JPH073475B2 - Method for solidifying radioactive waste - Google Patents

Method for solidifying radioactive waste

Info

Publication number
JPH073475B2
JPH073475B2 JP61080260A JP8026086A JPH073475B2 JP H073475 B2 JPH073475 B2 JP H073475B2 JP 61080260 A JP61080260 A JP 61080260A JP 8026086 A JP8026086 A JP 8026086A JP H073475 B2 JPH073475 B2 JP H073475B2
Authority
JP
Japan
Prior art keywords
radioactive waste
waste
weight
alkali
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61080260A
Other languages
Japanese (ja)
Other versions
JPS62238499A (en
Inventor
健吉 平野
晃次 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP61080260A priority Critical patent/JPH073475B2/en
Publication of JPS62238499A publication Critical patent/JPS62238499A/en
Publication of JPH073475B2 publication Critical patent/JPH073475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射性廃棄物の固化方法に関する。The present invention relates to a method for solidifying radioactive waste.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

原子力発電所、核燃料再処理工場等の原子力施設から発
生する放射性廃棄物としては、濃縮廃液、使用済みイオ
ン交換樹脂、フイルタースラツジ、焼却灰、雑固体、各
種スラツジ及び原子力発電所の解体に伴い廃出されるコ
ンクリート廃材などの、いわゆる低、中レベル放射性廃
棄物をはじめ高レベル放射性廃棄物があげられる。
As radioactive waste generated from nuclear facilities such as nuclear power plants and nuclear fuel reprocessing plants, concentrated waste liquid, used ion exchange resin, filter sludge, incinerated ash, miscellaneous solids, various sludges, and the dismantling of nuclear power plants Examples include so-called low- and medium-level radioactive waste, such as concrete waste that is discharged, and high-level radioactive waste.

これら放射性廃棄物、特に低、中レベル放射性廃棄物の
固化処理法としては、多く提案されているが経済的で確
実な方法はみあたらない。例えばアスフアルトやプラス
チツク等を用いる方法、セメントで硬化する方法、水ガ
ラス‐セメント系で硬化する方法などが知られている。
Although many methods have been proposed for solidifying these radioactive wastes, especially low- and medium-level radioactive wastes, no economical and reliable method has been found. For example, a method of using asphalt or plastic, a method of hardening with cement, a method of hardening with a water glass-cement system, etc. are known.

しかしながら、アスフアルトやプラスチツク等を用いる
方法は、処理能力は大きいが、硬化剤が高価であり、処
理方法が複雑であることや耐候性等の面からの安全性に
問題があることなどの欠点があつた。
However, the method using asphalt or plastic has a large processing capacity, but the curing agent is expensive, and there are drawbacks such as a complicated processing method and safety problems in terms of weather resistance. Atsuta

また、セメントで硬化する方法や水ガラス‐セメント系
での硬化法は、耐久性にはすぐれているものの、処理能
力が小さいことや、浸出性が比較的大きく、長期の安定
性を欠く等の欠点があつた。
In addition, although the method of hardening with cement and the method of hardening with water glass-cement system have excellent durability, they have a low processing capacity and relatively high leachability, and thus lack long-term stability. There was a flaw.

以上のことから、処理能力が大きく、耐久性、耐候性の
優れた放射性廃棄物の処理方法が切望されている。
From the above, there is a strong demand for a method of treating radioactive waste that has a large treatment capacity and is excellent in durability and weather resistance.

本発明者らは、上記欠点を解消すべく、種々検討を行つ
た結果、放射性廃棄物をアルカリで処理した後高炉スラ
グを混合することにより上記欠点を改良し、固化した放
射性廃棄物が粉化しないことを見い出し、本発明を完成
するに到つた。
The present inventors have conducted various studies in order to eliminate the above-mentioned drawbacks.As a result, the above-mentioned drawbacks are improved by mixing the blast furnace slag after treating the radioactive waste with alkali, and the solidified radioactive waste is pulverized. He found that he did not, and completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、放射性廃棄物を40分以上アルカリで処
理した後、この廃棄物と、粉末度2,000cm2/g以上の高炉
スラグとカルシウムアルミネートとを混合し、固化する
ことを特徴とする放射性廃棄物の固化方法である。
That is, the present invention is characterized in that after treating the radioactive waste with an alkali for 40 minutes or more, the waste is mixed with blast furnace slag having a fineness of 2,000 cm 2 / g or more and calcium aluminate and solidified. This is a method of solidifying radioactive waste.

以下本発明を詳細に説明する。The present invention will be described in detail below.

高炉スラグ(以下スラグという)は少なくとも粉末度が
ブレーン値で2,000cm2/g以上のものであればよく、急硬
性の面から粉末度が高ければ高いほど好ましい。
Blast furnace slag (hereinafter referred to as slag) may have at least a fineness of 2,000 cm 2 / g or more in terms of Blaine value, and the higher the fineness, the more preferable in terms of rapid hardening.

スラグの添加量は放射性廃棄物の種類、量によつて適宜
変えることができるが、固形分換算した放射性廃棄物10
0重量部に対し1〜400重量部が好ましく、10〜200重量
部が更に好ましい。
The amount of slag added can be changed as appropriate depending on the type and amount of radioactive waste.
The amount is preferably 1 to 400 parts by weight, more preferably 10 to 200 parts by weight, based on 0 parts by weight.

本発明に係るアルカリとしては、アルカリ金属又はアル
カリ土類金属の水酸化物、炭酸塩、重炭酸塩でNa,Li,K
塩などが挙げられるが、経済性等の面から、NaOH,CaCO3
などが好ましい。
As the alkali according to the present invention, alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates Na, Li, K
Salt, etc. can be mentioned, but from the viewpoint of economic efficiency, NaOH, CaCO 3
Are preferred.

アルカリの添加量は、スラグ100重量部に対して0.1〜50
重量部が好ましく1〜10重量部が更に好ましい。
The amount of alkali added is 0.1 to 50 per 100 parts by weight of slag.
Part by weight is preferable, and 1 to 10 parts by weight is more preferable.

又、これらに凝結遅延剤としてグルコン酸、クエン酸等
の有機酸及びその塩を添加することも可能である。
It is also possible to add an organic acid such as gluconic acid or citric acid and a salt thereof as a setting retarder.

また従来よりセメント業界で使用されている、ナフタリ
ンスルホン酸ホルムアルデヒド縮合物の塩、メラミンス
ルホン酸ホルムアルデヒド縮合物の塩、高分子量リグニ
ンスルホン酸塩、ポリカルボン酸塩などを主成分とする
減水剤を併用することは好ましい結果を得る。
Also used in combination with a water reducing agent whose main component is a salt of naphthalene sulfonic acid formaldehyde condensate, a salt of melamine sulfonic acid formaldehyde condensate, a high molecular weight lignin sulfonate, a polycarboxylate, etc. Doing with favorable results.

特にリグニン系は経済的に有利で好ましい。Particularly, the lignin system is economically advantageous and preferable.

減水剤の添加量は通常コンクリート等に使用される程度
でよく、例えばスラグ100重量部に対して0.1〜3重量部
が好ましい。
The water reducing agent may be added in an amount generally used for concrete and the like, and is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of slag.

又必要に応じて、硬化速度を速くするために、12CaO・7
Al2O3,11CaO,7Al2O3・CaX2(但しXはハロゲン)等のカ
ルシウムアルミネートの結晶質又は非晶質の粉末を添加
することは、硬化促進効果のみならず、硬化体のクラツ
ク防止にも有効な手段である。また、カルシウムアルミ
ネートとして石膏類を含有するカルシウムアルミネート
系の急結材を用いると同様の効果が得られるので有効で
ある。
If necessary, in order to increase the curing speed, 12CaO ・ 7
The addition of a crystalline or amorphous powder of calcium aluminate such as Al 2 O 3 , 11CaO, 7Al 2 O 3 · CaX 2 (where X is a halogen) not only has a curing-accelerating effect, It is also an effective means to prevent cracking. Further, it is effective to use a calcium aluminate-based quick-setting material containing gypsum as the calcium aluminate because the same effect can be obtained.

カルシウムアルミネートの添加量は、スラグ量(固形分
換算)100重量部に対して5〜60重量部が好ましい。
The amount of calcium aluminate added is preferably 5 to 60 parts by weight based on 100 parts by weight of the slag (as solid content).

以上の材料と放射性廃棄物を混合する。混合方法は原子
力発電所等の原子力施設から発生する使用済みイオン交
換樹脂(以下廃樹脂という)などを混合処理する場合
は、廃樹脂などが酸性の場合もあるのでそのpHをアルカ
リ側にする必要がある。
Mix the above materials with radioactive waste. When mixing used ion-exchange resins (hereinafter referred to as waste resins) generated from nuclear facilities such as nuclear power plants, the mixing method may be acidic, so the pH must be on the alkaline side. There is.

普通の廃樹脂は、硫酸ナトリウムを含み、ポルトランド
セメントを用いて酸化させると、数日以降、ひどい時に
は24時間経過後において、膨潤し、かつ、硫酸塩反応に
より、クラツクが発生し、ついには粉化してしまい目的
は達成しにくくなる。本法は、反応性の強いポルトラン
ドセメントを用いずに高炉スラグ粉末のみを用いること
が大きな特徴であり、その刺激剤として、荷性アルカリ
等のアルカリが作用する反応が応用されている。一般に
上述のアルカリ‐スラグ反応はよく知られている水硬性
材料のひとつであるが、廃樹脂をこの中に配合したので
は、硬化後にクラツクが発生する現象が見られる。その
ため、本発明では、まず、廃樹脂を苛性アルカリ等のア
ルカリ溶液に浸せきし、充分撹拌して、廃樹脂とアルカ
リとを接触させ、膨潤などの起こり得る状態変化をあら
かじめ生じさせ、適切な時間をおいて、その後にスラグ
を混合して硬化処理をする。
Ordinary waste resin contains sodium sulphate, and when it is oxidized with Portland cement, it swells after a few days, and in severe cases after 24 hours, and a sulfate reaction causes cracking, which eventually leads to powder. It becomes difficult to achieve the purpose. The main feature of this method is to use only blast furnace slag powder without using highly reactive Portland cement, and a reaction in which an alkali such as a loading alkali acts as the stimulant is applied. Generally, the above-mentioned alkali-slag reaction is one of the well-known hydraulic materials, but when waste resin is mixed therein, a phenomenon that cracks occur after curing is observed. Therefore, in the present invention, first, the waste resin is soaked in an alkaline solution such as caustic alkali, and sufficiently stirred to bring the waste resin and the alkali into contact with each other to cause a possible state change such as swelling in advance, and the appropriate time After that, the slag is mixed and a hardening process is performed.

廃樹脂とアルカリの混合方法は、均一に混合し、廃樹脂
とアルカリが充分に接触すれば、特に、制限されるもの
ではないが、廃樹脂とアルカリの処理時間は40分以上が
必要である。
The method of mixing the waste resin and the alkali is not particularly limited as long as the waste resin and the alkali are sufficiently contacted with each other, but the treatment time of the waste resin and the alkali is 40 minutes or more. .

又、混合撹拌後、スラグを混合する時間は特に制限はな
いが例えば40分以上とることが好ましい。
The time for mixing the slag after mixing and stirring is not particularly limited, but is preferably 40 minutes or more.

硬化処理における養生等は特に制限されるものではな
く、通常の方法で充分である。
The curing or the like in the curing treatment is not particularly limited, and a usual method is sufficient.

本発明方法は、目的とする廃樹脂の硬化のみならず、そ
の他これに類する産業廃棄物の硬化処理にも応用し得る
ものであり、最も経済性にすぐれた配合は、その硬化物
の物性条件と見合つたものに設定することが出来、必要
に応じて、蒸気養生することも好ましい。
INDUSTRIAL APPLICABILITY The method of the present invention can be applied not only to the curing of the target waste resin but also to the curing treatment of other industrial wastes similar to this, and the most economical formulation is the physical condition of the cured product. It is possible to set the one that meets the requirement, and it is also preferable to perform steam curing if necessary.

〔実施例〕〔Example〕

以下実施例に基づいて本発明を更に説明する。 The present invention will be further described based on examples below.

実施例1. 原子力発電所で発生した廃樹脂30重量部に対し、NaOH
(50%)溶液15重量部を加え、浸せきが可能な状態まで
水を加え撹拌し、処理時間を20,30,40,60分、1日,3日,
7日に変化させ、時間ごとに、ブレーン値6,000cm2/gの
スラグを廃樹脂とNaOH溶液の混合物100重量部に対し55
重量部加え、混合後20cmφの円柱供試体を作成して、JI
SR5201に準じて圧縮強度、クラツク、膨張率を測定し
た。いずれの供試体も、スラグとの混練り後、1時間程
度で凝結をはじめ、3時間で150kg/cm2以上7日で500kg
/cm2以上の圧縮強度を示した。しかし、アルカリ処理時
間40分未満のものでは、3日ごろからクラツクが発生し
て来た。それ以上の処理時間のものはいずれも良好な強
度と形状を保ち1ケ月後には600kg/cm2以上の強度を示
し、1年後でも安定な状態を示した。
Example 1. To 30 parts by weight of waste resin generated at a nuclear power plant, NaOH was added.
(50%) Add 15 parts by weight of water, add water to a state where dipping is possible, and stir. Treatment time is 20,30,40,60 minutes, 1 day, 3 days,
The slag having a Blaine value of 6,000 cm 2 / g was changed to 7 days, and the slag having a Blaine value of 6,000 cm 2 / g was added to 55 parts by weight per 100 parts by weight of the mixture of the waste resin and the NaOH solution.
Add 20 parts by weight and make a cylindrical specimen of 20 cmφ after mixing.
The compressive strength, crack and expansion rate were measured according to SR5201. All of the specimens start to set in about 1 hour after kneading with slag, 150kg / cm 2 in 3 hours and 500kg in 7 days.
It exhibited a compressive strength of not less than / cm 2 . However, if the alkaline treatment time was less than 40 minutes, cracking began to occur from about 3 days. All of the treatments with a treatment time longer than that maintained good strength and shape, and showed a strength of 600 kg / cm 2 or more after 1 month, and showed a stable state even after 1 year.

実施例2. スラグのブレーン値を変化させたこと以外は実施例1と
同様に行つた。その結果、ブレーン値2,000,4,000,6,00
0cm2/gの圧縮強度(3時間)は各々100,140,180kg/cm2
であつた。
Example 2 Example 1 was repeated except that the Blaine value of the slag was changed. As a result, the Blaine value of 2,000,4,000,6,00
0cm 2 / g compressive strength (3 hours) is 100,140,180kg / cm 2 respectively
It was.

実施例3. 実施例1における実験において、1時間アルカリと接触
させた廃樹脂‐アルカリ混合物100重量部に対して、ス
ラグ55重量部、さらに非晶質12CaO・7Al2O315重量部を
添加し混合し、同様に供試体を作成した。凝結時間は10
分であり、3時間で250kg/cm2の圧縮強度を得た。クラ
ツクの発生はなく、膨張率も1/2程度、無添加のものに
くらべて小さくなる効果が見られ、より強い硬化体が得
られた。他のカルシウムアルミネート系結晶質も同様に
試験したがほぼ同様の結果が得られた。
Example 3. In the experiment of Example 1, 55 parts by weight of slag and 15 parts by weight of amorphous 12CaO · 7Al 2 O 3 were added to 100 parts by weight of the waste resin-alkali mixture that had been contacted with alkali for 1 hour. Then, they were mixed to prepare a test piece in the same manner. Setting time is 10
Minutes, and a compressive strength of 250 kg / cm 2 was obtained in 3 hours. There was no cracking, the expansion coefficient was about 1/2, and the effect was smaller than that of no addition, and a stronger cured product was obtained. Other calcium aluminate-based crystals were tested in the same manner, but almost the same results were obtained.

〔発明の効果〕〔The invention's effect〕

本発明によれば次の効果が得られる。 According to the present invention, the following effects can be obtained.

1. 固化した放射性廃棄物クラツクが生じない。1. There is no solid radioactive waste crack.

2. 固化した放射性廃棄物の強度が大きい。2. The strength of the solidified radioactive waste is high.

3. 放射性廃棄物がどのようなpHでも、例えば酸処理後
の放射性廃棄物の固化処理も可能である。
3. It is possible to treat radioactive waste at any pH, for example, to solidify radioactive waste after acid treatment.

4. 固化した放射性廃棄物の長期安定性がよい。4. Good long-term stability of solidified radioactive waste.

5. 耐久性、耐候性が優れている。5. Excellent in durability and weather resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】放射性廃棄物を40分以上アルカリで処理し
た後、この廃棄物と、粉末度2,000cm2/g以上の高炉スラ
グとカルシウムアルミネートとを混合し、固化すること
を特徴とする放射性廃棄物の固化方法。
1. A method of treating radioactive waste with alkali for 40 minutes or more, mixing the waste with blast furnace slag having a fineness of 2,000 cm 2 / g or more and calcium aluminate and solidifying the mixture. Method for solidifying radioactive waste.
JP61080260A 1986-04-09 1986-04-09 Method for solidifying radioactive waste Expired - Fee Related JPH073475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080260A JPH073475B2 (en) 1986-04-09 1986-04-09 Method for solidifying radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080260A JPH073475B2 (en) 1986-04-09 1986-04-09 Method for solidifying radioactive waste

Publications (2)

Publication Number Publication Date
JPS62238499A JPS62238499A (en) 1987-10-19
JPH073475B2 true JPH073475B2 (en) 1995-01-18

Family

ID=13713342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080260A Expired - Fee Related JPH073475B2 (en) 1986-04-09 1986-04-09 Method for solidifying radioactive waste

Country Status (1)

Country Link
JP (1) JPH073475B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW365009B (en) * 1996-09-24 1999-07-21 Jgc Corp Method of disposal of metallic aluminum-containing radioactive solid waste
EP1137014B1 (en) 2000-03-20 2003-09-17 Institute Of Nuclear Energy Research, Taiwan, R.O.C. Co-solidification of low-level radioactive wet wastes produced from BWR nuclear power plants
JP4110749B2 (en) * 2001-05-29 2008-07-02 三菱マテリアル株式会社 Treatment method of sludge and combustible waste
FR2881740B1 (en) * 2005-02-04 2007-12-07 Inertec Snc PROCESS FOR SOLIDIFYING AND STABILIZING AQUEOUS SOLUTION OF CONCENTRATED SODIUM HYDROXIDE
JP5923362B2 (en) * 2012-03-29 2016-05-24 太平洋マテリアル株式会社 Treatment method for radioactive contaminants
JP5930797B2 (en) * 2012-03-29 2016-06-08 太平洋マテリアル株式会社 Radioactive contaminant treatment agent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523406A (en) * 1978-06-23 1980-02-19 Hitachi Ltd Radioactive waste processing method
JPS58132698A (en) * 1982-02-02 1983-08-08 電気化学工業株式会社 Method of processing radioactive waste

Also Published As

Publication number Publication date
JPS62238499A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
US4375986A (en) Process for treating liquids wastes possessing a strong acidity
US4547290A (en) Process for solidification of strongly acidic or akaline liquid wastes
KR820000152B1 (en) Process for manufacturing concrete of nigh corrosion resistance
RU2376252C2 (en) Hydraulic binder
US4132558A (en) Process for treating a sludge or drainage containing chromium (VI) compounds with a solidifying agent
JPH01127091A (en) Method for solidifying waste liquid to chemically fixing the same
Ooi et al. Treated effluent in concrete technology
EP0644555B1 (en) Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
JPH0634097B2 (en) Solidifying agent for radioactive waste
JPH073475B2 (en) Method for solidifying radioactive waste
US4839102A (en) Block for containing and storing radioactive waste and process for producing such a block
Ahmed et al. Effect of Alkali Concentration on Physico-Chemical and Mechanical Properties of Slag Based Geopolymer Cement.
KR100375407B1 (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same
JP2001208896A (en) Method of cosolidifying low-level radioactive wetting waste generated from boiling water nuclear power plant
KR100375408B1 (en) Solidity material for reapplication of waste
JP3164131B2 (en) Aggregate used in radioactive waste treatment structures
JPS60171498A (en) Method of solidifying radioactive waste
RU2206933C2 (en) Method for introducing radioactive ion-exchange resins into fast-hardening cement
AT391639B (en) Method for the treatment of waste material
JPS6112864B2 (en)
SU1604775A1 (en) Method of fine filling of granulated slag
KR0130743B1 (en) Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
JPH0352421B2 (en)
SU1698215A1 (en) Concrete mix
CN114890752A (en) Radioactive incineration ash cement solidified body and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees