JPH0733804A - Production of water-absorbing resin - Google Patents

Production of water-absorbing resin

Info

Publication number
JPH0733804A
JPH0733804A JP18284093A JP18284093A JPH0733804A JP H0733804 A JPH0733804 A JP H0733804A JP 18284093 A JP18284093 A JP 18284093A JP 18284093 A JP18284093 A JP 18284093A JP H0733804 A JPH0733804 A JP H0733804A
Authority
JP
Japan
Prior art keywords
blade
water
polymerization
blades
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18284093A
Other languages
Japanese (ja)
Inventor
Hirochika Hosaka
坂 浩 親 保
Shuhei Yada
田 修 平 矢
Tetsuya Yamamoto
本 哲 也 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP18284093A priority Critical patent/JPH0733804A/en
Publication of JPH0733804A publication Critical patent/JPH0733804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain water-absorbing resin particle having extremely reduced resin sticking on equipment during polymerization and large and uniform particle diameters by currying out suspension polymerization of a water-soluble ethylenically monomer unsaturated by the use of specific stirring blades. CONSTITUTION:This water-absorbing resin is obtained by suspension polymerization of a water-soluble ethylenically unsaturated monomer in a vertical-type cylindrical polymerization tank having specific stirring blades shown below. A rotary shaft 5 is vertically placed in the central part of the tank. On the shaft, the lowest radial-flow stirrer blade 7 is placed close to the bottom of the tank and higher blades 6 consisting of one or more radial blades are placed above and close to the lowest blade 7 in such a manner as to be out of phase from it in an amount not larger than 90 degree. Further, the radial-direction ends of the blades, which are vertically close and facing to each other, are mutually overlapping. The upper corners of the highest blade and at least one of the higher blades are curved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸水性樹脂の製造法に
関する。更に詳しくは、本発明は、水溶性エチレン性不
飽和モノマーの懸濁重合を特定の撹拌翼を用いて行うこ
とにより、生成樹脂を大粒径球状粒子として得ることを
可能とする、吸水性樹脂の製造法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a water absorbent resin. More specifically, the present invention makes it possible to obtain a produced resin as large-sized spherical particles by carrying out suspension polymerization of a water-soluble ethylenically unsaturated monomer using a specific stirring blade. Manufacturing method.

【0002】[0002]

【従来の技術】近年、吸水性樹脂は、生理用品、使い捨
て紙オムツ、使い捨て雑巾等の衛生用品、保水剤、土壌
改良剤等の農園芸用品の他、汚泥凝固剤、結露防止剤や
油類の脱水剤等種々の用途に使用されている。特に生理
用品や使い捨て紙オムツなどの衛生用品における需要は
年々増大しており、また、結露防止剤としては、建材、
コンテナー輸送、海上輸送など広範な分野に利用されて
いる。このように、吸水性樹脂は我々の社会生活に大き
く貢献している。
2. Description of the Related Art In recent years, water-absorbent resins are used for sanitary products, disposable paper diapers, sanitary products such as disposable rags, agricultural and horticultural products such as water retention agents, soil conditioners, sludge coagulants, anti-condensation agents and oils. It is used in various applications such as dehydrating agents. In particular, the demand for sanitary products and sanitary products such as disposable diapers is increasing year by year.
It is used in a wide range of fields such as container transportation and sea transportation. As described above, the water absorbent resin has greatly contributed to our social life.

【0003】吸水性樹脂は、一般に水溶性エチレン性不
飽和モノマーを重合することにより得られ、アクリル酸
塩重合体架橋物、アクリル酸エステル‐酢酸ビニル共重
合体架橋物のケン化物、澱ぷん‐アクリル酸塩グラフト
共重合体架橋物、澱ぷん‐アクリロニトリルグラフト共
重合体架橋物のケン化物、無水マレイン酸グラフトポリ
ビニルアルコール重合体架橋物、ポリエチレンオキシド
架橋物など多くの種類の吸水性樹脂が知られている。こ
れらの吸水性樹脂は、例えば、特公昭60−25045
号、特開昭57−158210号、特開昭57−214
05号、特公昭53−46199号、特開昭58−71
907号、特開昭55−84304号などにその詳細が
示されているように、懸濁重合、水溶液重合、有機溶媒
中での重合等により製造されている。
The water-absorbent resin is generally obtained by polymerizing a water-soluble ethylenically unsaturated monomer, and is a crosslinked product of an acrylic acid polymer crosslinked product, a saponified product of a crosslinked acrylic acid ester-vinyl acetate copolymer, or starch- Many types of water-absorbent resins are known, such as acrylic acid graft copolymer crosslinked products, starch-acrylonitrile graft copolymer crosslinked products, maleic anhydride grafted polyvinyl alcohol polymer crosslinked products, and polyethylene oxide crosslinked products. ing. These water absorbent resins are disclosed, for example, in Japanese Examined Patent Publication No. 60-25045.
No. 57-158210, 57-214.
05, JP-B-53-46199, JP-A-58-71.
No. 907, JP-A-55-84304, etc., the details thereof are shown, and it is produced by suspension polymerization, aqueous solution polymerization, polymerization in an organic solvent or the like.

【0004】水溶液重合および有機溶媒中での重合は塊
状状態での重合であるため、重合物が非常に大きな粘性
を示すために特殊な重合反応器を必要としたり、反応機
内部に多量の残留物を残したり、あるいはこの残留物を
抑制するために特殊な界面活性剤を添加したりする必要
がある。また、得られた重合物を粉体状の製品にするた
めに粉砕機が必要となり、粉砕により生じる微粉末等を
造粒し、或は造粒後再粉砕する必要から、この重合法は
必ずしも経済的に優れたものとは言えなかった。
Since aqueous solution polymerization and polymerization in an organic solvent are polymerization in a bulk state, a special polymerization reactor is required because the polymer exhibits a very large viscosity, and a large amount of residue remains inside the reactor. It is necessary to leave a residue or to add a special surfactant to suppress this residue. Further, since a pulverizer is required to make the obtained polymerized product into a powdery product, and it is necessary to granulate the fine powder generated by pulverization or to re-pulverize after granulation, this polymerization method is not always necessary. It wasn't economically superior.

【0005】一方、懸濁重合は、モノマー溶液が液滴状
で溶剤中に分散した状態での重合で、汎用の槽型反応器
を使用することができ、重合物が滴状となっているため
工業プロセスとしては取扱い易く、水溶液重合等と比較
して優位な重合方法ではあるが、重合槽中に付着物が発
生したり、あるいは、重合で生成した1次粒子の大きさ
が若干小さいために用途が限定されたり、製品としての
粒径を大きくするために造粒設備を付加する場合が生
じ、必ずしも全ての点で満足できるものとは言えなかっ
た。しかし、懸濁重合において、これらの問題を解決す
れば工業的に極めて優れたプロセスとなるため、従来か
ら種々の検討が行われてきた。
On the other hand, the suspension polymerization is a polymerization in which a monomer solution is in the form of droplets dispersed in a solvent, and a general-purpose tank reactor can be used, and the polymerized product is in the form of droplets. Therefore, although it is easy to handle as an industrial process and is a superior polymerization method compared to aqueous solution polymerization, etc., because of deposits in the polymerization tank or the size of the primary particles generated by polymerization is slightly smaller. However, there are cases where the application is limited and granulation equipment is added in order to increase the particle size of the product, and it cannot be said that it is always satisfactory in all respects. However, in the suspension polymerization, if these problems are solved, it will be an industrially excellent process, and therefore various studies have been conducted conventionally.

【0006】懸濁重合において、水溶性モノマーをこの
モノマーと実質的に相溶しない有機溶媒連続相中に分散
剤の存在下で分散させる際、その懸濁粒子の粒径は、主
に次の二つの因子に影響されることが知られている。 (1)二相の界面張力 (2)撹拌条件(強さ) このうち、(1)の二相の界面張力の観点からの粒径改
善については、種々の分散剤の使用に関する数多くの報
告がある。例えば、分散剤として、HLB3〜6のソル
ビタン脂肪酸エステル(特開昭53−46389号公
報、特公昭54−30710号公報)、HLB6〜9の
ノニオン系界面活性剤(特開昭57−167302号公
報)、HLB2〜16のポリグリセリン脂肪酸エステル
(特開昭62−172006号公報)、親油性カルボキ
シル基含有重合体(特開昭57−94011号、特開昭
57−98512号、特開昭57−98513号、特公
昭63−36321号、特公昭63−36322号各公
報)、油溶性セルロースエステルまたはセルロースエー
テル(特開昭57−158209号、特開昭57−15
8210号、特公平1−17482号各公報)等を使用
する方法が報告されている。このような種々の界面活性
剤を使用する方法については、生成樹脂粒子の粒径が未
だ不十分であったり、大粒径が得られたとしても、同時
に塊状物の生成や製造機器への樹脂の付着といった問題
が伴い、必ずしも満足できるものではなかった。
In suspension polymerization, when a water-soluble monomer is dispersed in a continuous phase of an organic solvent which is substantially incompatible with the monomer in the presence of a dispersant, the particle size of the suspended particles is mainly It is known to be affected by two factors. (1) Interfacial tension of two phases (2) Stirring conditions (strength) Among these, regarding the particle size improvement from the viewpoint of the interfacial tension of the two phases of (1), there are many reports on the use of various dispersants. is there. For example, as a dispersant, sorbitan fatty acid ester of HLB 3 to 6 (JP-A-53-46389, JP-B-54-30710), nonionic surfactant of HLB 6 to 9 (JP-A-57-167302). ), Polyglycerin fatty acid esters of HLB 2 to 16 (JP-A-62-172006), and polymers containing a lipophilic carboxyl group (JP-A-57-94011, JP-A-57-98512, JP-A-57-9812). 98513, JP-B-63-36321, JP-B-63-36322), oil-soluble cellulose ester or cellulose ether (JP-A-57-158209, JP-A-57-15).
No. 8210, Japanese Patent Publication No. 17482/1990) and the like are reported. Regarding the method of using such various surfactants, even if the particle size of the produced resin particles is still insufficient or a large particle size is obtained, at the same time, the resin for the production of agglomerates and production equipment is However, it was not always satisfactory because of the problems such as the adhesion of.

【0007】次に、懸濁重合による吸水性樹脂製造にお
ける生成樹脂粒径を左右するもう一つの大きな要因であ
る重合時の撹拌条件については、特に撹拌翼の形状と生
成粒子との関係について以下のことがいえる。一般に撹
拌翼は、1)剪断力発生能が比較的高く、循環量が小さ
いものと、2)剪断力発生能が比較的小さく、循環量が
大きいものとの二つのタイプに大別される。そして、大
粒径の吸水性樹脂を製造する目的には、後者のタイプの
撹拌翼が適している。このタイプの撹拌翼としては、プ
ロペラ翼、アンカー翼、リボン翼、パドル翼等が従来よ
り知られているが、懸濁重合による吸水性樹脂の製造に
おけるこれら公知の撹拌翼の使用には種々の問題が伴
う。例えば、プロペラ翼、アンカー翼等は循環量は大き
いものの、軸流よりも水平回転流が支配的であり、この
ため撹拌効率が不十分であり、かつ撹拌軸近傍での生成
樹脂付着が多い。リボン翼は上下流が主体であるが、や
はり生成樹脂付着物の発生量が多く、また構造が複雑で
あるため付着物除去が極めて困難である。
Next, regarding the stirring conditions at the time of polymerization, which is another major factor affecting the particle size of the resin produced in the production of the water-absorbent resin by suspension polymerization, the relationship between the shape of the stirring blade and the produced particles will be described below. Can be said. Generally, the stirring blades are roughly classified into two types: 1) having a relatively high shear force generating ability and a small circulation amount, and 2) having a relatively small shear force generating ability and a large circulation amount. The latter type of stirring blade is suitable for the purpose of producing a water-absorbent resin having a large particle size. Propeller blades, anchor blades, ribbon blades, paddle blades and the like have been conventionally known as this type of stirring blade, but various known stirring blades can be used in the production of a water absorbent resin by suspension polymerization. There are problems. For example, propeller blades, anchor blades, and the like have a large circulation amount, but the horizontal rotating flow is more dominant than the axial flow, so that the stirring efficiency is insufficient and the generated resin adheres in the vicinity of the stirring shaft. Although the ribbon blade is mainly upstream and downstream, the amount of generated resin deposits is large and the structure is complicated, so it is extremely difficult to remove the deposits.

【0008】上記公知の撹拌翼の中で、撹拌条件、樹脂
付着物等の観点から大粒径吸水性樹脂の製造に最も適し
ていると考られるのはパドル翼であり、吸水性樹脂の懸
濁重合による製造における使用が提案されている。然し
ながらこのパドル翼の使用には次のような問題がある。
即ち、パドル翼は吐出量が大きく、大きな翼径で低回転
で用いられるが、工業生産性を上げるため一般に用いら
れるH/D(=液深/槽径)比が1近傍、及びそれ以上
では、低回転で実施することから上下方向の液の入れ替
わりを好くするために多段にすることが必要で、この
時、上下の翼による吐出流同士の干渉による境界面が形
成され、これにより上下の混合が阻害されるので槽全体
の混合が悪くなる。この結果、生成粒子の不均一化や塊
状物の生成が生じ、重合槽壁面や撹拌装置表面への樹脂
付着が避けられない。このように、懸濁重合による吸水
性樹脂の製造において、撹拌条件の観点から大粒径樹脂
の製造に最も適していると考えられる(多段)パドル翼
をもってしても、ある程度の大粒径化が可能となる一方
で、生成粒子の不均一、塊状粒子の発生、重合装置への
樹脂の付着といった諸問題は依然未解決のままであっ
た。
Among the above known stirring blades, the paddle blade is considered to be most suitable for producing a large particle size water absorbent resin from the viewpoints of stirring conditions, resin deposits and the like. It has been proposed for use in production by turbid polymerization. However, there are the following problems in using this paddle wing.
That is, the paddle blade has a large discharge amount and is used at a low rotation with a large blade diameter, but when the H / D (= liquid depth / vessel diameter) ratio that is generally used to increase industrial productivity is close to 1 or more, Since it is performed at low rotation, it is necessary to make multiple stages in order to favor the vertical liquid exchange, and at this time, the boundary surface is formed due to the interference between the discharge flows by the upper and lower blades, which results in the vertical movement. Since the mixing of the above is hindered, the mixing of the whole tank becomes worse. As a result, non-uniformity of generated particles and generation of agglomerates occur, and the resin is inevitably attached to the wall surface of the polymerization tank or the surface of the stirring device. In this way, in the production of water-absorbent resin by suspension polymerization, even with a (multistage) paddle blade, which is considered to be most suitable for the production of large-sized resin from the viewpoint of stirring conditions, it is possible to increase the particle size to some extent. However, various problems such as non-uniformity of generated particles, generation of agglomerated particles, and adhesion of resin to a polymerization apparatus remain unsolved.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術の状況に鑑み、吸水性樹脂を大粒径かつ均一な粒子と
して得ることができ、しかも製造時の重合装置への樹脂
付着が著しく減少した吸水性樹脂の製造法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned state of the art, the present invention makes it possible to obtain a water-absorbent resin in the form of particles having a large particle diameter and uniform particles, and further, the resin is remarkably attached to the polymerization apparatus during production. An object of the present invention is to provide a method for producing a reduced water absorbent resin.

【0010】[0010]

【課題を解決するための手段】本発明者らは、懸濁重合
による吸水性樹脂の製造を下記の特定形状の撹拌翼を用
いて行うことにより、大粒径粒子の生成に適した低剪断
力/高循環量の最適の撹拌条件が得られ、上記目的が達
成されることを見出した。即ち、本発明による吸水性樹
脂の製造法は、縦型円筒状重合槽の中心部に垂直に設置
された回転軸に取り付けられ、重合槽底面に近接して設
置された放射流型の最下翼と、前記回転軸に取り付けら
れ、上下に隣接した下の翼に対して回転方向に90度以
下位相をずらした1段以上の放射流型の上段翼とからな
り、かつ上下に隣接した翼の相対向する翼端部の半径方
向の端部分が上下方向に互いにオーバーラップするよう
に配置されてなる撹拌翼を用いて水溶性エチレン性不飽
和モノマーの懸濁重合を行うことを特徴とするものであ
る。
[Means for Solving the Problems] The inventors of the present invention produced a water-absorbent resin by suspension polymerization by using a stirring blade having a specific shape as described below, thereby producing a low-shear suitable for producing large-sized particles. It was found that optimum stirring conditions of force / high circulation rate were obtained and the above-mentioned object was achieved. That is, the method for producing a water-absorbent resin according to the present invention is a radiant flow type bottom mounted on a rotary shaft installed vertically at the center of a vertical cylindrical polymerization tank and installed close to the bottom of the polymerization tank. Blades that are attached to the rotary shaft and one or more stages of radial flow type upper stage blades that are attached to the rotating shaft and are out of phase with each other by 90 degrees or less in the rotational direction with respect to the lower adjacent blades that are vertically adjacent to each other. The suspension polymerization of the water-soluble ethylenically unsaturated monomer is carried out by using stirring blades in which the radial end portions of the opposite blade edges of are overlapped with each other in the vertical direction. It is a thing.

【0011】〔発明の具体的説明〕 <水溶性エチレン性不飽和モノマー>本発明において
は、水溶性エチレン性不飽和モノマー、水および水溶性
重合開始剤を含んでなるモノマー水溶液相を、有機溶媒
および分散剤を含んでなる油相中に撹拌下分散させ、水
溶性架橋剤の存在下または不存在下に油中水滴型の懸濁
重合を行う。本発明に使用される水溶性エチレン性不飽
和モノマーとしては、重合、乾燥等の後に良好な吸水能
を有する吸水性樹脂を与えるものであれば何れのものも
使用可能である。このようなモノマーとしては、官能基
としてカルボン酸または(及び)その塩、リン酸または
(及び)その塩、スルホン酸または(及び)その塩から
誘導される基を有する水溶性エチレン性不飽和モノマー
を挙げることができる。具体的には、(メタ)アクリル
酸あるいはその塩、マレイン酸あるいはその塩、イタコ
ン酸あるいはその塩、ビニルスルホン酸あるいはその
塩、2‐アクリルアミド‐2‐メチルプロパンスルホン
酸あるいはその塩、2‐アクリロイルエタンスルホン酸
あるいはその塩、2‐アクリロイルプロパンスルホン酸
あるいはその塩、2‐メタクロイルエタンスルホン酸あ
るいはその塩、ビニルホスホン酸あるいはその塩等を例
示でき、これらの1種または2種以上を使用することが
できる。尚、ここで「(メタ)アクリル」という用語
は、「アクリル」および「メタクリル」の何れをも意味
する。上記モノマーのうち、アクリル酸あるいは(及
び)その塩が好ましい。また、アクリル酸の塩として
は、ナトリウムやカリウム等のアルカリ金属塩が好まし
く、特に、アクリル酸の全カルボキシル基の50〜95
%がアルカリ金属塩に中和されてなるものが好ましい。
DETAILED DESCRIPTION OF THE INVENTION <Water-Soluble Ethylenically Unsaturated Monomer> In the present invention, a monomer aqueous solution phase containing a water-soluble ethylenically unsaturated monomer, water and a water-soluble polymerization initiator is mixed with an organic solvent. Dispersion is carried out with stirring in an oil phase containing a dispersant, and water-in-oil type suspension polymerization is carried out in the presence or absence of a water-soluble crosslinking agent. As the water-soluble ethylenically unsaturated monomer used in the present invention, any one can be used as long as it gives a water absorbent resin having a good water absorbing ability after polymerization, drying and the like. As such a monomer, a water-soluble ethylenically unsaturated monomer having a group derived from a carboxylic acid or a salt thereof, a phosphoric acid or a salt thereof, a sulfonic acid or a salt thereof as a functional group is used. Can be mentioned. Specifically, (meth) acrylic acid or a salt thereof, maleic acid or a salt thereof, itaconic acid or a salt thereof, vinylsulfonic acid or a salt thereof, 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof, 2-acryloyl. Ethanesulfonic acid or a salt thereof, 2-acryloylpropanesulfonic acid or a salt thereof, 2-methacryloylethanesulfonic acid or a salt thereof, vinylphosphonic acid or a salt thereof, and the like can be exemplified, and one or more of these are used. be able to. The term “(meth) acrylic” means both “acrylic” and “methacrylic”. Of the above monomers, acrylic acid and / or its salts are preferred. The salt of acrylic acid is preferably an alkali metal salt such as sodium or potassium, and particularly 50 to 95 of all carboxyl groups of acrylic acid.
%, Which is neutralized with an alkali metal salt is preferable.

【0012】また、本発明においては、前記のモノマー
以外にこれらと共重合可能な単量体、例えば(メタ)ア
クリルアミド、2‐ヒドロキシエチル(メタ)アクリル
アミド、(ポリ)エチレングリコールモノ(メタ)アク
リレート、2‐ヒドロキシエチル(メタ)アクリレート
等も生成する吸水性樹脂の性能を低下させない範囲の量
で共重合させても差し支えない。上記エチレン性不飽和
モノマーのモノマー水溶液中の濃度は、一般的に10重
量%以上、好ましくは20重量%〜飽和濃度である。
Further, in the present invention, in addition to the above-mentioned monomers, monomers copolymerizable therewith, such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, (poly) ethylene glycol mono (meth) acrylate. Copolymerization may be carried out in such an amount that does not deteriorate the performance of the water-absorbent resin that also produces 2-hydroxyethyl (meth) acrylate. The concentration of the ethylenically unsaturated monomer in the aqueous monomer solution is generally 10% by weight or more, preferably 20% by weight to a saturated concentration.

【0013】<架橋剤及び添加剤>本発明においては、
吸水性樹脂の性能向上のため架橋剤や添加剤を加えるこ
とも可能である。架橋剤としては、分子内に二重結合を
2個以上有し、前記モノマーと共重合性を示すもの、例
えばN,N′‐メチレンビス(メタ)アクリルアミド、
ポリエチレングリコールジ(メタ)アクリレート、グリ
セリントリ(メタ)アクリレート等、あるいは、カルボ
キシル基等の前記モノマー中の官能基と反応しうる2個
以上の官能基を有する水溶性の化合物、例えばエチレン
グリコールジグリシジルエーテル、ポリエチレングリコ
ールジグリシジルエーテル等のポリグリシジルエーテ
ル、グリセリン、ペンタエリスリトール等のポリオー
ル、及びエチレンジアミン等のポリアミン、ハロエポキ
シ化合物、ポリアルデヒド類、等が好適に使用される。
このうち特に好ましいのはN,N′‐メチレンビス(メ
タ)アクリルアミドである。架橋剤の使用量は、前記モ
ノマーの仕込み量に対して0.001〜0.1重量%、
好ましくは0.01〜0.5重量%である。添加剤とし
ては、微粒子状シリカ、二酸化チタン粉末、及びアルミ
ナ粉末等の不活性な無機質粉末を所望の目的に応じて適
時、適量使用することができる。
<Crosslinking Agent and Additive> In the present invention,
It is also possible to add a crosslinking agent or an additive for improving the performance of the water absorbent resin. The cross-linking agent has two or more double bonds in the molecule and exhibits copolymerizability with the above-mentioned monomer, for example, N, N'-methylenebis (meth) acrylamide,
Polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, etc., or a water-soluble compound having two or more functional groups capable of reacting with the functional group in the monomer such as a carboxyl group, for example, ethylene glycol diglycidyl Ethers, polyglycidyl ethers such as polyethylene glycol diglycidyl ether, polyols such as glycerin and pentaerythritol, polyamines such as ethylenediamine, haloepoxy compounds and polyaldehydes are preferably used.
Of these, N, N'-methylenebis (meth) acrylamide is particularly preferable. The amount of the crosslinking agent used is 0.001 to 0.1% by weight based on the charged amount of the monomer,
It is preferably 0.01 to 0.5% by weight. As the additive, inactive inorganic powder such as fine particle silica, titanium dioxide powder, and alumina powder can be used in a proper time and in a suitable amount according to the desired purpose.

【0014】<水溶性重合開始剤>本発明で用いられる
重合開始剤は、水溶性で、かつ水溶性エチレン性不飽和
モノマーの水溶液に溶解しうるものであればよい。具体
例を挙げると、(イ)過酸化水素、過硫酸カリウム、過
硫酸ナトリウム、過硫酸アンモニウム等の過硫酸塩、
(ロ)t‐ブチルハイドロパーオキシドやクメンハイド
ロパーオキシド等のパーオキシド類、(ハ)アゾイソブ
チロニトリル、2,2′‐アゾビス(2‐アミジノプロ
パン)二塩酸塩等のアゾ系開始剤が用いられる。これら
の重合開始剤の中でも、特に、過硫酸塩、ハイドロパー
オキシド類等の様な酸化性を示す開始剤は、例えば亜硫
酸水素ナトリウム、L‐アスコルビン酸、第一鉄塩等の
様な還元性物質あるいはアミン類との組合せによるレド
ックス開始剤としても用いることができる。これらの開
始剤の使用量は、一般には水溶性エチレン性不飽和モノ
マーに対して0.01〜10重量%、好ましくは0.1
〜2重量%である。
<Water-Soluble Polymerization Initiator> The polymerization initiator used in the present invention may be any one that is water-soluble and can be dissolved in an aqueous solution of a water-soluble ethylenically unsaturated monomer. Specific examples include (a) hydrogen peroxide, potassium persulfate, sodium persulfate, ammonium persulfate, and other persulfates;
(B) Peroxides such as t-butyl hydroperoxide and cumene hydroperoxide, and (c) azo initiators such as azoisobutyronitrile and 2,2'-azobis (2-amidinopropane) dihydrochloride Used. Among these polymerization initiators, initiators exhibiting oxidative properties such as persulfates and hydroperoxides are particularly suitable for reducing properties such as sodium bisulfite, L-ascorbic acid and ferrous salts. It can also be used as a redox initiator by combination with substances or amines. The amount of these initiators used is generally 0.01 to 10% by weight, preferably 0.1 to 10% by weight, based on the water-soluble ethylenically unsaturated monomer.
~ 2% by weight.

【0015】<有機溶媒及び分散剤>本発明の逆相懸濁
重合で用いられる有機溶媒及び界面活性剤としては、前
記のエチレン性不飽和モノマー水溶液を分散相として、
有機溶媒を連続相とする油中水滴型の分散液を重合時に
安定良く形成しうるもので、かつ重合に不活性なもので
あればいかなるものも使用できる。このような有機溶媒
としては、脂肪族炭化水素、脂環族炭化水素、または芳
香族炭化水素があり、脂肪族炭化水素としては、ノルマ
ルペンタン、ノルマルヘキサン、ノルマルヘプタン等
が、脂環族炭化水素としては、シクロペンタン、メチル
シクロペンタン、シクロヘキサン、メチルシクロヘキサ
ン等が、芳香族炭化水素としては、ベンゼン、トルエ
ン、キシレン等が適する。特に、ノルマルヘキサン、ノ
ルマルヘプタン、シクロヘキサンは工業的に品質が一定
していて、入手が容易であり、かつ安価なため好まし
い。
<Organic Solvent and Dispersant> As the organic solvent and the surfactant used in the reverse phase suspension polymerization of the present invention, the above-mentioned ethylenically unsaturated monomer aqueous solution is used as a dispersed phase.
Any one can be used as long as it can stably form a water-in-oil type dispersion having an organic solvent as a continuous phase during polymerization and is inert to the polymerization. Such organic solvents include aliphatic hydrocarbons, alicyclic hydrocarbons, or aromatic hydrocarbons, and examples of the aliphatic hydrocarbons include normal pentane, normal hexane, and normal heptane, alicyclic hydrocarbons. Suitable examples include cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and the like, and aromatic hydrocarbons include benzene, toluene, xylene, and the like. In particular, normal hexane, normal heptane, and cyclohexane are preferable because they have industrially constant quality, are easily available, and are inexpensive.

【0016】界面活性剤としては、例えば、ポリオキシ
エチレン脂肪酸エステル、ソルビタン脂肪酸エステル、
ソルビトール脂肪酸エステル、ソルビタン脂肪酸エステ
ルエーテル、ソルビトール脂肪酸エステルエーテル、グ
リセリン脂肪酸エステル、ショ糖脂肪酸エステル等の有
機界面活性剤が使用できる。特に、ソルビトールモノス
テアレート、ソルビトールモノラウリレート、ソルビタ
ンモノステアレート、ソルビタンモノラウリレート、シ
ョ糖ジステアレート、ショ糖モノ・ジステアレートが工
業的使用においては一定品質、かつ入手が容易で好まし
い。また、本発明においては、界面活性機能を発現する
無機粉体、例えば、アエロジル、サイロイド等も、製品
設計に応じて適宜使用することができる。
Examples of the surfactant include polyoxyethylene fatty acid ester, sorbitan fatty acid ester,
Organic surfactants such as sorbitol fatty acid ester, sorbitan fatty acid ester ether, sorbitol fatty acid ester ether, glycerin fatty acid ester and sucrose fatty acid ester can be used. In particular, sorbitol monostearate, sorbitol monolaurate, sorbitan monostearate, sorbitan monolaurylate, sucrose distearate, and sucrose mono-distearate are preferable because they have a constant quality and are easily available in industrial use. In addition, in the present invention, an inorganic powder exhibiting a surface-active function, such as Aerosil or Syloid, can be appropriately used depending on the product design.

【0017】<撹拌翼>本発明の方法は、上述のエチレ
ン性不飽和モノマーの懸濁重合を行うに際し、「縦型円
筒状重合槽の中心部に垂直に設置された回転軸に取り付
けられ、重合槽底面に近接して設置された放射流型の最
下翼と、前記回転軸に取り付けられ、上下に隣接した下
の翼に対して回転方向に90度以下位相をずらした1段
以上の放射流型の上段翼とからなり、かつ上下に隣接し
た翼の相対向する翼端部の半径方向の端部分が上下方向
に互いにオーバーラップするように配置されてなる撹拌
翼」を用いることを特徴とする。上記特定形状の撹拌翼
の一具体例が図1および2に示される。尚、同図におい
て示される撹拌翼は、上段翼が一段のみの場合の具体例
であり、また、「フルゾーン翼」(神鋼パンテック
(株)製)の商品名で市販されているものと同一であ
る。
<Stirring Blade> In the method of the present invention, when carrying out the suspension polymerization of the ethylenically unsaturated monomer described above, “the stirring shaft is attached to a rotary shaft vertically installed at the center of the vertical cylindrical polymerization tank, Radial flow type bottom blades installed close to the bottom of the polymerization tank, and one or more stages that are attached to the rotary shaft and have a phase shift of 90 degrees or less with respect to the lower blades that are vertically adjacent to each other. It is composed of a radial flow type upper blade, and the stirring blades are arranged so that the end portions in the radial direction of the opposing blade ends of the vertically adjacent blades are vertically overlapped with each other. Characterize. One specific example of the stirring blade having the specific shape is shown in FIGS. The stirring blade shown in the figure is a specific example in which the upper blade has only one stage, and is the same as the one sold on the market under the trade name of "Full Zone Blade" (manufactured by Shinko Pantech Co., Ltd.). Is.

【0018】本発明で使用される撹拌翼の最下翼および
上段翼は何れも「放射流型」の翼である。ここで放射流
型の翼とは、「撹拌により流体を半径方向に吐出し、翼
の上下に二つの循環流を生じる」ような翼であって、
「流体を上または下向きに吐出する」軸流型翼と対比さ
れるものをいう(「化学工学便欄」改訂5版、丸善
(株)発行、昭和63年3月18日、第891頁参
照)。放射流型撹拌翼の具体例としては、タービン翼、
パドル翼、湾曲翼、ファウドラー翼、ブルマージン翼等
があり、本発明においては何れのものも使用できるが、
特に好ましいのはパドル翼、ファウドラー翼である。パ
ドル翼を用いるとき、一般的手法に従い、翼先端の剪断
力を軽減するために翼先端を回転方向の逆側に0゜〜9
0゜の範囲で曲げることもできる。本発明で用いられる
撹拌翼において、最下翼は重合槽の底面に近接して設置
されるが、これにより、槽底部において半径方向に流
れ、重合槽内壁面に沿って上昇し、中心部で下降する槽
内全体にわたる循環流れを形成することができる。
The lowermost blade and the upper blade of the stirring blade used in the present invention are both "radial flow type" blades. Here, the radial flow type blade is a blade that "discharges a fluid in a radial direction by stirring to generate two circulation flows above and below the blade".
"Discharge fluid upwards or downwards" Refers to what is compared with axial flow type blades ("Chemical Engineering Service" column, 5th revised edition, published by Maruzen Co., Ltd., March 18, 1988, page 891) ). As a specific example of the radial flow type stirring blade, a turbine blade,
There are paddle blades, curved blades, Faudler blades, bull margin blades, etc., any of which can be used in the present invention,
Particularly preferred are paddle blades and Faudler blades. When using a paddle blade, the blade tip should be placed on the opposite side of the rotation direction from 0 ° to 9 ° in order to reduce the shearing force of the blade tip according to a general method.
It can also be bent in the range of 0 °. In the stirring blade used in the present invention, the lowermost blade is installed close to the bottom surface of the polymerization tank, whereby it flows radially in the bottom portion of the tank, rises along the inner wall surface of the polymerization tank, and rises in the center portion. A circulating flow can be formed throughout the descending vessel.

【0019】本発明においては、図3に示すように、最
上翼および上段翼の少なくとも一つの翼の上隅部を湾曲
させることが好ましく、これにより先端部での剪断力を
減少させることができる。湾曲の形状は凹凸の無い滑ら
かな線が良く、図3に示す翼の半径Rと湾曲部の半径r
の比r/Rが1/100以上で、湾曲させる前の翼先端
(点(い))と湾曲部中心を結んだ線上の点(い)から
翼までの距離LとRの比がL/R=1/100〜50/
100が好ましい。L/Rが1/100以下では、湾曲
させたことで先端部の剪断力を減少させるという効果が
十分得られないし、L/Rが50/100より大きい
と、上側の翼が本来持っている隣接した下側の翼への循
環液供給効果が減少し、全体的撹拌効率が低下する。
尚、翼端部の湾曲化による剪断力減少効果は、翼上隅部
においてのみ認められるものであり、下隅部を湾曲化さ
せても有意な効果は得られない。
In the present invention, as shown in FIG. 3, it is preferable to bend the upper corner of at least one of the uppermost wing and the upper wing so that the shearing force at the tip can be reduced. . The curved shape is preferably a smooth line without irregularities, and the radius R of the blade and the radius r of the curved portion shown in FIG.
Ratio r / R is 1/100 or more, and the ratio of the distances L and R from the point (i) on the line connecting the blade tip (point (i)) before bending and the center of the bending part to the blade is L / R = 1/100 to 50 /
100 is preferred. When L / R is 1/100 or less, the effect of reducing the shearing force at the tip part cannot be sufficiently obtained by bending, and when L / R is larger than 50/100, the upper blade originally has it. The effect of supplying the circulating liquid to the adjacent lower blade is reduced, and the overall stirring efficiency is reduced.
It should be noted that the effect of reducing the shearing force due to the bending of the blade tip is observed only in the upper corner of the blade, and even if the lower corner is curved, no significant effect is obtained.

【0020】最下翼および上段翼の各翼の翼径は、d/
D(=翼径/槽径)比で一般に0.4〜0.9、好まし
くは0.5〜0.85、更に好ましくは、0.55〜
0.8である。d/D比が0.4以下では、重合槽壁面
迄の距離が長く、このため重合槽壁近傍での撹拌状態が
悪く、槽壁面への生成樹脂の付着や粒子の塊状化が生じ
てしまう。この場合撹拌動力(回転数)を増加させるこ
とにより槽壁近傍での撹拌状態は改善されるが、撹拌回
転数増加によって液滴への剪断力が増加し、本発明の目
的である大粒径の吸水性樹脂を得ることが困難になる。
このように、d/D比が0.4以下の場合には最適運転
撹拌回転数を設定することが困難である。一方、d/D
比が0.9以上では、重合槽壁面迄の距離が短かすぎて
壁面と撹拌翼とにより剪断力が生じてしまい、生成粒径
が小さくなってしまう。かかる剪断力を低減させるため
に撹拌回転数を低下させると、撹拌軸近傍の液流速の低
下により混合が急速に悪化し、粒子沈降などによる粒子
の融着、塊状化が発生する。このように、d/D比の小
さいときと同様、最適運転撹拌回転数の設定が困難とな
る。翼のd/D比は、各段を全て一致させる必要はな
く、選定された系(溶剤種、界面活性剤種等)による最
適値に、各々に前述の範囲幅内で設定すればよい。
The blade diameter of each of the lowermost blade and the upper blade is d /
The D (= blade diameter / tank diameter) ratio is generally 0.4 to 0.9, preferably 0.5 to 0.85, and more preferably 0.55.
It is 0.8. When the d / D ratio is 0.4 or less, the distance to the wall surface of the polymerization tank is long, so that the stirring condition near the wall of the polymerization tank is poor, and the generated resin adheres to the wall surface of the tank and the particles agglomerate. . In this case, the stirring state near the tank wall is improved by increasing the stirring power (rotation speed), but the shearing force to the droplets is increased by increasing the stirring rotation speed, and the large particle size, which is the object of the present invention, is increased. It becomes difficult to obtain the water absorbent resin.
As described above, when the d / D ratio is 0.4 or less, it is difficult to set the optimum operating stirring speed. On the other hand, d / D
When the ratio is 0.9 or more, the distance to the wall surface of the polymerization tank is too short and shearing force is generated between the wall surface and the stirring blade, resulting in a smaller particle size. When the stirring rotation speed is reduced to reduce the shearing force, the mixing speed rapidly deteriorates due to the decrease in the liquid flow velocity in the vicinity of the stirring shaft, and the particles are fused and agglomerated due to particle sedimentation. As described above, similarly to the case where the d / D ratio is small, it is difficult to set the optimum operating stirring speed. The blade d / D ratio does not have to be the same for all stages, and may be set to an optimum value depending on the selected system (solvent type, surfactant type, etc.) within the above range width.

【0021】本発明で使用される撹拌翼の隣接した上側
の翼と下側の翼の軸方向の翼幅の比は、一般に1:9〜
9:1、好ましくは3:7〜7:3である。上側の翼の
翼幅が下側の翼の翼幅の1/9以下だと、上側の翼の持
つ下側の翼への液供給機能が損なわれる。一方、上側の
翼の翼幅が下側の翼の翼幅の9/1以上だと、上側の翼
の液供給能力が大きくなりすぎて下側の翼の能力以上と
なり、撹拌効率が低下する。上下に隣接した上側の翼
は、下側の翼に対して、回転方向に90度以下、好まし
くは10度以上60度以下位相をずらして配置される。
位相のずれが90度より大きいと回転方向に対する前後
の関係が逆転し、隣接した上側の翼による下側の翼への
液供給効果が極端に損なわれ、所望の混合作用が得られ
ない。また、上下に隣接した翼は、その相対向する翼端
部の半径方向の端部分が上下方向に互いにオーバーラッ
プするように配置される。オーバーラップの程度は、上
翼の面積と下翼の面積の和に対するオーバーラップ部面
積の割合が0.5〜10%、特に1〜3%となることが
好ましい。
The ratio of the axial width between the upper blade and the lower blade adjacent to the stirring blade used in the present invention is generally 1: 9 to.
It is 9: 1, preferably 3: 7 to 7: 3. When the blade width of the upper blade is 1/9 or less of the blade width of the lower blade, the liquid supply function of the upper blade to the lower blade is impaired. On the other hand, if the width of the upper blade is 9/1 or more of the width of the lower blade, the liquid supply capacity of the upper blade becomes too large and exceeds the capacity of the lower blade, and the stirring efficiency decreases. . The upper blades vertically adjacent to each other are arranged with a phase difference of 90 degrees or less, preferably 10 degrees or more and 60 degrees or less with respect to the lower blades.
If the phase shift is larger than 90 degrees, the front-rear relationship with respect to the rotation direction is reversed, the effect of liquid supply to the lower blade by the adjacent upper blade is extremely impaired, and the desired mixing action cannot be obtained. Further, the vertically adjacent blades are arranged such that the end portions in the radial direction of the opposing blade ends overlap each other in the vertical direction. As for the degree of overlap, it is preferable that the ratio of the area of the overlapping portion to the sum of the area of the upper blade and the area of the lower blade is 0.5 to 10%, particularly 1 to 3%.

【0022】最下翼および上翼の各翼の厚みは特に制限
されず、運転回転数における撹拌抵抗により変形しない
最低厚み以上であればよい。各翼の材質としては、選定
した系に対応した各種耐蝕材、例えばステンレススチー
ル、チタン、インコネル等の使用が好ましく、CS(カ
ーボンスチール)等の非耐蝕材の場合は、重合に影響し
ない耐蝕材料のコーティング等の耐蝕処理を施すのが好
ましい。また、各翼への樹脂付着軽減のため金属面の平
滑度を上げたり、コーティング等を施すのが好ましい。
The thickness of each of the lowermost blade and the upper blade is not particularly limited as long as it is at least the minimum thickness that does not deform due to stirring resistance at the rotational speed of operation. As the material of each blade, it is preferable to use various corrosion-resistant materials corresponding to the selected system, for example, stainless steel, titanium, Inconel, etc. In the case of non-corrosion-resistant materials such as CS (carbon steel), corrosion-resistant materials that do not affect polymerization It is preferable to carry out anticorrosion treatment such as coating. Further, it is preferable to increase the smoothness of the metal surface or to apply a coating or the like in order to reduce the adhesion of the resin to each blade.

【0023】[0023]

【実施例】以下、実施例、比較例によって本発明を更に
具体的に説明するが、本発明はこれらに限定されるもの
ではない。比較例1 コニカルフラスコにシクロヘキサン324gを入れ、ソ
ルビタンモノステアレート1.6gを添加し、溶解させ
た後、窒素ガスを吹き込んで溶存酸素を追い出した(A
液)。別のコニカルフラスコにアクリル酸104g、水
85gを加え、氷冷下に25%水酸化ナトリウム161
gを徐々に加えた。さらにN,N‐メチレンビスアクリ
ルアミド0.77g、過硫酸カリウム0.24gを添加
し、溶解させた後、窒素ガスを吹き込んで溶存酸素を追
い出した(B液)。撹拌機、還流冷却器、温度計および
窒素ガス導入管を付設した容量1000mlの縦型円筒
状の四つ口フラスコに、撹拌翼として、アンカー翼(翼
径/槽径=0.9,翼高/槽径=0.5)を設置し、こ
のフラスコにA液とB液を添加し、130rpmで撹拌
して分散させ、油浴によりフラスコ内温を昇温させ、6
5℃に保って1時間重合を行った。尚、重合中130r
pmの撹拌を継続した。重合後の樹脂中の水分を除去す
ると粉末状の一次粒子ポリマーが得られ、平均粒径18
5μmであった。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Comparative Example 1 324 g of cyclohexane was placed in a conical flask, 1.6 g of sorbitan monostearate was added and dissolved, and then nitrogen gas was blown thereinto to expel dissolved oxygen (A
liquid). To another conical flask, 104 g of acrylic acid and 85 g of water were added, and 25% sodium hydroxide 161 was added under ice cooling.
g was added slowly. Further, 0.77 g of N, N-methylenebisacrylamide and 0.24 g of potassium persulfate were added and dissolved, and then nitrogen gas was blown thereinto to expel dissolved oxygen (solution B). A vertical cylindrical four-necked flask with a capacity of 1000 ml equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet pipe was used as an anchor blade (anchor blade / bath diameter = 0.9, blade height). / Tank diameter = 0.5), liquid A and liquid B were added to this flask, the mixture was stirred and dispersed at 130 rpm, and the temperature inside the flask was raised by an oil bath.
Polymerization was carried out for 1 hour while maintaining the temperature at 5 ° C. During polymerization, 130r
Stirring at pm was continued. When the water content of the resin after polymerization is removed, a powdery primary particle polymer is obtained, and the average particle diameter is 18
It was 5 μm.

【0024】比較例2 重合時の撹拌回転数を120rpmとした以外は比較例
1と全く同様の操作を行った結果、粉末状の一次粒子ポ
リマーは得られず、造粒したポリマーが得られた。
Comparative Example 2 The same operation as in Comparative Example 1 was carried out except that the stirring rotation speed during polymerization was 120 rpm. As a result, a powdery primary particle polymer was not obtained, but a granulated polymer was obtained. .

【0025】比較例3 重合回転数を110rpmとした以外は比較例1と全く
同様の操作を行った結果、塊状重合となり、粉末状の一
次粒子ポリマーは得られなかった。
Comparative Example 3 The same operation as in Comparative Example 1 was carried out except that the number of revolutions of polymerization was 110 rpm. As a result, bulk polymerization was performed, and a powdery primary particle polymer was not obtained.

【0026】比較例4 撹拌翼として平板翼(翼径/槽径=0.8,翼高/槽径
=0.8)を用い、撹拌回転数を120rpmにした以
外は比較例1と全く同様の操作を行った結果、粉末状の
一次粒子ポリマーが得られ、平均粒径は180μmであ
った。
Comparative Example 4 Exactly the same as Comparative Example 1 except that a flat blade (blade diameter / tank diameter = 0.8, blade height / tank diameter = 0.8) was used as the stirring blade and the stirring speed was 120 rpm. As a result, a powdery primary particle polymer was obtained, and the average particle diameter was 180 μm.

【0027】比較例5 重合時の撹拌回転数を110rpmにした以外は比較例
4と全く同様の操作を行った結果、塊状重合となり、粉
末状の一次粒子ポリマーは得られなかった。
Comparative Example 5 The same operation as in Comparative Example 4 was carried out except that the stirring rotation speed at the time of polymerization was 110 rpm. As a result, bulk polymerization was performed, and a powdery primary particle polymer was not obtained.

【0028】比較例6 撹拌翼としてアンカー翼付き三枚ピッチドパドル翼(翼
径/槽径=0.7)を用い、重合時の撹拌回転数を14
0rpmにした以外は比較例1と全く同様の操作を行っ
た結果、粉末状の一次粒子ポリマーが得られ、平均粒径
は190μmであった。
Comparative Example 6 A three-piece pitched paddle blade with an anchor blade (blade diameter / tank diameter = 0.7) was used as the stirring blade, and the stirring rotational speed during polymerization was 14
As a result of completely the same operation as in Comparative Example 1 except that the rotation speed was 0 rpm, a powdery primary particle polymer was obtained, and the average particle diameter was 190 μm.

【0029】比較例7 重合時の撹拌回転数を110rpmにした以外は比較例
6と全く同様の操作を行った結果、粉末状の一次粒子ポ
リマーは得られず、造粒したポリマーが得られた。
Comparative Example 7 The same operation as in Comparative Example 6 was carried out except that the stirring rotation speed at the time of polymerization was 110 rpm. As a result, a powdery primary particle polymer was not obtained, but a granulated polymer was obtained. .

【0030】比較例8 撹拌翼としてアンカー翼付き二枚ピッチドパドル翼(翼
径/槽径=0.7)を用い、重合時の撹拌回転数を14
0rpmにした以外は比較例1と全く同様の操作を行っ
た結果、粉末状の一次粒子ポリマーが得られ、平均粒径
は195μmであった。
Comparative Example 8 A two-piece pitched paddle blade with anchor blades (blade diameter / tank diameter = 0.7) was used as the stirring blade, and the stirring rotational speed during polymerization was 14
As a result of completely the same operation as in Comparative Example 1 except that the rotation speed was 0 rpm, a powdery primary particle polymer was obtained, and the average particle diameter was 195 μm.

【0031】比較例9 重合時の撹拌回転数を110rpmにした以外は比較例
8と全く同様の操作を行った結果、粉末状の一次粒子ポ
リマーは得られず、造粒したポリマーが得られた。
Comparative Example 9 The same operation as in Comparative Example 8 was carried out except that the stirring rotation speed at the time of polymerization was 110 rpm. As a result, a powdery primary particle polymer was not obtained, but a granulated polymer was obtained. .

【0032】比較例10 撹拌翼としてアンカー翼付き一枚ピッチドパドル翼(翼
径/槽径=0.7)を用い、回転数を150rpmにし
た以外は比較例1と全く同様の操作を行った結果、粉末
状の一次粒子ポリマーが得られ、平均粒径は175μm
であった。
Comparative Example 10 As a stirring blade, a single-pitch paddle blade with an anchor blade (blade diameter / tank diameter = 0.7) was used, and the same operation as in Comparative Example 1 was performed except that the rotation speed was 150 rpm. , A powdery primary particle polymer is obtained, and the average particle diameter is 175 μm.
Met.

【0033】比較例11 重合時の撹拌回転数を140rpmにした以外は比較例
10と全く同様の操作を行った結果、粉末状の一次粒子
ポリマーは得られず、造粒したポリマーが得られた。
Comparative Example 11 The same operation as in Comparative Example 10 was carried out except that the stirring rotation speed at the time of polymerization was 140 rpm. As a result, a powdery primary particle polymer was not obtained, but a granulated polymer was obtained. .

【0034】実施例1 撹拌翼として、図1に示すような翼であって、フラスコ
底面に近接して設置された最下翼(翼径/槽径=0.5
9,翼高/槽径=0.35)とこの翼に対して回転方向
に45度位相をずらした上段翼(翼径/槽径=0.5
7,翼高/槽径=0.35)とを備えてなり、且つこの
上下に隣接した翼の半径方向の翼端部を互いにオーバー
ラップさせた翼(神鋼パンテック社製フルゾーン翼)を
用い、回転数を145rpmにした以外は比較例1と全
く同様の操作を行った。粉末状の一次粒子ポリマーが得
られ、得られたポリマーの平均粒径は245μmであっ
た。
Example 1 As a stirring blade, the blade shown in FIG. 1 was installed at the bottom of the flask in the vicinity of the bottom of the flask (blade diameter / tank diameter = 0.5).
9, blade height / tank diameter = 0.35) and upper blades (blade diameter / tank diameter = 0.5) with a phase difference of 45 degrees in the rotational direction with respect to this blade.
7, blade height / vessel diameter = 0.35), and blades (full-zone blades manufactured by Shinko Pantec Co., Ltd.) in which the blade edges in the radial direction of the blades vertically adjacent to each other are overlapped with each other The same operation as in Comparative Example 1 was performed except that the rotation speed was set to 145 rpm. A powdery primary particle polymer was obtained, and the average particle diameter of the obtained polymer was 245 μm.

【0035】実施例2 実施例1で使用した撹拌翼の上段翼の上隅部を図3に示
すような湾曲形状(r/R=7/100、L/R=2.
9/100)にした以外は実施例1と全く同様の操作を
行った結果、粉末状の一次粒子ポリマーが得られ、平均
粒径は275μmであった。
Example 2 The upper corner of the upper blade of the stirring blade used in Example 1 was curved (r / R = 7/100, L / R = 2.
As a result of the completely same operation as in Example 1 except that the average particle size was 9/100), a powdery primary particle polymer was obtained, and the average particle diameter was 275 μm.

【0036】実施例3 実施例1において使用した撹拌翼の翼の大きさを変更し
(最下翼の大きさを、翼径/槽径=0.85,翼高/槽
径=0.35とし、かつ、上段翼の大きさを、翼径/槽
径=0.73,翼高/槽径=0.35とした)、回転数
を100rpmにした以外は実施例1と全く同様の操作
を行った結果、粉末状の一次粒子ポリマーが得られ、平
均粒径は295μmであった。
Example 3 The size of the stirring blade used in Example 1 was changed (the size of the lowermost blade was set as follows: blade diameter / tank diameter = 0.85, blade height / tank diameter = 0.35). And the size of the upper blade was set to blade diameter / tank diameter = 0.73, blade height / tank diameter = 0.35), and the rotation speed was 100 rpm, exactly the same operation as in Example 1. As a result, a powdery primary particle polymer was obtained, and the average particle diameter was 295 μm.

【0037】実施例4 実施例3で使用した攪拌翼の上段翼の上隅部を図3に示
すような湾曲形状(r/R=10/100、L/R=
4.1/100)にした以外は実施例3と全く同様の操
作を行った結果、平均粒径315μmの粉末状の一次粒
子ポリマーが得られた。
Example 4 The upper corner of the upper blade of the stirring blade used in Example 3 was curved (r / R = 10/100, L / R =) as shown in FIG.
As a result of the completely same operation as in Example 3 except that the ratio was 4.1 / 100), a powdery primary particle polymer having an average particle diameter of 315 μm was obtained.

【0038】実施例5 実施例3で使用した撹拌翼の上段翼と下段翼との位相角
を30度にした以外は実施例3と全く同様の操作を行っ
た結果、粉末状の一次粒子ポリマーが得られ、平均粒径
は305μmであった。
Example 5 The same operation as in Example 3 was carried out except that the phase angle between the upper blade and the lower blade of the stirring blade used in Example 3 was changed to 30 °. As a result, powdery primary particle polymer was obtained. Was obtained, and the average particle size was 305 μm.

【0039】[0039]

【発明の効果】本発明の方法によれば、懸濁重合による
吸水性樹脂の製造において上記の特殊な撹拌翼を用いる
ことにより、吸水性樹脂が大粒径一次粒子として安定的
に得られる。また、塊状物の生成や重合槽壁への生成樹
脂の付着が著しく抑制されるため、製造コスト面でのメ
リットも大きい。
According to the method of the present invention, by using the above special stirring blade in the production of the water absorbent resin by suspension polymerization, the water absorbent resin can be stably obtained as large-sized primary particles. Further, the production of lumps and the adhesion of the produced resin to the wall of the polymerization tank are remarkably suppressed, so that there is a great merit in manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用される撹拌翼の一具体例を示す縦
断面図である。
FIG. 1 is a vertical cross-sectional view showing a specific example of a stirring blade used in the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明で使用される撹拌翼の好ましい実施態様
であって、翼の上隅部を湾曲させた形状の一例を示す図
である。
FIG. 3 is a diagram showing a preferred embodiment of the stirring blade used in the present invention, showing an example of a shape in which the upper corner of the blade is curved.

【符号の説明】[Explanation of symbols]

1 重合槽 2 攪拌用モーター 3 バッフル 4 ジャケット 5 撹拌軸 6 撹拌翼(上翼) 7 撹拌翼(最下翼) 8 翼 9 削られた翼上隅部 10 翼上隅部の湾曲部 11 撹拌軸 r 湾曲部10の半径 R 翼8の半径 L 削り取る前の翼先端(点い)と湾曲部曲線の中心を
結んだ線上の点(い)と湾曲部間の距離
DESCRIPTION OF SYMBOLS 1 Polymerization tank 2 Stirring motor 3 Baffle 4 Jacket 5 Stirring shaft 6 Stirring blade (upper blade) 7 Stirring blade (lowermost blade) 8 Blade 9 Sharpened blade upper corner 10 Curved part of blade upper corner 11 Stirring shaft r Radius of the curved portion 10 Radius of the blade 8 L Distance between the curved portion and the point (ii) on the line connecting the blade tip (point) before cutting and the center of the curved portion curve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】縦型円筒状重合槽の中心部に垂直に設置さ
れた回転軸に取り付けられ、重合槽底面に近接して設置
された放射流型の最下翼と、前記回転軸に取り付けら
れ、上下に隣接した下の翼に対して回転方向に90度以
下位相をずらした1段以上の放射流型の上段翼とからな
り、かつ上下に隣接した翼の相対向する翼端部の半径方
向の端部分が上下方向に互いにオーバーラップするよう
に配置されてなる撹拌翼を用いて水溶性エチレン性不飽
和モノマーの懸濁重合を行うことを特徴とする、吸水性
樹脂の製造法。
1. A radial flow type lowermost blade, which is attached to a rotary shaft vertically installed at the center of a vertical cylindrical polymerization tank and is installed in the vicinity of the bottom of the polymerization tank, and is attached to the rotary shaft. The upper and lower blades of the radial flow type having one or more stages that are phase-shifted by 90 degrees or less in the rotational direction with respect to the lower blades that are vertically adjacent to each other. A method for producing a water-absorbent resin, characterized in that suspension polymerization of a water-soluble ethylenically unsaturated monomer is carried out using a stirring blade which is arranged so that its end portions in the radial direction are vertically overlapped with each other.
【請求項2】最上翼および上段翼の少なくとも1つの翼
の上隅部が湾曲形状であることを特徴とする、請求項1
に記載の吸水性樹脂の製造法。
2. The upper corner of at least one of the uppermost blade and the upper blade is curved.
The method for producing a water-absorbent resin according to item 1.
JP18284093A 1993-07-23 1993-07-23 Production of water-absorbing resin Pending JPH0733804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18284093A JPH0733804A (en) 1993-07-23 1993-07-23 Production of water-absorbing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18284093A JPH0733804A (en) 1993-07-23 1993-07-23 Production of water-absorbing resin

Publications (1)

Publication Number Publication Date
JPH0733804A true JPH0733804A (en) 1995-02-03

Family

ID=16125381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18284093A Pending JPH0733804A (en) 1993-07-23 1993-07-23 Production of water-absorbing resin

Country Status (1)

Country Link
JP (1) JPH0733804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066156C (en) * 1998-09-11 2001-05-23 化学工业部北京化工研究院 Preparation method of water-absorbent resin and stirrer
EP2311791A1 (en) 2001-12-04 2011-04-20 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acids
WO2020184392A1 (en) * 2019-03-08 2020-09-17 住友精化株式会社 Water-absorbing resin particles and method for producing same
EP3936529A4 (en) * 2019-03-08 2022-12-21 Sumitomo Seika Chemicals Co., Ltd. Water absorbent resin particles, absorber and absorbent article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066156C (en) * 1998-09-11 2001-05-23 化学工业部北京化工研究院 Preparation method of water-absorbent resin and stirrer
EP2311791A1 (en) 2001-12-04 2011-04-20 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acids
EP2311790A1 (en) 2001-12-04 2011-04-20 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acids
EP2311789A1 (en) 2001-12-04 2011-04-20 Mitsubishi Chemical Corporation Process for producing (meth)acrylic acids
WO2020184392A1 (en) * 2019-03-08 2020-09-17 住友精化株式会社 Water-absorbing resin particles and method for producing same
JPWO2020184392A1 (en) * 2019-03-08 2021-10-28 住友精化株式会社 Water-absorbent resin particles and their manufacturing method
EP3936529A4 (en) * 2019-03-08 2022-12-21 Sumitomo Seika Chemicals Co., Ltd. Water absorbent resin particles, absorber and absorbent article

Similar Documents

Publication Publication Date Title
US6462138B1 (en) Method for reducing residual monomers in liquid systems by adding an oxidation-reduction initiator system
JP3095304B2 (en) Method for producing vinyl chloride polymer
JPS5980411A (en) Polymerization of unsaturated acid in mineral spirit
JPH04363303A (en) Continuous polymerization and apparatus therefor
CN101490119B (en) Hydrophilic graft polymer
US6252018B1 (en) Use of a single-stage or multistage stirrer to prepare polymers
SG189955A1 (en) Method for producing water-absorbent resin
JP4839835B2 (en) Reversed phase suspension polymerization apparatus and polymer production method
Tanaka et al. Suspension polymerization of styrene with circular loop reactor
JPH0733804A (en) Production of water-absorbing resin
JP3387717B2 (en) Manufacturing method of super absorbent resin
JP4107775B2 (en) Manufacturing method of super absorbent resin
JP5972628B2 (en) HEAT EXCHANGE STRUCTURE AND WATER ABSORBING RESIN MANUFACTURING APPARATUS PROVIDED WITH THE HEAT EXCHANGE STRUCTURE
JPH06293802A (en) Production of water absorbing resin
JP6738979B2 (en) Water absorbent resin manufacturing equipment
JP2007260646A (en) Reactor and method for producing polymer by using the same
Lee et al. The performance of the emulsion polymerization of styrene in a continuous loop tubular reactor
EP0701863B1 (en) Polymerization apparatus and a method for producing polymer using the same
WO2004078796A1 (en) Method of manufacturing water absorbing resin and drying apparatus used for the method
JPH04372603A (en) Production of water-soluble or water-swelling polymer
JPH07102008A (en) Production of water-absorptive resin
JPH0264106A (en) Production of water-absorbing resin
JPH0725917A (en) Production of water-absorbing resin powder
CN105440193B (en) Suspension polymerisation prepares drag reduction agent for oil product through pipelines
JPH08157508A (en) Production of water-absorbing resin