸化モリブデン等の酸化
物、またはPt,C,Au等の不溶性電極が使用され
る。
As the working electrode, Mo, Cr, V, W, Ru, Co and S which cause an oxidation-reduction reaction in the absorbing liquid are used.
A metal such as b, Y or Ti, an oxide such as molybdenum oxide, or an insoluble electrode such as Pt, C or Au is used.

【0012】また、腐食抑制剤にK,Na,Li等のア
ルカリ金属からなる炭酸塩、硝酸塩、亜硝酸塩のいずれ
かを用いたときには、Pt,C,Au等の不溶性電極が
作用電極として用いられる。
When any one of carbonates, nitrates and nitrites made of alkali metals such as K, Na and Li is used as the corrosion inhibitor, an insoluble electrode such as Pt, C and Au is used as a working electrode. .

【0013】参照電極としては、例えば銀/塩化銀電
極、銀/臭化銀電極、カロメル電極等を用いる。
As the reference electrode, for example, a silver / silver chloride electrode, a silver / silver bromide electrode, a calomel electrode or the like is used.

【0014】(2)さらに、応用手段として、上記
(1)の構成要素に加えて、前記酸化還元電位より求め
た吸収液濃度が設定濃度になるように冷凍機運転停止時
における冷凍機内の吸収液の稀釈運転を制御する手段を
備えたものを提案する。
(2) Further, as an application means, in addition to the constituent elements of (1) above, absorption in the refrigerator when the refrigerator is stopped so that the absorption liquid concentration obtained from the redox potential becomes a set concentration. It is proposed to provide a means for controlling the liquid dilution operation.

【0015】[0015]

【作用】[Action]

(1)の課題解決手段の作用…本発明では、吸収液の成
分と酸化還元反応を生じる作用電極の酸化還元電位を該
作用電極と参照電極との電位差から測定する。また、酸
化還元電位は吸収液の温度に影響されるので、測定した
電位差(酸化還元電位)を温度補正する。例えば、腐食
抑制剤としてモリブデン酸塩が含まれる吸収液におい
て、Moを作用電極として使用する場合に生じる酸化還
元反応は次の化1に示される。
Function of the means for solving the problem of (1) ... In the present invention, the redox potential of the working electrode that causes a redox reaction with the components of the absorbing liquid is measured from the potential difference between the working electrode and the reference electrode. Further, since the oxidation-reduction potential is affected by the temperature of the absorbing solution, the measured potential difference (oxidation-reduction potential) is temperature-corrected. For example, a redox reaction that occurs when Mo is used as a working electrode in an absorbing liquid containing molybdate as a corrosion inhibitor is shown in the following chemical formula 1.

【0016】[0016]

【化1】 [Chemical 1]

【0017】この反応の酸化還元電位は、数1式に示さ
れるネルンストの式に従い、吸収液に含まれるモリブデ
ン酸イオンの濃度とその時の吸収液の温度により決定さ
れる。
The redox potential of this reaction is determined by the concentration of molybdate ion contained in the absorbing solution and the temperature of the absorbing solution at that time according to the Nernst equation shown in the equation (1).

【0018】[0018]

【数1】 E=E0+RT/(6F)*ln[MoO4 2~] E:酸化還元電位 E0:標準電極電位 R:気体定数 T:温度 F:ファラデー定数 [MoO4 2~]:モリブデン酸イオン濃度 吸収液は吸収式冷凍機内で濃縮、稀釈を繰り返すが、常
に吸収液すなわち(例えば臭化リチウム)の濃度と腐食
抑制剤(例えばモリブデン酸塩)の濃度の比率が等しい
ため、腐食抑制剤の濃度から吸収液の濃度を決定するこ
とができる。
[Equation 1] E = E 0 + RT / (6F) * ln [MoO 4 2 ~] E: Redox potential E 0 : Standard electrode potential R: Gas constant T: Temperature F: Faraday constant [MoO 4 2 ~]: Molybdate ion concentration The absorption liquid is repeatedly concentrated and diluted in an absorption refrigerator, but since the ratio of the concentration of the absorption liquid (ie, lithium bromide) and the concentration of corrosion inhibitor (eg, molybdate) are always the same, corrosion The concentration of the absorption liquid can be determined from the concentration of the inhibitor.

【0019】なお、上記の例では、作用電極が吸収液中
の腐食抑制剤と酸化還元反応を起こす例を示したが、吸
収媒体,作用電極の部材を選定することで、吸収媒体と
酸化還元反応を起こすように作用電極を構成することも
可能である。
In the above example, the working electrode causes an oxidation-reduction reaction with the corrosion inhibitor in the absorbing liquid. However, by selecting the absorbing medium and the member of the working electrode, the absorbing medium and the oxidation-reduction reaction can be reduced. It is also possible to configure the working electrode to cause a reaction.

【0020】(2)の課題解決手段の作用…作用電極,
参照電極を用いて、冷凍機内の吸収液濃度を電位差(酸
化還元電位)として測定する。通常の運転で測定される
電位差を図3に示すE2とする。冷凍機の運転停止後、
冷凍機内の温度が低下しても吸収液が結晶化しない濃度
の時の電位差をE1とすると、E2からE1に電位差が
変化するまで稀釈運転を続けることで吸収液の結晶化が
防止できる。
Operation of means for solving the problem of (2) ... Working electrode,
Using the reference electrode, the concentration of the absorbing liquid in the refrigerator is measured as a potential difference (oxidation-reduction potential). The potential difference measured in normal operation is E2 shown in FIG. After stopping the operation of the refrigerator,
Letting E1 be the potential difference at a concentration at which the absorption liquid does not crystallize even if the temperature inside the refrigerator decreases, crystallization of the absorption liquid can be prevented by continuing the dilution operation until the potential difference changes from E2 to E1.

【0021】なお、この電極部(作用電極,参照電極)
を吸収式冷凍機内の1箇所に限定せず、吸収液が循環す
る高温再生器の底部、低温再生器から熱交換器へ向かう
出口、熱交換器から吸収器に向かう出口、吸収器から熱
交換器に向かう出口等の複数箇所に設置することによ
り、吸収液をさらに精度良く稀釈することができるよう
になり、1箇所の電位測定では分からないような結晶化
が生じやすい場所の稀釈も行うことができる。
This electrode portion (working electrode, reference electrode)
Is not limited to one location in the absorption refrigerator, the bottom of the high temperature regenerator in which the absorbing liquid circulates, the outlet from the low temperature regenerator to the heat exchanger, the outlet from the heat exchanger to the absorber, heat exchange from the absorber By installing it at multiple points such as the outlet toward the vessel, it is possible to dilute the absorbing liquid with higher accuracy, and also to dilute the point where crystallization is likely to occur, which cannot be understood by measuring the potential at one point. You can

【0022】[0022]

【実施例】本発明の一実施例を図面を用いて説明する。
図1は冷媒に水、腐食抑制剤としてモリブデン酸塩を使
用した二重効用吸収式冷凍機の一例である。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a double-effect absorption refrigerator using water as a refrigerant and molybdate as a corrosion inhibitor.

【0023】図1において、LiBr,LiOH,Li
2MoO4水溶液からなる吸収液6は高温再生器1aで濃
縮加熱されて、水蒸気14を分離する。水蒸気14は配
管イを介して低温再生器1bの熱交換器を通って稀薄吸
収液6bを加熱濃縮して凝縮器2に入り、ここで冷却水
15により冷却されて水となる。この水が冷媒7とな
り、冷媒7は配管ロ,ハを介して冷媒ポンプ8bにより
蒸発器3に圧送され、蒸発管10に散布される(符号1
1は散布された冷媒である)。散布された冷媒11は、
蒸発器3内が数mmHgの減圧状態に保持されているた
め蒸発して再び水蒸気となる。この時の蒸発潜熱により
蒸発管10の内部を通る冷水9は冷却され、これが冷房
に用いられる。
In FIG. 1, LiBr, LiOH, Li
The absorbing liquid 6 made of 2 MoO 4 aqueous solution is concentrated and heated in the high temperature regenerator 1a to separate the water vapor 14. The steam 14 passes through the heat exchanger of the low temperature regenerator 1b via the pipe a to heat and concentrate the diluted absorption liquid 6b and then enters the condenser 2, where it is cooled by the cooling water 15 to become water. This water becomes the refrigerant 7, and the refrigerant 7 is pressure-fed to the evaporator 3 by the refrigerant pump 8b via the pipes B and C and is sprayed on the evaporation pipe 10 (reference numeral 1).
1 is the sprayed refrigerant). The sprayed refrigerant 11 is
Since the inside of the evaporator 3 is kept in a reduced pressure state of several mmHg, it is evaporated to become steam again. The cold water 9 passing through the inside of the evaporation pipe 10 is cooled by the latent heat of evaporation at this time, and this is used for cooling.

【0024】蒸発した冷媒11の水蒸気は吸収器4に入
り、ここで高温再生器1aで濃縮された濃厚吸収液6a
が散布されて、この中に吸収される。濃厚吸収液6aは
水蒸気を吸収する際に発熱するが、これは冷却管13内
を通る冷却水12により冷却され、稀薄吸収液6bとな
る。稀薄液6bは溶液ポンプ8aにより、熱交換器5を
通って配管ニを介して高温再生器1aに、及び配管ホを
介して低温再生器1bに送り戻される。
The evaporated water vapor of the refrigerant 11 enters the absorber 4, where the concentrated absorbent 6a concentrated in the high temperature regenerator 1a.
Are scattered and absorbed into this. The rich absorbing liquid 6a generates heat when absorbing the water vapor, but this is cooled by the cooling water 12 passing through the inside of the cooling pipe 13 to become the dilute absorbing liquid 6b. The diluted liquid 6b is sent back by the solution pump 8a through the heat exchanger 5 to the high temperature regenerator 1a via the piping d and to the low temperature regenerator 1b via the piping e.

【0025】以上が通常の運転時の冷凍サイクルである
が、本実施例では、吸収式冷凍機の運転停止時おける吸
収液を稀釈するための運転が、吸収液濃度をモニタしな
がら設定稀釈濃度となるように行われる。ここで、稀釈
運転の機構について説明する(濃度モニタ及びその制御
系については後述する)。
Although the refrigeration cycle during normal operation has been described above, in this embodiment, the operation for diluting the absorbing liquid when the absorption refrigerating machine is stopped is the set diluting concentration while monitoring the absorbing liquid concentration. Is done. Here, the mechanism of the dilution operation will be described (the concentration monitor and its control system will be described later).

【0026】高温再生器1aでの吸収液の濃縮加熱が停
止される。冷媒配管ハから分岐した冷媒供給配管18に
配置したバルブ17を開き、冷媒ポンプ8bにより冷媒
7を高温再生器1aに送る。溶液ポンプ8aは吸収器4
の稀薄吸収液6bを高温再生器1aおよび低温再生器1
bに送り、高温再生器1aと低温再生器1bから送られ
る濃厚吸収液6aは吸収器4に送られる。吸収液6は高
温再生器1a、低温再生器1b、熱交換器5、および吸
収器4を吸収液ポンプ8aにより循環しながら稀釈され
る。
Concentration and heating of the absorption liquid in the high temperature regenerator 1a is stopped. The valve 17 arranged in the refrigerant supply pipe 18 branched from the refrigerant pipe C is opened, and the refrigerant 7 is sent to the high temperature regenerator 1a by the refrigerant pump 8b. Solution pump 8a is absorber 4
The diluted absorbent 6b of the high temperature regenerator 1a and the low temperature regenerator 1
The concentrated absorbent 6a sent to the high temperature regenerator 1a and the low temperature regenerator 1b is sent to the absorber 4. The absorption liquid 6 is diluted while circulating through the high temperature regenerator 1a, the low temperature regenerator 1b, the heat exchanger 5, and the absorber 4 by the absorption liquid pump 8a.

【0027】稀釈運転が完了した時点で吸収式冷凍機は
完全に停止し、冷凍機内は放冷により温度が低下する。
この時、吸収液の稀釈が不十分な状態、すなわち稀釈終
了後の吸収液の濃度が冷凍機内の放冷後の温度で飽和濃
度を超えている時、冷凍機の運転を停止すると、冷凍機
内の温度が低下して吸収液6が結晶化する。特に濃厚溶
液が循環する高温再生器1a、低温再生器1b、熱交換
器5で吸収液の結晶化が生じ易い。
When the dilution operation is completed, the absorption refrigerator is completely stopped, and the temperature inside the refrigerator is lowered by cooling.
At this time, when the dilution of the absorption liquid is insufficient, that is, when the concentration of the absorption liquid after the dilution is over the saturation concentration at the temperature after cooling in the refrigerator, if the operation of the refrigerator is stopped, The temperature of 1 decreases and the absorbing liquid 6 crystallizes. Especially in the high temperature regenerator 1a, the low temperature regenerator 1b, and the heat exchanger 5 in which the concentrated solution circulates, the absorption liquid is likely to be crystallized.

【0028】吸収液が結晶化するとLiBrの結晶とL
iOH,Li2MoO4が含まれる飽和LiBr水溶液と
の2つに分離する。この状態で冷凍機が再運転すると冷
凍機内の吸収液の循環および温度上昇によりLiBr結
晶は溶解するが溶融塩に近い濃厚状態の水溶液となる。
一方、LiOH,Li2MoO4が含まれる飽和LiBr
水溶液は、濃厚なLiOH,Li2MoO4を含まないL
iBr水溶液と濃度および比重が大きく異なるため、吸
収液の均一化には多くの時間が必要となる。吸収液が均
一になる間、吸収式冷凍機の構成材料はLiOH,Li
2MoO4を含まない濃厚LiBr水溶液にさらされ、構
成材料上の酸化皮膜を局部的に破壊し腐食が生じる恐れ
がある。
When the absorbing solution is crystallized, LiBr crystals and L
Separated into two , iOH and a saturated LiBr aqueous solution containing Li 2 MoO 4 . When the refrigerator is restarted in this state, the LiBr crystal dissolves due to the circulation of the absorption liquid in the refrigerator and the temperature rise, but becomes a concentrated aqueous solution close to the molten salt.
On the other hand, saturated LiBr containing LiOH and Li 2 MoO 4
The aqueous solution contains L that does not contain concentrated LiOH and Li 2 MoO 4.
Since the concentration and the specific gravity are significantly different from the iBr aqueous solution, it takes a lot of time to make the absorbing solution uniform. While the absorption liquid is uniform, the constituent materials of the absorption refrigerator are LiOH, Li
2 When exposed to a concentrated LiBr aqueous solution that does not contain 2 MoO 4 , the oxide film on the constituent materials may be locally destroyed and corrosion may occur.

【0029】この結晶化を確実に防止するために、稀釈
運転時の吸収液の濃度を測定するモニタ手段が必要であ
る。図2に本実施例の吸収液6すなわちLiBrの濃度
を測定する濃度モニタ装置を示す。
In order to reliably prevent this crystallization, a monitor means for measuring the concentration of the absorbing solution during the dilution operation is necessary. FIG. 2 shows a concentration monitor device for measuring the concentration of the absorbing liquid 6 of the present embodiment, that is, LiBr.

【0030】この濃度モニタ装置は、作用電極19、参
照電極20および熱電対(温度測定手段)21から構成
された電極部22と、電位差計(酸化還元電位算出手
段)23、変換装置(酸化還元電位−濃度変換手段)2
4から構成される。作用電極19は吸収液中の成分(こ
こでは、腐食抑制剤としてのモリブデン酸塩)と酸化還
元反応を示す部材(本例ではMo)を使用し、参照電極
20に高温水用銀/塩化銀参照電極を使用する。
This concentration monitor comprises an electrode section 22 composed of a working electrode 19, a reference electrode 20 and a thermocouple (temperature measuring means) 21, a potentiometer (oxidation / reduction potential calculation means) 23, a converter (oxidation / reduction). Potential-concentration conversion means) 2
It is composed of 4. The working electrode 19 uses a component in the absorbing liquid (here, molybdate as a corrosion inhibitor) and a member (Mo in this example) that exhibits an oxidation-reduction reaction, and the reference electrode 20 is silver for high temperature water / silver chloride. Use a reference electrode.

【0031】この電極部22を吸収式冷凍機内の吸収液
が循環する高温再生器1aの底部に吸収液中に挿入され
るようにして取り付ける。なお、電極部22は吸収液6
が循環する箇所、例えば、低温再生器1bから熱交換器
5へ向かう出口、熱交換器5から吸収器4に向かう出
口、吸収器4から熱交換器5に向かう出口等に設置して
も良い。さらに、上述した箇所に1か所の設置ばかりで
はなく2箇所以上の場所に設置することにより複数個所
の濃度測定も行える。
The electrode portion 22 is attached to the bottom of the high temperature regenerator 1a in which the absorbing liquid in the absorption refrigerator circulates so as to be inserted into the absorbing liquid. In addition, the electrode part 22 has
May be installed at a place where the heat is circulated, for example, an outlet from the low temperature regenerator 1b to the heat exchanger 5, an outlet from the heat exchanger 5 to the absorber 4, an outlet from the absorber 4 to the heat exchanger 5, and the like. . Further, not only one place is installed at the above-mentioned place, but also the concentration can be measured at a plurality of places by installing at two or more places.

【0032】上記構成の濃度モニタ装置によれば、Mo
(作用電極19)上で起こる腐食抑制剤の酸化還元電位
が、電位差計23により作用電極19と参照電極20と
の電位差を測定することにより求められる。すなわち、
腐食抑制剤であるLi2MoO4は水溶液中ではMoO4 2
~の状態で存在する。MoO4 2~は化1に示される酸化還
元反応を作用電極19上で生じており、その反応によっ
て作用電極19上で生じている酸化還元電位が参照電極
20との電位差として電位差計23により測定される。
化1に示される酸化還元反応は既述の数1式のネルンス
トの式に基づきMoO4 2~の濃度と吸収液6の温度に比
例し変化する。そのため、熱電対21により測定された
高温再生器1a内の吸収液6の温度からMoO4 2~から
得られる酸化還元電位は変換装置24を用いて温度補正
が行われる。
According to the concentration monitor having the above structure, the Mo
The redox potential of the corrosion inhibitor that occurs on (working electrode 19) is determined by measuring the potential difference between working electrode 19 and reference electrode 20 with a potentiometer 23. That is,
Li 2 MoO 4 which is a corrosion inhibitor is MoO 4 2 in an aqueous solution.
Exists in the state of. MoO 4 2 ~ causes the redox reaction shown in Chemical formula 1 to occur on the working electrode 19, and the redox potential generated on the working electrode 19 by the reaction is measured by the potentiometer 23 as a potential difference from the reference electrode 20. To be done.
The redox reaction shown in Chemical formula 1 changes in proportion to the concentration of MoO 4 2 and the temperature of the absorbing liquid 6 based on the Nernst equation of the above-mentioned Numerical formula 1. Therefore, the temperature of the redox potential obtained from MoO 4 2 is corrected using the converter 24 from the temperature of the absorbing liquid 6 in the high temperature regenerator 1a measured by the thermocouple 21.

【0033】温度補正後の測定値はMoO4 2~の濃度よ
って変化する。そこで、吸収液中のLiBr濃度とLi
2MoO4の濃度はつねに一定の比率で存在しているか
ら、図3に示すように測定された電位差からモリブデン
酸塩の濃度が決定でき、その値を用いてLiBrの濃度
も決定できる。
The measured value after temperature correction changes depending on the concentration of MoO 4 2 ~. Therefore, the LiBr concentration and Li in the absorption liquid
Since the concentration of 2 MoO 4 is always present in a constant ratio, the concentration of molybdate can be determined from the measured potential difference as shown in FIG. 3, and the concentration can also be used to determine the concentration of LiBr.

【0034】MoO4 2~を含んだ吸収液で使用する作用
電極19としては、MoのほかにPt,Au,Cのよう
な不溶性電極、MoO2等を用いることができる。ま
た、参照電極20としてAg/AgCl電極以外にもH
g/Hg2Cl2電極やAg/AgBr電極等を使用でき
る。
As the working electrode 19 used in the absorbing solution containing MoO 4 2 ~, in addition to Mo, an insoluble electrode such as Pt, Au, C, MoO 2 or the like can be used. In addition to the Ag / AgCl electrode, H is used as the reference electrode 20.
A g / Hg 2 Cl 2 electrode, an Ag / AgBr electrode, or the like can be used.

【0035】次に上記の濃度モニタを用いた、吸収式冷
凍機の運転停止時における稀釈運転の制御について説明
する。
Next, the control of the dilution operation using the above concentration monitor when the absorption refrigerating machine is stopped will be described.

【0036】稀釈運転の制御装置25は、吸収式冷凍機
の停止信号を受け取ると、高温再生器1aに取り付けら
れている熱源、例えばガスバーナや石油ボイラ等を停止
する。熱源の停止後、冷媒供給配管18に取り付けられ
たバルブ17を開け、冷媒7を強制的に高温再生器1a
に戻す。溶液ポンプ8a、冷媒ポンプ8bは制御装置2
5が冷凍機の停止信号を受け取った後も引き続き作動
し、吸収液6の稀釈が行こなわれる。
When the control device 25 for the dilution operation receives the stop signal for the absorption refrigerator, it stops the heat source such as the gas burner and the oil boiler attached to the high temperature regenerator 1a. After stopping the heat source, the valve 17 attached to the refrigerant supply pipe 18 is opened to force the refrigerant 7 into the high temperature regenerator 1a.
Return to. The solution pump 8a and the refrigerant pump 8b are the control device 2
5 continues to operate even after receiving the refrigerator stop signal, and the absorption liquid 6 is diluted.

【0037】稀釈操作の終了の判断は電極部22から電
位差計23、変換装置24を経て温度補正された作用電
極19と参照電極20の電位差により行われる。通常の
運転時の吸収液濃度のときの電位差は図3に示されるE
2の電位差である。稀釈操作により稀釈された吸収液の
電位差は大きくなり、冷凍機の停止後吸収液の温度が室
温になったときにでも結晶化しない55%LiBr濃度
のときの電位差E1に近づく。変換装置から送られる電
位差がE1に達すると制御装置25から電気信号が送ら
れ、溶液ポンプ8a、冷媒ポンプ8bが作動停止し、冷
媒供給配管18に取り付けられたバルブ17が閉めら
れ、稀釈運転が終了する。
The determination of the end of the dilution operation is made by the potential difference between the working electrode 19 and the reference electrode 20 whose temperature is corrected through the potentiometer 23, the converter 24 from the electrode section 22. The potential difference at the concentration of the absorbing solution during normal operation is shown by E in FIG.
The potential difference is 2. The potential difference of the absorption liquid diluted by the dilution operation becomes large, and approaches the potential difference E1 at the 55% LiBr concentration that does not crystallize even when the temperature of the absorption liquid reaches room temperature after the refrigerator is stopped. When the potential difference sent from the converter reaches E1, an electric signal is sent from the controller 25, the solution pump 8a and the refrigerant pump 8b are deactivated, the valve 17 attached to the refrigerant supply pipe 18 is closed, and the dilution operation is performed. finish.

【0038】本実施例によれば、吸収液の稀釈運転を行
う場合に、吸収液の濃度を濃度に応じて酸化還元電位が
決定される電極を用いて測定し、かつ温度補正が伴うの
でより直接的な濃度測定を可能にし、測定精度を高め、
ひいては稀釈運転性の信頼性を高めることができ、その
結果、冷凍機運転停止後の吸収液の結晶化をより正確に
防止することにより、冷凍機の腐食の原因を排除でき
る。
According to the present embodiment, when the absorption liquid is diluted, the concentration of the absorption liquid is measured using an electrode whose redox potential is determined according to the concentration, and the temperature correction is involved. Enables direct concentration measurement, improves measurement accuracy,
As a result, the reliability of the diluting operability can be improved, and as a result, the cause of corrosion of the refrigerator can be eliminated by more accurately preventing the crystallization of the absorbing liquid after the refrigerator is stopped.

【0039】また、濃度モニタ、すなわち、電極部22
を吸収式冷凍機内の循環経路に2箇所以上設置すること
により、1箇所で電位差を測定するよりもさらに確実な
稀釈運転を行い得る。すなわち、電極部を複数配置した
場合、一方で電位差がE1に達しても、もう一方がE1
に達しなければの制御装置は25は稀釈操作が不十分と
判断、運転を継続し、溶液ポンプ8a、冷媒ポンプ8b
の作動停止は両者がE1に達した後となる。
Further, the concentration monitor, that is, the electrode unit 22
By installing two or more in the circulation path in the absorption refrigerator, more reliable dilution operation can be performed than measuring the potential difference at one location. That is, in the case where a plurality of electrode portions are arranged, even if the potential difference reaches E1 on one side, the potential difference on the other side becomes E1.
If it does not reach 25, the control device 25 judges that the dilution operation is insufficient and continues the operation, and the solution pump 8a and the refrigerant pump 8b
The operation will stop after both reach E1.

【0040】なお、上記実施例は濃度モニタ装置を冷凍
機運転停止後の稀釈運転に利用するが、その他、冷凍機
の運転中の吸収液の異常を判別するための監視等種々の
管理に利用することができる。
In the above embodiment, the concentration monitor is used for the dilution operation after the refrigerator is stopped, but in addition, it is used for various management such as monitoring for determining the abnormality of the absorbent during the operation of the refrigerator. can do.

【0041】[0041]

【発明の効果】本発明によれば、吸収液に含まれる成分
と酸化還元反応を生じる作用電極を用いて吸収液の濃度
を測定することで、この種の吸収式冷凍機の吸収液の濃
度を従来以上に直接的に実測することができ、その濃度
モニタの精度ひいては濃度管理の信頼性を高めることが
できる。
According to the present invention, the concentration of the absorption liquid of this type of absorption refrigerator is measured by measuring the concentration of the absorption liquid using a working electrode that causes a redox reaction with the components contained in the absorption liquid. Can be measured more directly than before, and the accuracy of the concentration monitor and thus the reliability of concentration control can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す吸収液の濃度モニタを
備えた吸収式冷凍機の構成図。
FIG. 1 is a configuration diagram of an absorption refrigerating machine having a concentration monitor of an absorbing liquid according to an embodiment of the present invention.

【図2】上記実施例に用いる濃度モニタの構成図。FIG. 2 is a block diagram of a density monitor used in the above embodiment.

【図3】上記実施例に用いる吸収液のモリブデン酸イオ
ンの酸化還元電位の濃度依存性を示したグラフ。
FIG. 3 is a graph showing the concentration dependence of the oxidation-reduction potential of molybdate ions of the absorbent used in the above examples.

【符号の説明】[Explanation of symbols]

1a…高温再生器、1b…低温再生器、2…凝縮器、3
…蒸発器、4…吸収器、5…熱交換器、6a…濃厚吸収
液、6b…稀薄吸収液、8a…溶液ポンプ、8b…冷媒
ポンプ、17…バルブ、18…冷媒供給配管、19…作
用電極、20…参照電極、21…熱電対、23…電位差
計、24…変換装置(酸化還元電位−濃度変換手段)、
25…制御装置(稀釈運転制御手段)、イ〜二…吸収液
配管。
1a ... high temperature regenerator, 1b ... low temperature regenerator, 2 ... condenser, 3
... Evaporator, 4 ... Absorber, 5 ... Heat exchanger, 6a ... Concentrated absorption liquid, 6b ... Dilute absorption liquid, 8a ... Solution pump, 8b ... Refrigerant pump, 17 ... Valve, 18 ... Refrigerant supply pipe, 19 ... Action Electrode, 20 ... Reference electrode, 21 ... Thermocouple, 23 ... Potentiometer, 24 ... Conversion device (oxidation / reduction potential-concentration conversion means),
25 ... Control device (dilution operation control means), a-2 ... Absorption liquid piping.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、吸収器、凝縮器、再生器、溶液
熱交換器、冷媒ポンプ、溶液ポンプ、およびこれらを作
動的に接続する配管系と吸収液を有する吸収式冷凍機に
おいて、前記吸収液の循環経路の一部に吸収液に含まれ
る成分と酸化還元反応を生じる部材を作用電極として参
照電極と共に配置し、該作用電極と参照電極との電位差
から前記吸収液の酸化還元電位を測定する手段と、前記
吸収液の温度を測定する手段と、前記酸化還元電位の測
定値を温度補正して吸収液濃度に変換する手段とを備え
て成ることを特徴とする吸収式冷凍機。
1. An evaporator, an absorber, a condenser, a regenerator, a solution heat exchanger, a refrigerant pump, a solution pump, and an absorption refrigerating machine having a piping system operatively connecting these and an absorbing liquid, wherein: A member that causes a redox reaction with a component contained in the absorbing liquid is disposed in a part of the circulation path of the absorbing liquid together with a reference electrode as a working electrode, and the redox potential of the absorbing liquid is determined from the potential difference between the working electrode and the reference electrode. An absorption refrigerating machine comprising: a means for measuring, a means for measuring the temperature of the absorbing solution, and a means for correcting the measured value of the oxidation-reduction potential to convert it into the concentration of the absorbing solution.
【請求項2】 請求項1において、前記酸化還元電位よ
り求めた吸収液濃度が設定濃度になるように冷凍機運転
停止時における冷凍機内の吸収液の稀釈運転を制御する
手段を備えて成ることを特徴とする吸収式冷凍機。
2. The means according to claim 1, further comprising means for controlling a dilution operation of the absorption liquid in the refrigerator when the operation of the refrigerator is stopped so that the concentration of the absorption liquid obtained from the redox potential becomes a set concentration. Absorption refrigerator.
【請求項3】 請求項2において、前記吸収液の稀釈運
転制御手段は、前記酸化還元電位より求めた吸収液濃度
に対応して冷媒ポンプと溶液ポンプを運転し、且つ吸収
液を稀釈するために設けた冷媒供給配管のバルブを開閉
制御して、吸収液が所定の濃度に達した時点で前記各ポ
ンプを停止させる制御系により構成したことを特徴とす
る吸収式冷凍機。
3. The absorption liquid dilution operation control means according to claim 2, for operating the refrigerant pump and the solution pump in accordance with the absorption liquid concentration obtained from the redox potential and for diluting the absorption liquid. An absorption chiller comprising a control system for controlling the opening and closing of a valve of a refrigerant supply pipe provided in the above, and stopping each of the pumps when the absorption liquid reaches a predetermined concentration.
【請求項4】 請求項1ないし請求項3のいずれか1項
において、前記吸収液の温度を測定する手段は熱電対に
より構成したことを特徴とする吸収式冷凍機。
4. The absorption refrigerator according to claim 1, wherein the means for measuring the temperature of the absorbing liquid is a thermocouple.
【請求項5】 請求項1ないし請求項4のいずれか1項
において、前記作用電極は、前記吸収液の吸収媒体或い
は腐食抑制剤と酸化還元反応を起こすように設定してあ
ることを特徴とする吸収式冷凍機。
5. The working electrode according to any one of claims 1 to 4, wherein the working electrode is set to cause an oxidation-reduction reaction with an absorption medium of the absorbing liquid or a corrosion inhibitor. Absorption refrigerator.
【請求項6】 請求項1ないし請求項5のいずれか1項
において、前記作用電極及び参照電極を前記吸収液のう
ち濃厚吸収液が循環する経路の複数箇所に配置して、こ
れらの複数箇所の吸収液濃度を測定するように設定した
ことを特徴とする吸収式冷凍機。
6. The working electrode and the reference electrode according to any one of claims 1 to 5, wherein the working electrode and the reference electrode are arranged at a plurality of positions in a path in which a concentrated absorbing liquid of the absorbing liquid circulates. An absorption refrigerator, which is set so as to measure the concentration of the absorption liquid of.
JP5179111A 1993-07-20 1993-07-20 Absorption type freezer Pending JPH0735434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5179111A JPH0735434A (en) 1993-07-20 1993-07-20 Absorption type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5179111A JPH0735434A (en) 1993-07-20 1993-07-20 Absorption type freezer

Publications (1)

Publication Number Publication Date
JPH0735434A true JPH0735434A (en) 1995-02-07

Family

ID=16060211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5179111A Pending JPH0735434A (en) 1993-07-20 1993-07-20 Absorption type freezer

Country Status (1)

Country Link
JP (1) JPH0735434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183229A (en) * 1997-09-09 1999-03-26 Mitsubishi Heavy Ind Ltd Device for stopping operation of absorption refrigerating machine
JP2011006720A (en) * 2009-06-23 2011-01-13 Sharp Corp Treatment apparatus and treating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183229A (en) * 1997-09-09 1999-03-26 Mitsubishi Heavy Ind Ltd Device for stopping operation of absorption refrigerating machine
JP2011006720A (en) * 2009-06-23 2011-01-13 Sharp Corp Treatment apparatus and treating method

Similar Documents

Publication Publication Date Title
JPH0735434A (en) Absorption type freezer
JPS602858A (en) Absorption refrigerator
JPH07270371A (en) Internal reference electrode and absorption type refrigerator
JP3186392B2 (en) Absorption refrigerator
US11879670B2 (en) Absorption refrigerator
JPH0968362A (en) Absorption type refrigerating machine
JP2002181418A (en) Replenishment equipment for corrosion inhibitor
JPH0827095B2 (en) Absorption refrigerator dilution operation device
JPH09303907A (en) Absorption freezer
JP4192126B2 (en) Absorption refrigerator
CN212457500U (en) Absorption type refrigerating unit
JPH11248301A (en) Method and apparatus for managing concentration of inhibitor for absorption refrigerator
JPH06347126A (en) Absorption freezer
JPH0612205B2 (en) Absorption refrigerator dilution operation device
JP3203552B2 (en) Absorption chiller controller
JP5525499B2 (en) Method and apparatus for grasping inhibitor concentration in absorbent, and absorption chiller / heater equipped with the apparatus
JP3195085B2 (en) Absorption refrigerator
JP2645869B2 (en) Composition for absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
JPH0311274A (en) Absorption refrigerator
JP3331678B2 (en) Absorption refrigerator
JP2001263852A (en) Absorption refrigerating machine
JPS6170350A (en) Diluting operating device for absorption refrigerator
JPH046856B2 (en)
JPS6050358A (en) Absorption type cold and hot fluid obtainer