JPH073461A - Chemical vapor deposition method - Google Patents

Chemical vapor deposition method

Info

Publication number
JPH073461A
JPH073461A JP14740693A JP14740693A JPH073461A JP H073461 A JPH073461 A JP H073461A JP 14740693 A JP14740693 A JP 14740693A JP 14740693 A JP14740693 A JP 14740693A JP H073461 A JPH073461 A JP H073461A
Authority
JP
Japan
Prior art keywords
vapor deposition
reaction
raw material
temp
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14740693A
Other languages
Japanese (ja)
Inventor
Kazuyuki Oguri
和幸 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14740693A priority Critical patent/JPH073461A/en
Publication of JPH073461A publication Critical patent/JPH073461A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily form a thin film having a film thickness uniform in a flow direction of gas by vapor deposition by heating the inner wall of a reaction chamber and subliming or decomposing a lower compound decomposing and forming from a gaseous raw material and adhering. CONSTITUTION:A gaseous raw material is introduced into a reaction chamber and chemical vapor phase reaction is allowed to occur by using plasma or laser to vapor-deposit a vapor deposition material onto a base material, by which a thin film is formed. In the above chemical vapor deposition, vapor deposition is done by heating the inner wall of the reaction chamber up to a temp. equal to or higher than the sublimation temp. or decomposition temp. of a lower compound decomposing from the gaseous raw material. At that time, it is preferable to maintain the temp. of the inner wall at a temp. lower than the film forming reaction temp. and to prevent the occurrence of a film forming reaction similar to that at the surface of the base material. By this method, the consumption of the gaseous raw material can be avoided and gas concentration distribution in a reaction space can be unified, and a uniform thin film can be formed, independently of the position of the base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性材料や半導体
材料などの各種薄膜を均一に成長する化学気相蒸着方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition method for uniformly growing various thin films such as wear resistant materials and semiconductor materials.

【0002】[0002]

【従来の技術】基材に均一に薄膜を形成することは、薄
膜の機能を十分に発揮させる上で極めて重要な意味を持
つ。従来、薄膜を均一に形成するために、原料ガスの
導入を均一にしたり、基材を回転して原料ガスとの接
触を均一にする方法が提案され、一定の効果を上げてい
る。化学気相蒸着方法では、特に原料ガスの均一な導入
が極めて重要であり、ガス導入部分をシャワー状にした
り、ガス導入と排気の位置関係を工夫することが提案さ
れている。
2. Description of the Related Art The uniform formation of a thin film on a substrate has a very important meaning in order to fully exhibit the function of the thin film. Conventionally, in order to uniformly form a thin film, a method has been proposed in which the introduction of the raw material gas is made uniform or the base material is rotated to make the contact with the raw material gas uniform, and a certain effect has been achieved. In the chemical vapor deposition method, in particular, it is extremely important to uniformly introduce the raw material gas, and it has been proposed to make the gas introduction portion into a shower shape or devise the positional relationship between the gas introduction and the exhaust.

【0003】しかし、導入する原料ガス若しくは原料ガ
スから分解生成する低次化合物の生成若しくは分解の性
質に着目して、目的の蒸着物質からなる均一な薄膜を形
成しようとした例はほとんどない。わずかに、導入する
原料ガス自体の昇華圧を考慮して、原料ガスがガス導入
経路や反応室内壁に析出しないように、加熱することが
行われていたにすぎない。
However, there are few examples in which a uniform thin film made of a target vapor deposition substance is formed by paying attention to the property of the raw material gas to be introduced or the lower-order compound which is decomposed and produced from the raw material gas, or the decomposition property. In consideration of the sublimation pressure of the raw material gas itself to be introduced, the heating is merely performed so that the raw material gas is not deposited on the gas introduction path or the inner wall of the reaction chamber.

【0004】[0004]

【発明が解決しようとする課題】しかし、壁面を原料ガ
スの昇華温度以上に加熱して原料ガスの析出を防止する
方法は、原料ガスそのものの析出による消耗を防ぐ点で
効果があるが、反応室内で原料ガスが分解、反応して生
成する新たな化合物については全く考慮されていない。
しかし、原料ガスとその反応系の種類によっては、蒸着
物質よりさらに高い昇華温度を示す物質が反応室内で生
成される場合があり、そのような物質が壁面に析出する
と、反応室内の原料ガス分布が変化して基板上に均一な
薄膜の形成を妨げられる場合がある。
However, the method of preventing the deposition of the raw material gas by heating the wall surface to a temperature not lower than the sublimation temperature of the raw material gas is effective in preventing the consumption of the raw material gas itself due to the deposition. No consideration is given to new compounds generated by decomposition and reaction of the raw material gas in the room.
However, depending on the type of source gas and its reaction system, a substance that has a higher sublimation temperature than the vapor deposition substance may be generated in the reaction chamber.If such a substance deposits on the wall surface, the source gas distribution in the reaction chamber May change to prevent formation of a uniform thin film on the substrate.

【0005】そこで、本発明は、蒸着物質よりさらに高
い昇華温度を示す物質が反応室内で生成される化学気相
反応系においても均一な薄膜を形成することのできる化
学気相蒸着方法を提供しようとするものである。
Therefore, the present invention provides a chemical vapor deposition method capable of forming a uniform thin film even in a chemical vapor phase reaction system in which a substance having a sublimation temperature higher than that of a vapor deposition substance is generated in a reaction chamber. It is what

【0006】[0006]

【課題を解決するための手段】本発明は、化学気相反応
により基板上に蒸着物質を蒸着する方法において、原料
ガスから分解した低次化合物の昇華温度若しくは分解温
度以上に反応室の内壁を加熱して気相蒸着することを特
徴とする化学気相蒸着方法である。
The present invention relates to a method for depositing a vapor deposition material on a substrate by a chemical vapor reaction, in which the inner wall of the reaction chamber is heated to a temperature higher than the sublimation temperature or the decomposition temperature of the lower-order compound decomposed from the source gas. It is a chemical vapor deposition method characterized by heating and vapor deposition.

【0007】[0007]

【作用】化学気相蒸着方法は、一般に数種類の原料ガス
の化学気相反応により、基材表面に目的とする固体薄膜
を形成する方法で、ガス状の反応生成物は系外に排気さ
れる。それ故、原料系の出発ガスと反応生成系の最終生
成ガスに着目して、反応可能性を判断するための熱力学
的計算と、ガスの取扱い性を考慮して使用原料ガスを決
定していたが、原料ガスの実際の反応過程についてはあ
まり検討されておらず、特に、プラズマやレーザによる
熱的非平衡な反応を利用する化学気相蒸着方法では、現
象が非常に複雑なため、ほとんど解明されていない。
The chemical vapor deposition method is a method of forming a desired solid thin film on the surface of a substrate by the chemical vapor reaction of several kinds of raw material gases, and the gaseous reaction product is exhausted out of the system. . Therefore, paying attention to the starting gas of the raw material system and the final product gas of the reaction producing system, the thermodynamic calculation for judging the reaction possibility and the raw material gas to be used are determined in consideration of the handling property of the gas. However, the actual reaction process of the raw material gas has not been studied so much, and especially in the chemical vapor deposition method utilizing a thermal non-equilibrium reaction by plasma or laser, since the phenomenon is very complicated, Not understood.

【0008】本発明者は、上記の化学気相蒸着の反応過
程に着目し、原料ガスの反応過程と形成される薄膜の均
一性との関係について鋭意検討を重ねた結果、原料ガス
の分解過程で生成する低次化合物に、昇華温度の高い固
相化合物が存在する場合には、形成される薄膜の均一性
が悪くなり、その際、壁面に上記の低次化合物が析出し
ていることを見出した。
The present inventor has paid attention to the reaction process of the chemical vapor deposition, and as a result of repeated studies on the relationship between the reaction process of the raw material gas and the uniformity of the thin film to be formed, as a result, the decomposition process of the raw material gas. When the solid phase compound having a high sublimation temperature is present in the low-order compound generated in step 1, the uniformity of the formed thin film is deteriorated, and at that time, the low-order compound is precipitated on the wall surface. I found it.

【0009】そこで、本発明では、原料ガスの分解過程
で生成する低次化合物などの固相化合物の昇華温度ある
いは分解温度以上に反応室などの内壁を加熱し、固相化
合物の析出を防止して原料ガスの消耗を回避し、反応空
間のガス濃度分布を均一にすることにより、基材の位置
によらず、均一な薄膜の形成が可能になった。なお、反
応室等のガスが接する部分の加熱温度は、上記固相化合
物の昇華温度又は分解温度を若干越える程度が好まし
い。必要以上に加熱すると、壁面などで基材表面と同様
の成膜反応が起きて原料ガスを消耗するので、薄膜を不
均一にする原因となるので、成膜反応温度より低く保持
する必要がある。
Therefore, in the present invention, the inner wall of the reaction chamber or the like is heated to a temperature higher than the sublimation temperature or the decomposition temperature of the solid phase compound such as a low order compound produced in the decomposition process of the raw material gas to prevent the precipitation of the solid phase compound. By avoiding the consumption of the raw material gas and making the gas concentration distribution in the reaction space uniform, it is possible to form a uniform thin film regardless of the position of the substrate. The heating temperature of the portion in contact with the gas, such as the reaction chamber, is preferably slightly above the sublimation temperature or decomposition temperature of the solid phase compound. If heating is performed more than necessary, the same film formation reaction as the surface of the base material will occur on the wall surface and the raw material gas will be consumed, which will cause non-uniformity of the thin film, so it is necessary to keep it below the film formation reaction temperature. .

【0010】図1は、本発明を実施するためのプラズマ
化学気相蒸着装置の概念図である。プラズマ発生装置を
備えた反応室1内に基材2を配置し、基材2の前後にガ
ス回り込み防止板4を配置し、反応室1の周囲には低次
化合物を昇華若しくは分解するための加熱ヒータ3を設
けた。原料ガスは矢印の方向に流して基材上に薄膜を蒸
着し、残余のガスを矢印のように排気する。
FIG. 1 is a conceptual diagram of a plasma enhanced chemical vapor deposition apparatus for carrying out the present invention. A base material 2 is arranged in a reaction chamber 1 equipped with a plasma generator, a gas sneak prevention plate 4 is arranged in front of and behind the base material 2, and for sublimating or decomposing lower-order compounds around the reaction chamber 1. The heater 3 was provided. The source gas is flowed in the direction of the arrow to deposit a thin film on the substrate, and the remaining gas is exhausted as shown by the arrow.

【0011】[0011]

【実施例】【Example】

(実施例1,比較例1)図1のプラズマ化学気相蒸着装
置を用いて、四塩化チタン(TiCl4 )、メタン(C
4 )、水素(H2 )及びアルゴン(Ar)を原料ガス
として、基材上に窒化チタン(TiN)薄膜を形成し
た。四塩化チタンは常温で液体状であるため、四塩化チ
タンのポットを40℃に加熱し、水素ガスでバブリング
して飽和蒸気圧分だけ反応室に供給した。上記ポットと
反応室を接続する配管をリボンヒータで50℃に加熱し
たが、反応室の周囲は加熱せず、基材をプラズマで加熱
して薄膜を蒸着した。
(Example 1 and Comparative Example 1) Titanium tetrachloride (TiCl 4 ) and methane (C
A titanium nitride (TiN) thin film was formed on the base material using H 4 ), hydrogen (H 2 ) and argon (Ar) as source gases. Since titanium tetrachloride is liquid at room temperature, the titanium tetrachloride pot was heated to 40 ° C., bubbled with hydrogen gas, and the saturated vapor pressure was supplied to the reaction chamber. The pipe connecting the pot to the reaction chamber was heated to 50 ° C. with a ribbon heater, but the periphery of the reaction chamber was not heated and the substrate was heated with plasma to deposit a thin film.

【0012】基材上に形成された窒化チタン薄膜は、反
応ガスの流れ方向に図2のC1のように膜厚が変化し
た。ガス配管には、四塩化チタンなどの付着は認められ
なかったが、反応室の内壁には紫色の粉末が多量に付着
していた。上記の蒸着において、反応室の内壁は基材の
プラズマ加熱により100℃程度まで温度上昇し、四塩
化チタンの蒸発温度より高いにもかかわらず、多量の付
着物が発生していたので、原料ガスの四塩化チタンの分
解過程を調べたところ、固体状、紫色の三塩化チタン
(TiCl3 :分解温度440℃)が付着していたこと
が確認された。
The thickness of the titanium nitride thin film formed on the substrate changed in the direction of the reaction gas flow, as shown by C1 in FIG. No adhesion of titanium tetrachloride or the like was found in the gas pipe, but a large amount of purple powder adhered to the inner wall of the reaction chamber. In the above vapor deposition, the inner wall of the reaction chamber was heated to about 100 ° C. by the plasma heating of the base material, and a large amount of deposit was generated even though it was higher than the evaporation temperature of titanium tetrachloride. When the decomposition process of titanium tetrachloride was examined, it was confirmed that solid, purple titanium trichloride (TiCl 3 : decomposition temperature 440 ° C.) was attached.

【0013】そこで、図1の反応室周囲のヒータで反応
室内壁を450℃に加熱しながら四塩化チタン薄膜を蒸
着したところ、薄膜の膜厚の変化は図2の1に示したよ
うに、反応ガスの流れ方向で極めて均一な薄膜が得られ
たことが分かる。
Then, when a titanium tetrachloride thin film was vapor-deposited while the inner wall of the reaction chamber was heated to 450 ° C. by the heater around the reaction chamber of FIG. 1, the change in the thickness of the thin film was as shown in 1 of FIG. It can be seen that an extremely uniform thin film was obtained in the flow direction of the reaction gas.

【0014】(実施例2)図1のプラズマ化学気相蒸着
装置を用いて、四塩化チタン(TiCl4 )の代わり
に、五塩化タンタル(TaCl5 )を用い、反応室の内
壁を四塩化タンタル(TaCl4 )の昇華温度475℃
以上に加熱し、また、五塩化タングステン(WCl5
を用い、反応室の内壁を四塩化タングステン(WC
4 )の昇華温度320℃以上に加熱し、四塩化ゲルマ
ニウム(GeCl4 )を用い、反応室の内壁を二塩化ゲ
ルマニウム(GeCl2 )の分解温度450℃以上に加
熱して、基材上にそれぞれ薄膜を蒸着したところ、反応
室内壁などに付着物が発生せず、実施例1と同様にいず
れも均一な薄膜を形成することができた。
Example 2 Using the plasma chemical vapor deposition apparatus of FIG. 1, tantalum pentachloride (TaCl 5 ) was used in place of titanium tetrachloride (TiCl 4 ) and the inner wall of the reaction chamber was tantalum tetrachloride. Sublimation temperature of (TaCl 4 ) 475 ° C
Heat to above and also tungsten pentachloride (WCl 5 )
The inner wall of the reaction chamber with tungsten tetrachloride (WC
l 4 ) is heated to a sublimation temperature of 320 ° C. or higher, germanium tetrachloride (GeCl 4 ) is used, and the inner wall of the reaction chamber is heated to a decomposition temperature of germanium dichloride (GeCl 2 ) of 450 ° C. or higher to form a substrate. When thin films were vapor-deposited, deposits did not occur on the inner wall of the reaction chamber, etc., and as in Example 1, it was possible to form uniform thin films.

【0015】なお、上記の蒸着は、ガスの流れが横方向
のプラズマ化学気相蒸着装置を用いて、原料ガスとして
金属の塩化物を用いる場合について説明したが、本発明
はこれらに限定されることなく、反応系に各種の固相化
合物を生成する場合に、ガスの流れ方向や反応活性化方
法によらず、上記の効果を発揮させることができる。
In the above vapor deposition, the case where the metal chloride is used as the raw material gas by using the plasma chemical vapor deposition apparatus in which the gas flow is in the lateral direction has been described, but the present invention is not limited thereto. In the case where various solid phase compounds are produced in the reaction system, the above effect can be exhibited regardless of the gas flow direction and the reaction activation method.

【0016】[0016]

【発明の効果】本発明は、上記の構成を採用することに
より、反応ガスの流れ方向に均一な膜厚の薄膜を容易に
蒸着することができるようになった。特に、プラズマや
レーザを用いた熱的非平衡な状態における反応を利用す
る方法は、基材の他を加熱しない、いわゆるコールドウ
ォール方式を用いることが多いため、本発明の方法が顕
著な効果を発揮する。
According to the present invention, by adopting the above structure, it becomes possible to easily deposit a thin film having a uniform film thickness in the flow direction of the reaction gas. In particular, the method of utilizing the reaction in a thermally non-equilibrium state using plasma or laser often uses a so-called cold wall method in which the other parts of the substrate are not heated, and therefore the method of the present invention has a remarkable effect. Demonstrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化学気相蒸着方法を実施するための装
置の概念図である。
FIG. 1 is a conceptual diagram of an apparatus for carrying out a chemical vapor deposition method of the present invention.

【図2】実施例1及び比較例1で得た薄膜の、ガスの流
れ方向での変化を示したグラフである。
2 is a graph showing changes in the gas flow direction of the thin films obtained in Example 1 and Comparative Example 1. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学気相反応により基材上に蒸着物質を
蒸着する方法において、原料ガスから分解した低次化合
物の昇華温度若しくは分解温度以上に反応室の内壁を加
熱して気相蒸着することを特徴とする化学気相蒸着方
法。
1. A method for depositing a deposition material on a substrate by a chemical vapor reaction, in which vapor deposition is carried out by heating the inner wall of a reaction chamber to a sublimation temperature or a decomposition temperature of a lower-order compound decomposed from a source gas. A chemical vapor deposition method characterized by the above.
【請求項2】 プラズマ又はレーザを用いることを特徴
とする請求項1記載の化学蒸着成長方法。
2. The chemical vapor deposition growth method according to claim 1, wherein plasma or laser is used.
JP14740693A 1993-06-18 1993-06-18 Chemical vapor deposition method Withdrawn JPH073461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14740693A JPH073461A (en) 1993-06-18 1993-06-18 Chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14740693A JPH073461A (en) 1993-06-18 1993-06-18 Chemical vapor deposition method

Publications (1)

Publication Number Publication Date
JPH073461A true JPH073461A (en) 1995-01-06

Family

ID=15429581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14740693A Withdrawn JPH073461A (en) 1993-06-18 1993-06-18 Chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPH073461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072579A (en) * 1998-08-27 2000-06-06 Ricoh Company, Ltd. Optical pickup apparatus having improved holographic optical element and photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072579A (en) * 1998-08-27 2000-06-06 Ricoh Company, Ltd. Optical pickup apparatus having improved holographic optical element and photodetector
US6618344B1 (en) 1998-08-27 2003-09-09 Ricoh Company, Ltd. Optical pickup apparatus having improved holographic optical element and photodetector

Similar Documents

Publication Publication Date Title
US5149596A (en) Vapor deposition of thin films
US5173327A (en) LPCVD process for depositing titanium films for semiconductor devices
US6040012A (en) Process for the preparation by chemical vapor deposition (CVD) of a Ti-A1-N based multilayer coating
US6238739B1 (en) Non-plasma CVD method and apparatus of forming Ti1-xA1xN coatings
JP2009084625A (en) Raw material gas supply system and film deposition apparatus
Pradhan et al. Crystallinity of Al2O3 films deposited by metalorganic chemical vapor deposition
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
US5750195A (en) Deposition of diamond on oxidizable material
JPH04231471A (en) Formation of self-supporting shape of refractory metal
US4980201A (en) Method of forming tungsten carbide by chemical vapor deposition
JPH073461A (en) Chemical vapor deposition method
Stock et al. Plasma-assisted chemical vapour deposition with titanium amides as precursors
KR100719803B1 (en) Method of manufacturing TiAlN thin film using atomic layer deposition
JPH11307520A (en) Organic metal vapor growth method, its equipment, and forming method of semiconductor film of capacitor for dram
EP1133582A1 (en) Method for preparing titanium coatings
JPS61264175A (en) Cvd device
JPH04214867A (en) Method for growing thin film and apparatus therefor
JPS63161156A (en) Thin hard blue film and its production
Komarov et al. Self-limiting diamond growth from alternating CFx and H fluxes
JPS5915983B2 (en) Formation method of boron film
JPH029671B2 (en)
Rozbicki et al. A technique for large area deposition of diamond via combustion flame synthesis
JPS58174568A (en) Formation of film of metal compound
Kostadinov et al. Plasma-assisted chemical vapor deposition of diamond from an ethanol-water-hydrogen gas mixture
JPH04300291A (en) Method for preparing diamond film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905