JPH073368A - High ni base alloy excellent in hydrogen embrittlement resistance and production thereof - Google Patents

High ni base alloy excellent in hydrogen embrittlement resistance and production thereof

Info

Publication number
JPH073368A
JPH073368A JP5209599A JP20959993A JPH073368A JP H073368 A JPH073368 A JP H073368A JP 5209599 A JP5209599 A JP 5209599A JP 20959993 A JP20959993 A JP 20959993A JP H073368 A JPH073368 A JP H073368A
Authority
JP
Japan
Prior art keywords
less
alloy
hydrogen embrittlement
deformation
twinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5209599A
Other languages
Japanese (ja)
Inventor
Yoshiori Miyata
佳織 宮田
Masaaki Igarashi
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5209599A priority Critical patent/JPH073368A/en
Publication of JPH073368A publication Critical patent/JPH073368A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high Ni base alloy excellent in hydrogen embrittlement cracking resistance by preparing a high Ni base alloy having a compsn. contg. C, Si, Mn, Fe, Cr, Mo, W, Al, P, S and N under specified conditions and in which the frequency of the causing of twin crystals is specified. CONSTITUTION:A high Ni base alloy having an alloy compsn. contg., by weight, 0.001 to 0.05% C, <=0.50% Si, <=2.0% Mn, 2.5 to 20% Fe, 10 to 27% Cr, Mo alone or in combination with W by 3.0 to 24% (<=10% W in the case of the combination), <=30% Al, <=0.010% P, <=0.0050% S and 0.050% N, and the balance Ni (<=60% Ni) with inevitable impurities and also having a compsn. in which the conditions in inequaities I and II are satisfied expressed in terms of atomic % and the frequency of the causing of twin crystals (the ratio of single crystals in which deformed with crystals are caused among the whole crystal grains) is regulated to >=70% is prepd. In this way, the high Ni base alloy excellent in hydrogen embrittlement resistance as wall as stress corrosion cracking resistance can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、腐食環境下、特に硫化
水素、二酸化炭素および塩素イオンの1種または2種以
上を含む、250 ℃以下の低温の腐食環境下において、良
好な耐応力腐食割れ性および耐水素割れ性を示す、高強
度、高靱性のNi基合金とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides good stress corrosion resistance in a corrosive environment, particularly in a low temperature corrosive environment of 250 ° C. or lower containing one or more of hydrogen sulfide, carbon dioxide and chloride ions. The present invention relates to a high-strength, high-toughness Ni-based alloy exhibiting cracking resistance and hydrogen cracking resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】油井、化学工業および地熱発電で使用さ
れる部材等のように、硫化水素、二酸化炭素および塩素
イオンの1種または2種以上を含有する高圧の環境下で
使用される材料に対しては、高強度、高靱性といった強
度特性とともに、すぐれた耐食性、すなわち耐応力腐食
割れ性および耐水素脆化割れ性が要求される。
2. Description of the Related Art For materials used in high-pressure environments containing one or more of hydrogen sulfide, carbon dioxide and chlorine ions, such as components used in oil wells, chemical industry and geothermal power generation. On the other hand, in addition to strength characteristics such as high strength and high toughness, excellent corrosion resistance, that is, stress corrosion cracking resistance and hydrogen embrittlement cracking resistance are required.

【0003】このような用途に使用可能な材料として、
Niを多く含有したNi−Cr−Mo−Feオーステナイト合金が
優れた耐食性を示すことが知られている。この高Ni基合
金の耐食性能は、主にCr、Mo、W含有量の増加によって
向上することが周知で、例えばハステロイ (商品名) の
ように耐応力腐食割れ性および耐水素割れ性の確保の観
点から、有効成分 (Ni、Cr、Mo、W) の範囲を選定し、
さらにCu、Coを添加して耐食性を高めたことを特徴とす
る合金が提案され、実用化されている。
As a material that can be used for such an application,
It is known that a Ni-Cr-Mo-Fe austenite alloy containing a large amount of Ni exhibits excellent corrosion resistance. It is well known that the corrosion resistance of this high Ni-based alloy is improved mainly by increasing the contents of Cr, Mo and W. For example, stress corrosion cracking resistance and hydrogen cracking resistance such as Hastelloy (trade name) are ensured. From the viewpoint of, select the range of active ingredients (Ni, Cr, Mo, W),
Furthermore, alloys characterized by adding Cu and Co to enhance corrosion resistance have been proposed and put into practical use.

【0004】これら高Ni基合金の強度特性に関して、チ
ュービング、ケーシング、ライナ等の管状部材について
は溶製・成形後の冷間加工によって、また、バルブ、継
手、配管等の冷間加工が施せないような特殊形状を有す
る物については、金属間化合物の析出強化を利用して、
強度増大を図るものが多い。例えば、特開昭60−2653号
公報に記載されているように、合金組成にTiとAlまたは
Nbを添加し、γ' 相あるいはγ" 相を析出させることが
強度改善に有効であることは、良く知られている。
Regarding the strength characteristics of these high Ni-based alloys, tubular members such as tubing, casing, and liner cannot be cold worked after being melted and molded, and cold working of valves, joints, piping, etc. cannot be performed. For products with such special shapes, utilizing precipitation strengthening of intermetallic compounds,
Many of them aim to increase strength. For example, as described in JP-A-60-2653, the alloy composition of Ti and Al or
It is well known that the addition of Nb to precipitate the γ'phase or the γ "phase is effective in improving the strength.

【0005】さらに、通常の冷間加工が適用できない大
型構造材は、一般に鍛造品として製造される。この場
合、偏析による合金の延性や加工性の劣化を避けるた
め、アトマイズ法や超急冷凝固法などを適用して合金粉
末を作り、公知の各種の粉末冶金の手法で粉末成形する
ことが行われている。粉末冶金法は形状の自由度が大き
いため、大型構造材のみならず、特殊形状部材にも適用
される。粉末冶金法では、粉末製造時に合金が急冷を受
けているため、合金中の結晶粒が微細化されている。従
って、この結晶粒の微細化と析出強化とを併用すること
により、高Ni基合金製の大型構造材や特殊形状部材につ
いて強度向上を図ることが可能となる。
Further, large-scale structural materials to which ordinary cold working cannot be applied are generally manufactured as forged products. In this case, in order to avoid deterioration of the ductility and workability of the alloy due to segregation, the alloy powder is produced by applying the atomizing method or the ultra-quick solidification method, and the powder is formed by various known powder metallurgy methods. ing. Since the powder metallurgy method has a large degree of freedom in shape, it is applied not only to large-scale structural materials but also to special-shaped members. In the powder metallurgy method, the crystal grains in the alloy are miniaturized because the alloy is rapidly cooled during powder production. Therefore, it is possible to improve the strength of a large-sized structural member made of a high Ni-based alloy or a specially-shaped member by using the grain refinement and precipitation strengthening together.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、上述し
た従来の高Ni基合金に下記の問題点があることに気づい
た。上述のような高Ni基合金は、その優れた耐食性か
ら、高濃度の硫化水素、二酸化炭素および塩素イオンの
1種以上を含む苛酷な腐食環境下での使用が要求され
る。ところが冷間加工等により強度増大を図った場合、
室温以上の環境下での使用中に長時間時効を受けると粒
界破壊を伴う水素脆化を起こす場合がある。
The present inventors have found that the above-mentioned conventional high Ni-based alloy has the following problems. Due to its excellent corrosion resistance, the high Ni-based alloy as described above is required to be used in a severe corrosive environment containing a high concentration of one or more of hydrogen sulfide, carbon dioxide and chlorine ions. However, if the strength is increased by cold working, etc.,
If it is aged for a long time during use in an environment at room temperature or higher, hydrogen embrittlement accompanied by intergranular fracture may occur.

【0007】この水素脆化による粒界割れの材料側の要
因として、不純物原子 (P、S等)の粒界偏析と並び、
すべり転位と粒界 (界面) との相互作用による粒界 (界
面)での応力集中が最も有力である。
The factors on the material side of the grain boundary cracking due to hydrogen embrittlement, along with grain boundary segregation of impurity atoms (P, S, etc.),
The stress concentration at the grain boundary (interface) due to the interaction between the slip dislocation and the grain boundary (interface) is the most powerful.

【0008】前者の不純物元素の粒界偏析については、
悪影響を及ぼす不純物元素の含有量を低減し、粒界強化
に寄与する添加元素を加えることにより、水素脆化によ
る粒界破壊を抑えることが可能である。
Regarding the former grain boundary segregation of impurity elements,
It is possible to suppress the grain boundary destruction due to hydrogen embrittlement by reducing the content of the adversely affecting impurity element and adding the additive element that contributes to grain boundary strengthening.

【0009】一方、後者のすべり転位と界面との相互作
用による応力集中の観点からは、粒界 (界面) の整合性
と粒界近傍の転位挙動を理解した上で、界面とすべり転
位との相互作用の制御による応力集中の緩和が望まれて
いる。
On the other hand, from the viewpoint of the stress concentration due to the interaction between the slip dislocation and the interface in the latter case, it is necessary to understand the consistency of the grain boundary (interface) and the dislocation behavior in the vicinity of the grain boundary, and then to understand the relationship between the interface and the slip dislocation. Relaxation of stress concentration by controlling interaction is desired.

【0010】例えばハステロイC-276合金 (商品名) に
代表される高Ni基合金の場合、 250〜550 ℃で長時間時
効を受けると、規則化と呼ばれるNi2Cr 型規則相 [Crの
一部がMoで置換されたNi2(Cr、Mo) を含む規則相] への
変態が起こり、粒界破壊を伴う水素脆化が助長されるこ
とが知られている。この点について、粒界性状 (粒界で
の結晶方位差) と水素割れとの関係の結晶学的な検討か
ら、規則化の進行に伴って水素脆化による破壊形態が変
化し、不規則相では一般粒界 (非整合界面) が割れやす
いのに対し、規則化進行後は双晶界面 (整合界面) での
脆化割れが顕著になることが明らかとなっている。この
破壊形態の変化は、規則化による塑性変形挙動の変化
や、粒界での転位の集積や応力集中の変化に起因すると
考えられているものの、粒界 (界面) 性状と塑性変形と
の関係は明らかではない。
For example, in the case of a high Ni-based alloy represented by Hastelloy C-276 alloy (trade name), when it is aged at 250 to 550 ° C. for a long time, an ordered Ni 2 Cr type ordered phase [Cr It is known that the hydrogen embrittlement accompanied by intergranular fracture is promoted by the transformation into the ordered phase containing Ni 2 (Cr, Mo) whose part is replaced by Mo. Regarding this point, from the crystallographic examination of the relationship between grain boundary properties (crystal orientation difference at grain boundaries) and hydrogen cracking, the fracture morphology due to hydrogen embrittlement changes with the progress of ordering, and the disordered phase In general, it is clear that the general grain boundary (non-coherent interface) is prone to cracking, whereas the embrittlement cracking at the twin interface (coherent interface) becomes remarkable after ordering proceeds. This change in fracture morphology is thought to be due to changes in plastic deformation behavior due to ordering, changes in dislocation accumulation and stress concentration at grain boundaries, but the relationship between grain boundary (interface) properties and plastic deformation Is not clear.

【0011】そこで、本発明の目的は、粒界 (界面) 制
御を行うことにより、高強度と優れた耐応力腐食割れ性
を保持しつつ、油井、化学工業および地熱発電環境等の
ような硫化水素、二酸化炭素および塩素イオンの1種ま
たは2種以上含有する 250℃以下の低温の環境下で優れ
た耐水素脆化性を示す高Ni基合金と、鋳造法および粉末
成形法のいずれにも適用可能なその製造方法を提供する
ことである。
Therefore, an object of the present invention is to control the grain boundaries (interfaces) to maintain high strength and excellent resistance to stress corrosion cracking, while maintaining sulfurization in oil wells, chemical industry and geothermal power generation environments. High Ni-based alloys containing one or more hydrogen, carbon dioxide, and chloride ions and exhibiting excellent hydrogen embrittlement resistance in a low temperature environment of 250 ° C or lower, and for both casting and powder molding It is to provide an applicable manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】上述のように、ハステロ
イC-276相当合金では、規則−不規則変態点 (約600
℃)未満での長時間時効によりNi2Cr 型規則相への変態
が起こる。本発明者はこの規則化に伴う塑性変形挙動の
変化について検討した結果、Ni2Cr 型規則相中では、わ
ずかな歪量で双晶変形が誘発されること、こうして微細
な変形双晶が導入されると、一般粒界での応力集中が緩
和され、変形双晶の発生頻度が高いほど耐水素脆化性が
高くなることを究明した。
As described above, in the Hastelloy C-276 equivalent alloy, the order-disorder transformation point (about 600
Aging to a Ni 2 Cr type ordered phase occurs after long-term aging below (° C). The present inventor has investigated the change in plastic deformation behavior associated with this ordering, and as a result, twin deformation is induced by a slight amount of strain in the Ni 2 Cr type ordered phase, and thus fine deformation twins are introduced. It was clarified that the stress concentration at the general grain boundary was relaxed, and the higher the frequency of deformation twinning, the higher the hydrogen embrittlement resistance.

【0013】また、従来から知られているように、粉末
成形法で得た合金は粒界がファセティング状(階段状)
と呼ばれる特徴的な形状を有している。従って、上記の
規則化後の双晶発生頻度がより高くなるため、一般粒界
での応力緩和がより起こりやすくなると考えられる。
Further, as conventionally known, the grain boundaries of the alloy obtained by the powder molding method are faceting (stepwise).
It has a characteristic shape called. Therefore, it is considered that since the twinning frequency after the above regularization becomes higher, the stress relaxation at the general grain boundary is more likely to occur.

【0014】さらに、微細な変形双晶の導入は結晶粒微
細化と同様の効果を有することから、強度向上の効果も
ある。特に、粉末成形法を適用した場合には、粉末製造
時の結晶粒微細化との相乗効果により、一層の高強度化
が図られることになる。
Further, since the introduction of fine deformation twins has the same effect as the grain refinement, it also has the effect of improving the strength. In particular, when the powder molding method is applied, the strength is further enhanced by the synergistic effect with the refinement of the crystal grains during the powder production.

【0015】但し、一方で、規則相中では塑性変形挙動
の変化のため、一般粒界 (非整合界面) に代わって整合
界面 (双晶界面) での応力集中が高まり、整合界面で割
れやすくなるため、これを防止する必要がある。Ni2Cr
型規則相は、規則相−不規則相変態点(600℃付近) 以上
の温度での焼鈍により、再び不規則相に変態する。従っ
て、規則相にて変形双晶を導入した後、不規則相に逆変
態させることによって、非整合界面と整合界面のいずれ
の界面においても水素脆化割れを抑えることができる。
However, on the other hand, in the ordered phase, the plastic deformation behavior changes, so that the stress concentration at the coherent interface (twin interface) is increased instead of the general grain boundary (non-coherent interface), and cracks easily occur at the coherent interface. Therefore, it is necessary to prevent this. Ni 2 Cr
The type ordered phase is transformed into the disordered phase again by annealing at a temperature higher than the ordered phase-disordered phase transformation point (around 600 ° C). Therefore, hydrogen embrittlement cracking can be suppressed at both the non-coherent interface and the coherent interface by introducing the transformation twin in the ordered phase and then performing reverse transformation to the disordered phase.

【0016】以上の知見を基に、Ni、Cr、MoおよびFeの
含有量を限定し、さらに熱処理および時効処理の各条件
を特定することによって合金の規則化を促進した後、変
形双晶を発生させ、その後再び不規則相に逆変態させる
ことにより、粒内に多くの微細双晶を含む、耐水素脆化
に優れた合金の製造が、鋳造法と粉末成形法のいずれに
おいても可能であることを究明し、本発明を完成した。
Based on the above findings, the contents of Ni, Cr, Mo and Fe were limited, and the ordering of the alloy was promoted by further specifying the conditions of the heat treatment and the aging treatment. It is possible to produce alloys containing many fine twins in the grains and excellent in hydrogen embrittlement resistance by both the casting method and the powder compacting method by generating them and then transforming them back to the disordered phase again. The present invention has been completed and the present invention has been completed.

【0017】ここに、本発明の要旨とするところは、重
量%で、C: 0.001〜0.05%、Si:0.50%以下、Mn:2.
0 %以下、Fe: 2.5〜20%、Cr:10〜27%、Mo単独また
はMoとW複合で: 3.0〜24% (但し複合の場合はW≦10
%)Al:0.30%以下、P:0.010 %以下、S:0.0050%
以下、N:0.050 %以下、所望によりさらに、Ti:0.4
%以下、V:2%以下、Co:2%以下、およびCu:2%
以下の1種または2種以上;Sn:0.05%以下、Sb:0.05
%以下、およびZn:0.1 %以下の1種または2種以上;
ならびに/またはMg:0.1 %以下、Y:0.2 %以下、お
よびCa:0.1 %以下の1種または2種以上を含有し、残
部Ni (但しNi:60%以下) と不可避的不純物、から成る
合金組成を有し、かつ、この合金組成が原子%換算で、
Here, the gist of the present invention is, in weight%, C: 0.001 to 0.05%, Si: 0.50% or less, Mn: 2.
0% or less, Fe: 2.5 to 20%, Cr: 10 to 27%, Mo alone or in combination with Mo: 3.0 to 24% (however, in the case of a composite, W ≤ 10
%) Al: 0.30% or less, P: 0.010% or less, S: 0.0050%
Below, N: 0.050% or less, and if desired, Ti: 0.4
% Or less, V: 2% or less, Co: 2% or less, and Cu: 2%
One or more of the following; Sn: 0.05% or less, Sb: 0.05
% Or less, and Zn: 0.1% or less, one or more kinds;
And / or Mg: 0.1% or less, Y: 0.2% or less, and Ca: 0.1% or less, one or more alloys, and the balance Ni (but Ni: 60% or less) and inevitable impurities. Has a composition, and this alloy composition is in atomic% conversion,

【0018】[0018]

【数1】 [Equation 1]

【0019】[0019]

【数2】 [Equation 2]

【0020】の条件を満足し、双晶発生頻度 (変形双晶
の発生した結晶粒の割合) が70%以上の組織を有する、
耐応力腐食割れ性に加えて耐水素脆化割れ性にも優れた
高Ni基合金である。
Satisfying the condition of, and having a structure in which the frequency of twinning (the ratio of crystal grains in which deformation twinning occurs) is 70% or more.
It is a high Ni-based alloy that is excellent in hydrogen embrittlement cracking resistance in addition to stress corrosion cracking resistance.

【0021】別の面からは、本発明は、上記組成の高Ni
基合金素材を、 300℃以上、規則−不規則変態点未満で
10〜500 時間時効処理を施した後、冷間で5%以下の加
工歪を加え、次いで規則−不規則変態点以上、650 ℃以
下で5秒〜10分間保持し、空冷以上の冷却速度で冷却す
ることからなる、耐応力腐食割れ性に加えて耐水素脆化
割れ性にも優れた高Ni基合金の製造方法である。用いる
高Ni基合金素材は、鋳造法と粉末成形法のいずれの方法
で得たものであってもよく、製造する製品の形状や寸法
に応じて適当に選べばよい。
From another aspect, the present invention provides a high Ni content of the above composition.
Base alloy material at 300 ° C or higher and below the ordered-irregular transformation point
After aging treatment for 10 to 500 hours, cold working strain of 5% or less is applied, and then the material is maintained at a regular-irregular transformation point or higher and 650 ° C or lower for 5 seconds to 10 minutes, and at a cooling rate of air cooling or higher. It is a method for producing a high Ni-based alloy that is excellent in hydrogen embrittlement cracking resistance in addition to stress corrosion cracking resistance, which consists of cooling. The high Ni-based alloy material to be used may be obtained by either a casting method or a powder molding method, and may be appropriately selected according to the shape and dimensions of the product to be manufactured.

【0022】本発明によれば、上記の処理条件により粒
内塑性変形挙動と界面性状を制御することによって、硫
化水素、二酸化炭素、および塩素イオンの1種または2
種以上を含有する環境下でも耐応力腐食割れ性および耐
水素割れ性に優れた高Ni基合金が製造可能となる。
According to the present invention, by controlling the intragranular plastic deformation behavior and the interfacial properties under the above treatment conditions, one or two of hydrogen sulfide, carbon dioxide, and chlorine ion can be controlled.
It is possible to produce a high Ni-based alloy that is excellent in stress corrosion cracking resistance and hydrogen cracking resistance even in an environment containing more than one species.

【0023】[0023]

【作用】次に、本発明において合金組成および処理条件
を上述のように限定した理由について詳しく説明する。
なお、本明細書において、%は特にことわりがない限り
重量%である。
Next, the reason why the alloy composition and the processing conditions are limited as described above in the present invention will be described in detail.
In this specification,% means% by weight unless otherwise specified.

【0024】(1) 合金組成 C:Cは粒界に偏析するH原子との位置競合機構により
水素の粒界偏析を抑え、水素脆化による粒界割れを抑制
する作用がある。本合金では、特に0.001 %以上の添加
により耐水素割れ性が著しく向上する。しかし、0.05%
を超える多量添加は粒界応力腐食割れを助長するため、
その範囲を0.001 %以上、0.05%以下とした。好ましく
は 0.010〜0.035 %である。
(1) Alloy composition C: C has an action of suppressing grain boundary segregation of hydrogen by a position competition mechanism with H atoms segregated at grain boundaries, and suppressing grain boundary cracking due to hydrogen embrittlement. In the present alloy, the hydrogen cracking resistance is remarkably improved by adding 0.001% or more. But 0.05%
Addition in large amounts promotes intergranular stress corrosion cracking.
The range was set to 0.001% or more and 0.05% or less. It is preferably 0.010 to 0.035%.

【0025】Si:Siは脱酸成分として必要な成分であ
る。また、高Ni基合金の積層欠陥エネルギーを低下させ
る作用があり、変形双晶の発生を助長するのに有効な成
分である。しかし、その含有量が0.50%を超えると、延
性 (従って、熱間加工性) が低下するようになることか
ら、その上限値を0.50%とする。好ましくは0.05%以下
である。
Si: Si is a component necessary as a deoxidizing component. Further, it has a function of lowering the stacking fault energy of the high Ni-based alloy and is an effective component for promoting the generation of deformation twins. However, if its content exceeds 0.50%, the ductility (hence, hot workability) will deteriorate, so its upper limit is made 0.50%. It is preferably 0.05% or less.

【0026】Mn:Mnも、Siと同様に、脱酸作用を有し、
高Ni基合金の積層欠陥エネルギーを低下させる。しか
し、2.0 %を超えるとその効果は飽和するため、Mnの上
限を高めの2.0 %と定めた。好ましくは1.0 %以下であ
る。
Mn: Mn also has a deoxidizing action like Si,
Reduces stacking fault energy of high Ni-based alloys. However, when the content exceeds 2.0%, the effect saturates, so the upper limit of Mn was set to a higher value of 2.0%. It is preferably 1.0% or less.

【0027】Fe:Feは、Ni添加量とのバランスにより、N
i2(Cr,Mo)規則相への変態を促進するために適当量必要
である。本発明の合金においては、規則相のNiサイトが
Feで置換されることにより規則相への変態が促進するた
め、わずかな歪量で双晶変形が誘発され、耐水素割れ性
が効果的に改善される。ただしFeの含有量が2.5 %未満
または20%超では、規則化の進行が遅いので、その範囲
を 2.5〜20%とする。好ましくは 5.0〜15%である。
Fe: Fe is N, depending on the balance with the amount of Ni added.
An appropriate amount is necessary to accelerate the transformation to the i 2 (Cr, Mo) ordered phase. In the alloy of the present invention, the ordered phase Ni site is
Since substitution with Fe promotes transformation to an ordered phase, twin deformation is induced with a small amount of strain, and hydrogen cracking resistance is effectively improved. However, if the Fe content is less than 2.5% or more than 20%, the progress of ordering is slow, so the range is set to 2.5 to 20%. It is preferably 5.0 to 15%.

【0028】Cr:Crは、Moとともに、Ni2(Cr,Mo)規則相
の形成に寄与するので、前述の式(1) を満たす、即ち、
原子%換算で 24.5%≦(Cr/52+Mo/96+W/184)/(Ni/59+Cr/
52+Mo/96+W/184+Fe/56) ≦35.3% を満足する必要があ
る。また、耐食性の面から10%以上必要であるが、27%
を超えると熱間加工性が低下し、さらに延性、靱性、耐
食性にとって好ましくない金属間化合物が生成しやすく
なるので、Crは10〜27%の範囲で、かつ式(1) を満たす
量とする。
Since Cr: Cr contributes to the formation of a Ni 2 (Cr, Mo) ordered phase together with Mo, it satisfies the above formula (1), that is,
24.5% ≤ (Cr / 52 + Mo / 96 + W / 184) / (Ni / 59 + Cr /
52 + Mo / 96 + W / 184 + Fe / 56) ≦ 35.3% must be satisfied. Also, 10% or more is required from the viewpoint of corrosion resistance, but 27%
If it exceeds 1.0, the hot workability deteriorates, and further, an intermetallic compound which is unfavorable for ductility, toughness, and corrosion resistance is likely to be generated, so Cr is in the range of 10 to 27% and the amount satisfying the formula (1) is set. .

【0029】Mo、W:Moは、Crとの共存によって特に耐
孔食性を向上させる。この効果は、3.0 %以上、より好
ましくは5.0 %以上のMoの添加によって顕著となるが、
24%を超えて添加すると、Ni2(Cr,Mo)形成されにくくな
り、耐食性に対して好ましくないので、その範囲を 3.0
〜24%とする。
Mo and W: Mo improve the pitting corrosion resistance especially when coexisting with Cr. This effect becomes remarkable by the addition of 3.0% or more, more preferably 5.0% or more,
If added in excess of 24%, Ni 2 (Cr, Mo) formation becomes difficult and it is not preferable for corrosion resistance.
~ 24%

【0030】WもMoと同様の作用を示すため、Mo量の一
部をWで置換してもよいが、10%を超えてWを添加する
と、Moと同様に上述のような金属間化合物が生成しやす
くなることから、Wは10%以下に制限する。好ましく
は、Mo単独またはMoとWの合計量が 4.0〜20%、Wの上
限は8%である。
Since W also exhibits the same action as Mo, a part of the Mo amount may be replaced with W. However, if W is added in an amount of more than 10%, similar to Mo, the above-mentioned intermetallic compound is added. Is easily generated, so W is limited to 10% or less. Preferably, Mo alone or the total amount of Mo and W is 4.0 to 20%, and the upper limit of W is 8%.

【0031】Al:AlはNi基合金の脱酸剤として最も有効
であり、添加量の増加とともに脱酸効果は向上するが、
0.30%を超えるとその効果が飽和するため0.30%以下と
する。
Al: Al is most effective as a deoxidizing agent for Ni-based alloys, and the deoxidizing effect improves as the amount of addition increases, but
If it exceeds 0.30%, the effect is saturated, so 0.30% or less.

【0032】P、S:不可避不純物のP、Sは、粒界偏
析により熱間加工性を低下させ、耐食性も劣化するよう
になるため、P≦0.010 %、S≦0.0050%に制限する。
P, S: P and S as unavoidable impurities reduce the hot workability due to grain boundary segregation and also deteriorate the corrosion resistance, so P and S are limited to P ≦ 0.010% and S ≦ 0.0050%.

【0033】N:Nは介在物量を増加させ、材料特性の
異方性の要因となるため、N≦0.050 %、好ましくはN
≦0.010 %とする。
N: N increases the amount of inclusions and causes anisotropy of material properties, so N ≦ 0.050%, preferably N
≦ 0.010%

【0034】Ni:本発明が対象とする合金はNi基合金で
あって、オーステナイト母相から規則変態したNi2(Cr,M
o)規則相の出現により強度特性が向上することと、この
規則相に一定以下の歪を加えて変形双晶を導入し、一般
粒界への応力集中を緩和することが基本となっている。
この規則相の形成は、経済的理由から、例えば500 時間
以内の時効処理中に起こることが好ましい。従って、時
効処理によるNi2(Cr,Mo)規則相の形成が促進されるよう
に、Niの添加量をCr、MoおよびFeの添加量とバランスさ
せることが必要となる。
Ni: The alloy targeted by the present invention is a Ni-based alloy, and Ni 2 (Cr, M
o) Basically, the strength properties are improved by the appearance of ordered phases, and strain below a certain level is applied to the ordered phases to introduce deformation twins to relax the stress concentration at general grain boundaries. .
For economic reasons, the formation of this ordered phase preferably occurs during aging, for example within 500 hours. Therefore, it is necessary to balance the additive amount of Ni with the additive amounts of Cr, Mo and Fe so that the formation of the ordered Ni 2 (Cr, Mo) phase is promoted by the aging treatment.

【0035】FeはNiと置換すると考えられるので、規則
相を安定に形成させるには、化学量論的組成の (Ni+F
e):(Cr, Mo)=2:1に近い組成とすることが有利であ
る。そのために、前記の式(2) 、即ち、原子%で 64.7%
≦(Ni/59+Fe/56)/(Ni/59+Cr/52+Mo/96+W/184+Fe/56) ≦
75.5% を満たす必要がある。ただし、Ni含有量が60%を
超えると水素脆化割れを起こし易くなることから、Ni量
の上限値を60%とする。
Since Fe is considered to replace Ni, stable formation of an ordered phase requires stable formation of (Ni + F) having a stoichiometric composition.
It is advantageous to have a composition close to e) :( Cr, Mo) = 2: 1. Therefore, the above formula (2), that is, 64.7% in atomic%
≤ (Ni / 59 + Fe / 56) / (Ni / 59 + Cr / 52 + Mo / 96 + W / 184 + Fe / 56) ≤
Must meet 75.5%. However, if the Ni content exceeds 60%, hydrogen embrittlement cracking tends to occur, so the upper limit of the Ni content is made 60%.

【0036】以上に説明した金属成分は本発明にかかる
合金を構成する必須元素である。以上の成分のほかに、
本発明の合金はさらに次に説明する成分を任意添加元素
として含有していてもよい。
The metal components described above are essential elements constituting the alloy according to the present invention. In addition to the above ingredients,
The alloy of the present invention may further contain the components described below as optional additional elements.

【0037】Ti、V、Co、Cu:Ti、V、Co、Cuはいずれ
も高Ni基合金の主要な元素であるNi、Cr、Mo、Feと置換
固溶して積層欠陥エネルギーを低下させ、変形双晶誘発
に寄与する元素であるので、必要に応じて添加すること
ができる。
Ti, V, Co, Cu: Ti, V, Co, and Cu all replace with Ni, Cr, Mo, and Fe, which are the main elements of the high Ni-based alloy, to form a solid solution to lower the stacking fault energy. Since it is an element that contributes to the induction of deformation twinning, it can be added if necessary.

【0038】ただし、Tiが0.4 %を超えるとNi3Ti とし
て析出し、耐食性を劣化させるため、Tiの上限は0.4 %
とする。Vが2%を超えると靱性が低下するため、Vの
上限は2%とする。また、CoおよびCuの添加効果は、そ
れぞれ2%を超えると飽和するため、CoとCuの上限はそ
れぞれ2%とする。
However, when Ti exceeds 0.4%, it precipitates as Ni 3 Ti and deteriorates the corrosion resistance. Therefore, the upper limit of Ti is 0.4%.
And If V exceeds 2%, toughness decreases, so the upper limit of V is made 2%. Further, the effect of addition of Co and Cu is saturated when each exceeds 2%, so the upper limits of Co and Cu are both set to 2%.

【0039】Sn、Sb、Zn:Sn、Sb、ZnもいずれもNi基合
金の主としてオーステナイトの八面***置に侵入して積
層欠陥エネルギーを低下させ、変形双晶誘発に寄与する
元素であるので、必要により添加することができる。そ
の場合、Sn:0.05%、Sb:0.05%、Zn:0.1 %を超える
と、加工性または耐食性が劣化する。
Since Sn, Sb, Zn: Sn, Sb, and Zn are all elements that penetrate mainly into the octahedron position of austenite in the Ni-based alloy to lower the stacking fault energy and contribute to the induction of deformation twinning, It can be added if necessary. In that case, if Sn: 0.05%, Sb: 0.05%, and Zn: 0.1% are exceeded, the workability or corrosion resistance deteriorates.

【0040】Mg、Y、Ca:Mg、Y、Caは、いずれも微量
添加により熱間加工性を向上させるので、必要により本
発明の合金に添加してもよい。その場合、Mg:0.1 %、
Y:0.2 %、Ca:0.1 %の各上限を超えると、逆に低融
点化合物を生成しやすくなり加工性が低下する。
Mg, Y, Ca: Since Mg, Y, and Ca all improve the hot workability by adding a trace amount, they may be added to the alloy of the present invention if necessary. In that case, Mg: 0.1%,
On the other hand, when the upper limits of Y: 0.2% and Ca: 0.1% are exceeded, on the contrary, a low-melting point compound is likely to be formed and the workability deteriorates.

【0041】(2) 双晶発生頻度 双晶発生頻度とは、全結晶粒のうち変形双晶が発生した
結晶粒の割合 (%) を意味する。この双晶発生頻度は、
結晶粒に歪みを加えた場合、結晶表面にすべり線が生じ
るが、その中でも双晶変形を伴うすべり線は特徴的な形
態を有するので、結晶粒がそれほど微細でなければ、光
学顕微鏡や走査型電子顕微鏡で容易に判別可能である。
超微細粒の場合は、透過型電子顕微鏡の観察により、容
易に判断でき、観察した領域に含まれる結晶粒の総数(N
o)と変形双晶が認められる結晶粒の総数(N) とをカウン
トすることにより求めることができる。
(2) Frequency of twinning occurrence The frequency of twinning means the percentage (%) of crystal grains in which deformation twinning occurs among all crystal grains. This twinning frequency is
When strain is applied to the crystal grains, slip lines occur on the crystal surface, but among them, the slip lines accompanied by twin deformation have a characteristic morphology. It can be easily identified with an electron microscope.
In the case of ultrafine particles, it can be easily judged by observation with a transmission electron microscope, and the total number of crystal grains (N
It can be obtained by counting o) and the total number (N) of crystal grains in which deformation twinning is recognized.

【0042】前述したように、本発明の高Ni基合金は、
Ni2(Cr,Mo)規則相に歪を加えて導入した変形双晶が一般
粒界での応力集中を緩和し、水素割れを防ぐのに有効で
あるとの知見に基づくものである。この作用による耐水
素割れの防止を十分に確保するには、全結晶粒の少なく
とも70%に変形双晶が発生している (即ち、双晶発生頻
度70%以上) 必要がある。好ましくは、双晶発生頻度は
90%以上、特に好ましくは100 %である。
As mentioned above, the high Ni-based alloy of the present invention is
This is based on the finding that the deformation twins introduced by adding strain to the Ni 2 (Cr, Mo) ordered phase are effective in mitigating the stress concentration at general grain boundaries and preventing hydrogen cracking. In order to sufficiently ensure the prevention of hydrogen cracking resistance due to this action, it is necessary that at least 70% of all crystal grains have deformation twins (that is, twinning frequency of 70% or more). Preferably, the twinning frequency is
90% or more, particularly preferably 100%.

【0043】双晶発生頻度は、時効処理で形成されるNi
2(Cr,Mo)規則相による規則化の程度(即ち、規則度)に
依存する。後述するように、時効処理で規則度40%以上
となるように規則相を形成すれば、その後の加工時に加
えられる変形で導入される変形双晶の発生頻度を70%以
上とすることができる。
The frequency of twin formation depends on the Ni formed by the aging treatment.
2 Depends on the degree of ordering by the (Cr, Mo) ordered phase (ie, the degree of order). As will be described later, if the ordered phase is formed so that the ordering degree is 40% or more in the aging treatment, it is possible to increase the occurrence frequency of deformation twinning introduced by the deformation applied during the subsequent processing to 70% or more. .

【0044】(3) 高Ni基合金素材の調製 上記(1) に述べた合金組成を有する高Ni基合金素材の調
製は、鋳造法と粉末成形法のいずれでも行うことができ
る。鋳造法の場合には、例えば、各成分元素の金属およ
び/または母合金を所望の化学組成となる割合で混合
し、真空溶解法 (例、VAR法、VIM法、ESR法)
などの適当な溶解方法で溶解させ、次いで得られた高Ni
基合金の溶湯を、例えばインゴットに鋳造し、必要によ
り適当な熱間加工 (例、鍛造、圧延) などにより所望の
形状を付与することにより、高Ni基合金素材を得ること
ができる。鋳造法は、管材、板材などの比較的単純な形
状の製品の製造に適している。
(3) Preparation of high Ni-base alloy material The preparation of the high Ni-base alloy material having the alloy composition described in (1) above can be carried out by either the casting method or the powder molding method. In the case of the casting method, for example, the metals and / or mother alloys of the respective component elements are mixed in a ratio to achieve a desired chemical composition, and the vacuum melting method (eg, VAR method, VIM method, ESR method) is used.
Dissolve by a suitable dissolution method such as
A high Ni-base alloy material can be obtained by casting the molten base alloy into, for example, an ingot and imparting a desired shape thereto by appropriate hot working (eg, forging, rolling) or the like as necessary. The casting method is suitable for manufacturing products having relatively simple shapes such as pipes and plates.

【0045】大型あるいは複雑形状の製品を製造する場
合には、凝固時のマクロ偏析が防止され、形状の自由度
が大きい粉末成形法が適している。この場合も、まず上
記と同様に高Ni基合金の溶湯を調製し、この溶湯からア
トマイズ法、超急冷凝固法等を利用して合金粉末を作製
し、粉末成形を行う。この粉末成形法は、例えば、次の
いずれかの方法により行うことができ、製品形状や寸法
に応じて適当な方法を選択すればよい。
In the case of manufacturing a product having a large size or a complicated shape, a powder molding method is suitable because macrosegregation during solidification is prevented and the degree of freedom of shape is large. Also in this case, first, a melt of a high Ni-based alloy is prepared in the same manner as described above, and an alloy powder is produced from this melt by using an atomizing method, a super-quenching solidification method, etc., and powder molding is performed. This powder molding method can be performed, for example, by any of the following methods, and an appropriate method may be selected according to the shape and size of the product.

【0046】成形・加熱により焼結合金とした後、熱
間加工して所望の形状を付与する、 所望の形状に成形した後、通常の固溶化処理で所望結
晶粒径に成長させる、 熱間等方圧プレスを行った後、必要に応じ固溶化処理
を行う、 熱間押出しを行った後、必要に応じ固溶化処理を行
う。
After forming into a sintered alloy by molding and heating, hot working is applied to give a desired shape. After being formed into a desired shape, it is grown to a desired crystal grain size by an ordinary solution treatment. After carrying out isotropic pressing, solution treatment is carried out if necessary, and after hot extrusion, solution treatment is carried out as necessary.

【0047】本発明方法によれば、このようにして調製
した高Ni基合金素材に時効処理、冷間加工、および逆変
態熱処理を行うことにより、上記(2) に述べた双晶発生
頻度を有する、耐水素脆化割れ性が改善された高Ni基合
金が製造される。
According to the method of the present invention, the high Ni-base alloy material thus prepared is subjected to aging treatment, cold working, and reverse transformation heat treatment to obtain the twinning occurrence frequency described in (2) above. A high Ni-based alloy having improved hydrogen embrittlement cracking resistance is produced.

【0048】なお、後述するように、冷間加工により加
えられる歪量は5%以下に制限されるので、使用する高
Ni基合金素材には、冷間加工工程で加えられる変形歪に
より目的とする最終製品の形状が得られるように、予め
最終製品に近い形状を付与しておく。
As will be described later, since the amount of strain applied by cold working is limited to 5% or less, the high strain to be used is required.
The Ni-based alloy material is preliminarily given a shape close to the final product so that the desired final product shape can be obtained by the deformation strain applied in the cold working step.

【0049】(4) 時効処理 本発明の高Ni基合金は、オーステナイト相から規則変態
したNi2(Cr,Mo)規則相に変形を加えて導入した微小双晶
を結晶粒内に多数含むという特徴を有する。規則相に変
態させるために、使用する高Ni基合金素材をまず規則−
不規則変態点より低温で時効処理をする。変形により70
%以上の頻度で変形双晶を発生させるためには、時効処
理後の規則度が40%以上であれば十分であるが、時効温
度が300℃未満または規則−不規則変態点以上、時効時
間が10時間未満では、規則度が不十分、または規則化せ
ず、双晶発生に寄与しない。時効時間の上限は特に設定
する必要はないが、経済的理由から上限を500 時間とし
た。
(4) Aging Treatment It is said that the high Ni-based alloy of the present invention contains a large number of micro twins introduced by deforming the Ni 2 (Cr, Mo) ordered phase transformed from the austenite phase into the crystal grains. It has characteristics. In order to transform into the ordered phase, the high Ni-based alloy material to be used should first be ordered-
Aging treatment is performed at a temperature lower than the irregular transformation point. 70 due to deformation
%, It is sufficient if the ordering degree after aging treatment is 40% or more in order to generate deformation twins at a frequency of not less than%, but the aging temperature is less than 300 ° C or the order-irregular transformation point or more, the aging time If it is less than 10 hours, the degree of order is insufficient, or the ordering does not occur and it does not contribute to twinning. It is not necessary to set the upper limit of the aging time, but for economic reasons, the upper limit was set to 500 hours.

【0050】(5) 加工 変形双晶発生 (双晶変形) のためには、冷間加工による
若干の変形歪が必要である。しかし、変形の歪量が5%
を超えると転位密度が上がり、次の逆変態熱処理時に、
転位の再配列による延性の低下が問題となる。そこで、
加工工程での変形歪量は5%以下に制限した。歪量の下
限は、変形により70%以上の頻度で変形双晶を発生させ
ることができる限り特に制限されない。例えば、1%程
度の歪量でも70%以上の結晶粒に変形双晶を導入でき
る。
(5) Working In order to generate deformation twinning (twinning deformation), some deformation strain due to cold working is necessary. However, the distortion amount of deformation is 5%
Dislocation density rises when the value exceeds, and during the next reverse transformation heat treatment,
The reduction of ductility due to rearrangement of dislocations becomes a problem. Therefore,
The amount of deformation strain in the working process was limited to 5% or less. The lower limit of the amount of strain is not particularly limited as long as deformation twins can be generated at a frequency of 70% or more by deformation. For example, a deformation twin can be introduced into 70% or more of crystal grains even with a strain amount of about 1%.

【0051】この変形は、引張変形、圧縮変形のいずれ
でもよい。加工温度は普通には常温であるが、冷間、即
ち、規則−不規則変態点より低温であれば温度は制限さ
れない。合金素材がバルブ、継手などの冷間加工が難し
い形状の場合であっても、5%以下のわずかな変形歪
は、例えばショットピーニング加工などの手段により付
与することができる。
This deformation may be tensile deformation or compression deformation. The working temperature is usually room temperature, but the temperature is not limited as long as it is cold, that is, lower than the ordered-disordered transformation point. Even when the alloy material has a shape such as a valve or joint that is difficult to cold work, a slight deformation strain of 5% or less can be imparted by means such as shot peening.

【0052】(6) 逆変態熱処理 規則相中での整合界面での水素脆化割れを回避するた
め、加工によって変形双晶を導入した後、不規則相に逆
変態させる。Ni2(Cr,Mo)の規則−不規則変態点は550〜6
50 ℃の範囲内にあるので、この範囲で短時間保持する
ことにより、規則相は消滅する。具体的な温度は、その
合金系の規則−不規則変態点より高温となるように選択
する。保持時間は、逆変態を十分に生じさせるには5秒
以上必要であるが、長くなりすぎると脆化相が析出す
る。従って、脆化相析出を抑えるため、保持時間の上限
は10分とし、好ましくは1分以内とする。また冷却速度
は空冷以上とする。
(6) Inverse transformation heat treatment In order to avoid hydrogen embrittlement cracking at the coherent interface in the ordered phase, the transformation twin is introduced into the disordered phase by the processing, and then the inverse transformation to the disordered phase is performed. Ni 2 (Cr, Mo) order-irregular transformation point is 550-6
Since the temperature is within the range of 50 ° C, the ordered phase disappears by keeping this range for a short time. The specific temperature is selected to be higher than the ordered-disordered transformation point of the alloy system. The holding time is 5 seconds or more in order to sufficiently cause the reverse transformation, but if it is too long, the embrittlement phase is precipitated. Therefore, in order to suppress the embrittlement phase precipitation, the upper limit of the holding time is 10 minutes, preferably within 1 minute. The cooling rate is air cooling or higher.

【0053】かくして、本発明方法によれば、高Ni基合
金に微小双晶を導入することにより、鋳造した高Ni基合
金については0.2 %耐力≧70 kgf/mm2、伸び≧25%、粉
末成形した高Ni基合金については0.2 %耐力≧100 kgf/
mm2 、伸び≧20%という優れた機械的性質を保持しつ
つ、耐食性、つまり応力腐食割れと水素脆性に対する抵
抗性が非常に優れた高Ni基合金製品を得ることができ
る。
Thus, according to the method of the present invention, 0.2% proof stress ≧ 70 kgf / mm 2 , elongation ≧ 25%, powder, by introducing micro twins into the high Ni-base alloy, 0.2% proof stress ≧ 100 kgf /
It is possible to obtain a high Ni-based alloy product having excellent corrosion resistance, that is, resistance to stress corrosion cracking and hydrogen embrittlement, while maintaining excellent mechanical properties of mm 2 and elongation ≧ 20%.

【0054】[0054]

【実施例】【Example】

(実施例1)表1に化学組成を示すNo.1〜55の各高Ni基
合金素材を、真空溶解 (VAR法)により得た合金溶湯
をインゴット (直径150 ×高さ310 mm) に鋳造した後、
熱間鍛造および熱間圧延によって板状 (厚さ10mm×幅10
0mm ×長さ200mm)に形状付与することにより作製した。
この板状の合金素材に、本発明方法に従って、大気雰囲
気炉内で所定の時効処理を施した後、常温での冷間引抜
き加工により所定量の変形歪を与えて双晶変形を生じさ
せ、次いで規則−不規則変態点以上の所定温度に30秒間
加熱して逆変態させることにより、本発明の高Ni基合金
を得た。これらの合金素材の処理条件を表2に示す。
(Example 1) Each of the high Ni-based alloy materials No. 1 to 55 whose chemical composition is shown in Table 1 was cast into an ingot (diameter 150 x height 310 mm) of molten alloy obtained by vacuum melting (VAR method). After doing
Plate shape (thickness 10 mm × width 10 by hot forging and hot rolling
It was produced by giving a shape of 0 mm x length 200 mm).
This plate-shaped alloy material, according to the method of the present invention, after subjected to a predetermined aging treatment in an atmosphere atmosphere furnace, to give a predetermined amount of deformation strain by cold drawing at room temperature to produce twin deformation, Then, the high Ni-based alloy of the present invention was obtained by heating for 30 seconds at a predetermined temperature equal to or higher than the ordered-disordered transformation point for reverse transformation. Table 2 shows the processing conditions for these alloy materials.

【0055】規則−不規則変態点は、電気抵抗値の温度
依存性を測定することにより求めた。即ち、所定の規則
化処理を施した合金の電気抵抗値を測定しながら室温付
近から昇温していくと電気抵抗値が急激に変化する。こ
の時の温度が規則−不規則変態点であるので、この温度
を測定し、表2に示した。なお、こうして求めた規則−
不規則変態点は、昇温速度により±10℃程度変動する。
本実施例では、昇温速度を100 ℃/minとした。
The regular-irregular transformation point was determined by measuring the temperature dependence of the electric resistance value. That is, the electric resistance value changes abruptly as the temperature rises from around room temperature while measuring the electric resistance value of the alloy subjected to a predetermined ordering treatment. Since the temperature at this time is a regular-irregular transformation point, this temperature was measured and shown in Table 2. In addition, the rule obtained in this way −
The irregular transformation point fluctuates by about ± 10 ° C depending on the heating rate.
In this example, the temperature rising rate was 100 ° C./min.

【0056】比較のために、上記合金素材の一部につい
て、上記処理を表2に示す本発明の範囲外を含む条件で
実施し、比較用の合金を得た。また、化学組成が本発明
の範囲外であるNo. 56〜69の各高Ni基合金素材につい
て、表2に示す本発明の範囲内の条件で処理することに
よっても、比較用の合金を得た。
For comparison, a part of the alloy material was subjected to the above treatment under conditions including the range outside the scope of the present invention shown in Table 2 to obtain a comparative alloy. Further, by treating each of the high Ni-based alloy materials of Nos. 56 to 69 whose chemical compositions are outside the scope of the present invention under the conditions within the scope of the present invention shown in Table 2, a comparative alloy is obtained. It was

【0057】得られた各高Ni基合金の双晶発生頻度と耐
水素脆化感受性を次のようにして測定した。 双晶発生頻度:時効処理後に加工歪を加えて双晶変形を
誘発させた状態の各合金から採取した試験片の表面を硫
酸とメチルアルコールの混合溶液中で電解研磨して鏡面
仕上げし、その表面を走査電子顕微鏡を用いて反射電子
像の観察を行い、結晶粒の総数(No)と双晶の発生した結
晶粒の数(N) とをカウントして(N/No)×100 %で双晶の
発生頻度を求めた。なお、バラツキを迎えるために総数
100 個以上の結晶粒を対象に観察した。また、表面の一
部から薄膜試料を採取して透過電子顕微鏡観察を行った
結果、双晶の結晶方位関係を有することが確認された。
さらに、その後に逆変態点を超える温度で保持した後で
再度組織観察を行い、双晶発生頻度に変化のないことを
確認した。
The twinning frequency and hydrogen embrittlement resistance of each of the obtained high Ni-base alloys were measured as follows. Frequency of twinning: The surface of the test specimens taken from each alloy in the state where twinning deformation was induced by applying work strain after aging treatment was electropolished in a mixed solution of sulfuric acid and methyl alcohol and mirror-finished. The backscattered electron image of the surface was observed using a scanning electron microscope, and the total number of crystal grains (No) and the number of crystal grains in which twins were generated (N) were counted and (N / No) x 100% The frequency of twinning was calculated. It should be noted that the total number is
100 or more crystal grains were observed. As a result of a transmission electron microscope observation of a thin film sample taken from a part of the surface, it was confirmed to have a twin crystal orientation relationship.
After that, the microstructure was observed again after holding at a temperature exceeding the reverse transformation point, and it was confirmed that the twinning frequency did not change.

【0058】耐水素脆化感受性:逆変態熱処理後に得た
各合金の供試材から直径2.54mm×ゲージ長25.4mmの引張
試験片を採取し、3% H2SO4水溶液中、温度25℃、歪速度
1×10-6/secの条件下で陰極チャージを行いながら水素
発生下に引張試験を実施した。同じ歪速度での引張試験
を室温の大気中でも実施した。試験結果は、水素脆化感
受性 (陰極チャージ引張の破断伸び/大気中での引張の
破断伸びの比) と陰極チャージ引張5%変形後の表面割
れの有無で表示した。
Hydrogen embrittlement resistance: Tensile test pieces with a diameter of 2.54 mm and a gauge length of 25.4 mm were taken from the test material of each alloy obtained after the reverse transformation heat treatment, and the specimen was taken in a 3% H 2 SO 4 aqueous solution at a temperature of 25 ° C. A tensile test was performed under hydrogen evolution while performing cathode charging under a strain rate of 1 × 10 −6 / sec. Tensile tests at the same strain rate were also performed in room temperature air. The test results are shown by hydrogen embrittlement susceptibility (ratio of elongation at break of cathode charge tension / breakage elongation at tension in air) and presence or absence of surface cracks after 5% deformation of cathode charge tension.

【0059】これらの測定結果を、大気中引張試験での
0.2%耐力および伸びの測定値とともに、表2に併せて
示す。
These measurement results are shown in a tensile test in air.
The measured values of 0.2% proof stress and elongation are also shown in Table 2.

【0060】[0060]

【表1−1】 [Table 1-1]

【0061】[0061]

【表1−2】 [Table 1-2]

【0062】[0062]

【表1−3】 [Table 1-3]

【0063】[0063]

【表2−1】 [Table 2-1]

【0064】[0064]

【表2−2】 [Table 2-2]

【0065】[0065]

【表2−3】 [Table 2-3]

【0066】表2に示したように、本発明合金はいずれ
も、全ての結晶粒に双晶を含んでいた (即ち、双晶発生
頻度100 %) 。そのため、すべての本発明合金が、室温
での大気中0.2 %耐力70 kgf/mm2以上、伸び25%以上と
いう望ましい強度および延性の水準を維持していた。同
時に、耐食性に関しても、耐水素脆化感受性は0.75以上
と高く、陰極チャージ引張5%変形後に割れを生じなか
った。これに対し、比較例の合金はいずれも強度と耐食
性のいずれかが良好ではなかった。
As shown in Table 2, all the alloys of the present invention contained twins in all the grains (that is, twinning frequency 100%). Therefore, all the alloys of the present invention maintained the desirable strength and ductility levels of 0.2% proof stress of 70 kgf / mm 2 or more in the air at room temperature and elongation of 25% or more. At the same time, with respect to corrosion resistance as well, the hydrogen embrittlement resistance was as high as 0.75 or more, and cracks did not occur after the cathode charge tensile deformation of 5%. In contrast, the alloys of Comparative Examples were not good in either strength or corrosion resistance.

【0067】図1〜4に、合金素材を鋳造法により作製
した実施例1の高Ni基合金について、各種温度での時効
処理時間が、時効処理後の規則度、加工後の双晶発生頻
度、および逆変態後の合金の耐水素脆化感受性に及ぼす
影響を示す。具体的には、図1は合金素材No.1について
温度400 ℃で、図2は合金素材No.2について温度200℃
で、また図3は合金素材No.32 について温度650 ℃でそ
れぞれ時効処理を行った場合の結果である。規則度は規
則合金中の原子の規則的配列の度合を示すパラメータで
あり、X線回折パターンでの規則格子反射強度を完全規
則合金での対応する反射強度と比較することにより求め
た。
1 to 4, the aging treatment time at various temperatures, the ordering degree after aging treatment, and the twinning occurrence frequency after working of the high Ni-base alloy of Example 1 produced by casting the alloy material are shown in FIGS. And the effect on the hydrogen embrittlement resistance of the alloy after reverse transformation. Specifically, Fig. 1 shows a temperature of 400 ℃ for alloy material No. 1, and Fig. 2 shows a temperature of 200 ℃ for alloy material No. 2.
Fig. 3 shows the results of aging treatment for alloy material No. 32 at a temperature of 650 ° C. The degree of order is a parameter indicating the degree of the regular arrangement of atoms in the ordered alloy, and was obtained by comparing the ordered lattice reflection intensity in the X-ray diffraction pattern with the corresponding reflection intensity in the perfectly ordered alloy.

【0068】図1に示すように、時効処理を本発明の範
囲内の温度で行った場合には、時効時間10分以上で規則
度が40%以上となり、加工歪の付与によって双晶発生頻
度が70%以上となって、逆変態後に得られた本発明合金
の耐水素脆化感受性は著しく改善された。これに対し
て、図2に示すにように、時効温度が200 ℃と低いと、
10000 時間の時効でも規則度が40%に達せず、従って、
双晶発生頻度が低く、耐水素脆化感受性の改善は不十分
であった。また、図3のように時効温度が高すぎると、
時効で規則化が起こらないため、双晶が導入できず、耐
水素脆化感受性も全く改善されなかった。
As shown in FIG. 1, when the aging treatment is carried out at a temperature within the range of the present invention, the ordering degree becomes 40% or more in the aging time of 10 minutes or more, and the twinning occurrence frequency is caused by the addition of the working strain. Of 70% or more, the susceptibility to hydrogen embrittlement of the alloy of the present invention obtained after reverse transformation was remarkably improved. On the other hand, as shown in Fig. 2, when the aging temperature is as low as 200 ℃,
Even with 10,000 hours of aging, the degree of regularity does not reach 40%, so
The frequency of twinning was low, and the improvement of hydrogen embrittlement resistance was insufficient. Moreover, if the aging temperature is too high as shown in FIG. 3,
Since aging did not cause regularization, twinning could not be introduced and hydrogen embrittlement resistance was not improved at all.

【0069】図4に、合金素材No.36 について加工で加
えた変形歪量を変化させ、変形歪量が加工後の転位密度
(変形双晶誘起前) および双晶発生頻度と逆変態後の耐
水素脆化感受性に及ぼす影響を示す。転位密度は透過電
子顕微鏡で転位を観察し、単位体積当たりの転位の長さ
を測定することにより算出した。なお、変形双晶が発生
すると転位密度は変化する。この図からわかるように、
1%を下回るごくわずかな変形歪量で70%以上の結晶粒
に双晶が発生し、耐水素脆化感受性が著しく改善され
た。しかし、変形歪量が5%を超えると、転位密度が高
くなりすぎ、その後の逆変態の際の熱処理により転移の
再配列が生じて脆化するため、延性が低下し、双晶発生
頻度は高くても、耐水素脆化感受性は低下した。
FIG. 4 shows that the amount of deformation strain applied in working of alloy material No. 36 was changed, and the amount of deformation strain was the dislocation density after working.
The effects (before deformation twinning induction), twinning occurrence frequency, and hydrogen embrittlement resistance after reverse transformation are shown. The dislocation density was calculated by observing the dislocations with a transmission electron microscope and measuring the length of the dislocations per unit volume. The dislocation density changes when deformation twinning occurs. As you can see from this figure,
Twin crystals were formed in 70% or more of the crystal grains with a very small deformation strain of less than 1%, and the hydrogen embrittlement resistance was significantly improved. However, if the amount of deformation strain exceeds 5%, the dislocation density becomes too high, and rearrangement of dislocations occurs due to heat treatment during the subsequent reverse transformation, resulting in embrittlement, resulting in a decrease in ductility and a twinning occurrence frequency. Even if it was high, the hydrogen embrittlement resistance was lowered.

【0070】(実施例2)実施例1と同様の真空溶解法
により溶製した、表1に示した合金素材No.1〜55と同じ
化学組成の合金溶湯からArガスアトマイズ法により平
均粒径 150μmの粉末を作製した。この合金粉末を軟鋼
カプセルに封入して真空脱気した後、押出し比10の熱間
押出しにより円柱状 (直径30mm×高さ30mm) に加工し、
それぞれ表1の対応する番号と同一組成の高Ni基合金素
材No. 1'〜55' を作製した。
(Example 2) From an alloy melt having the same chemical composition as the alloy materials No. 1 to 55 shown in Table 1 prepared by the vacuum melting method similar to Example 1, an average particle size of 150 μm was obtained by the Ar gas atomization method. Powder was prepared. After encapsulating this alloy powder in a mild steel capsule and degassing in vacuum, it was processed into a columnar shape (diameter 30 mm × height 30 mm) by hot extrusion with an extrusion ratio of 10.
High Ni-based alloy material Nos. 1'to 55 'having the same compositions as the corresponding numbers in Table 1 were produced.

【0071】その後、カプセルを除去し、本発明方法に
従って、大気雰囲気炉内で所定の時効処理を施した後、
常温での圧縮変形により所定量の変形歪を加え、ついで
規則−不規則変態点以上の所定温度に30秒間加熱して逆
変態させることによって本発明の高Ni基合金を得た。こ
れらの合金素材の処理条件を表3に示す。
Then, after removing the capsules and subjecting them to a predetermined aging treatment in an air atmosphere furnace according to the method of the present invention,
A high-Ni-base alloy of the present invention was obtained by applying a predetermined amount of deformation strain by compressive deformation at room temperature, and then by heating for 30 seconds at a predetermined temperature higher than the ordered-disordered transformation point to perform reverse transformation. Table 3 shows the processing conditions for these alloy materials.

【0072】比較のために、上記合金素材の一部につい
て、上記処理を表3に示す本発明の範囲外を含む条件で
実施して、比較用の合金を得た。また、表1に合金素材
No.56〜69として示した本発明の範囲外の化学組成につ
いても、上記と同様に粉末成形により、それぞれこれら
と同一組成の合金素材No.56'〜69' を作製した後、表3
に示す本発明の範囲内の条件で処理することにより、比
較用の合金を得た。
For comparison, a part of the alloy material was subjected to the above treatment under conditions including the range outside the scope of the present invention shown in Table 3 to obtain a comparative alloy. Also, Table 1 shows alloy materials
For chemical compositions outside the scope of the present invention shown as Nos. 56 to 69, alloy raw materials Nos. 56 'to 69' having the same compositions as those described above were produced by powder molding in the same manner as described above, and then Table 3
An alloy for comparison was obtained by treating under the conditions within the scope of the present invention shown in.

【0073】得られた各合金の規則−不規則変態点は実
施例1と同様の方法により測定し、双晶発生頻度と耐水
素脆化感受性は次のようにして測定した。 双晶発生頻度:時効処理後に加工歪を加えて双晶変形を
誘発させた状態の各合金の表面の一部から薄膜試料を採
取し、この試料について透過電子顕微鏡を用いて粒内組
織の観察を行い、実施例1と同様、結晶粒の総数(No)と
双晶の発生した結晶粒の数(N) から(N/No)×100 %によ
り双晶の発生頻度を求めた。なお、バラツキを迎えるた
め、総数30個以上の結晶粒を対象に観察した。さらに、
その後に逆変態点を超える温度で保持した後、再度組織
観察を行って、双晶発生頻度に変化のないことを確認し
た。
The order-disorder transformation point of each of the obtained alloys was measured by the same method as in Example 1, and the twinning occurrence frequency and hydrogen embrittlement resistance were measured as follows. Frequency of twinning: A thin film sample was taken from a part of the surface of each alloy in a state where twin deformation was induced by applying work strain after aging treatment, and the intragranular structure of this sample was observed using a transmission electron microscope. Then, as in Example 1, the frequency of twinning was calculated from the total number of crystal grains (No) and the number of crystal grains in which twinning occurred (N) by (N / No) × 100%. In addition, since there were variations, a total of 30 or more crystal grains were observed. further,
After that, the temperature was maintained above the reverse transformation point, and then the structure was observed again to confirm that there was no change in the twinning occurrence frequency.

【0074】耐水素脆化感受性:実施例1と同様に試験
を行ったが、引張試験庁のゲージ長を12mmに、歪速度を
1×10-5/secにそれぞれ変更した。試験結果は、水素脆
化感受性 (陰極チャージ引張の破断伸び/大気中での引
張の破断伸びの比) と陰極チャージ引張3.5 %変形後の
表面割れの有無で表示した。
Hydrogen embrittlement resistance: The test was carried out in the same manner as in Example 1, but the gauge length of the tensile testing agency was changed to 12 mm and the strain rate was changed to 1 × 10 -5 / sec. The test results are indicated by the susceptibility to hydrogen embrittlement (ratio of elongation at break of cathode charge tension / ratio of elongation at break of atmosphere) and presence or absence of surface cracks after deformation by 3.5% of cathode charge tension.

【0075】これらの測定結果を、大気中引張試験での
0.2%耐力および伸びの測定値とともに、表3に併せて
示す。
These measurement results are shown in a tensile test in air.
Table 3 also shows the measured values of 0.2% proof stress and elongation.

【0076】[0076]

【表3−1】 [Table 3-1]

【0077】[0077]

【表3−2】 [Table 3-2]

【0078】[0078]

【表3−3】 [Table 3-3]

【0079】表3に示したように、本発明の粉末形成高
Ni基合金はいずれも、全ての結晶粒に双晶を含み、大気
中(25 ℃) での0.2 %耐力が100 kgf/mm2 、伸びが20%
以上と望ましい強度及び延性の水準を維持していた。即
ち、鋳造法に比べると、粉末成形法で合金素材を作製し
た場合には、強度が一層高くなり、延性はいくらか低下
した。同時に、耐食性に関しても、耐水素脆化感受性が
0.6 以上と高く、陰極チャージ引張3.5 %変形後に割れ
を生じなかった。これに対し、比較例の合金はいずれ
も、強度と耐食性のいずれかが良好ではなかった。
As shown in Table 3, the powder formation height of the present invention was increased.
All Ni-based alloys contain twins in all crystal grains, and have a 0.2% proof stress of 100 kgf / mm 2 and an elongation of 20% in air (25 ° C).
Above, the desired level of strength and ductility was maintained. That is, as compared with the casting method, when the alloy material was produced by the powder molding method, the strength was further increased and the ductility was somewhat decreased. At the same time, in terms of corrosion resistance, hydrogen embrittlement resistance
It was as high as 0.6 or more, and no crack was generated after the cathode charge tensile deformation of 3.5%. In contrast, the alloys of Comparative Examples were not good in either strength or corrosion resistance.

【0080】図5〜図7に、合金素材を粉末成形法で作
製した実施例2の高Ni基合金について、各種温度での時
効処理時間が、時効処理後の規則度、加工後の双晶発生
頻度および逆変態後の合金の耐水素脆化感受性に及ぼす
影響を示す。具体的には、図5は合金素材No.1' につい
て温度500 ℃で時効処理を行い、次いで2 %の塑性変形
を与え双晶変形を誘発させた後、逆変態を施した場合、
図6は合金素材No.1'について温度500 ℃で時効処理を
行い、次いで2 %の塑性変形を与えた後、逆変態を施さ
なかった場合、図7は合金素材No.2' について温度200
℃で時効処理を行い、次いで2%の塑性変形を与えた
後、逆変態を施した場合の結果である。規則度は実施例
1と同様にして求めた.図5に示すように、時効処理を
本発明の範囲内の温度で行った場合には、時効時間が10
時間以上で規則度が40%以上、且つ加工歪の付与によっ
て双晶発生頻度が70%以上となり、逆変態後に得られた
本発明合金の耐水素脆化感受性は著しく改善された。こ
れに対し、図6に示すように、本発明の範囲内の温度で
時効処理を行い、加工歪の付与によって双晶発生を促し
ても、逆変態を施さなかった場合には、時効時間の増大
とともに規則度が50%を越えると、整合界面での破壊に
よる水素脆化が顕著となる。また、図7のように、時効
温度が低すぎると、時効で規則化が起こらないため、双
晶が導入できず、耐水素脆化感受性も全く改善されなか
った。
5 to 7, the aging treatment time at various temperatures, the ordering degree after aging treatment, and the twinning after working of the high Ni-based alloy of Example 2 produced by the powder forming method of the alloy material are shown in FIGS. The influence on the occurrence frequency and hydrogen embrittlement susceptibility of the alloy after reverse transformation is shown. Specifically, FIG. 5 shows that when alloy material No. 1'has been subjected to an aging treatment at a temperature of 500 ° C, and subsequently subjected to plastic deformation of 2% to induce twin deformation and then reverse transformation,
Fig. 6 shows the case where alloy material No. 1'was subjected to an aging treatment at a temperature of 500 ° C, and then was subjected to a plastic deformation of 2% and then reverse transformation was not applied.
This is the result when the reverse transformation was performed after performing the aging treatment at ° C, then applying the plastic deformation of 2%. The order was determined in the same manner as in Example 1. As shown in Fig. 5, when the aging treatment was performed at a temperature within the range of the present invention, the aging time was 10%.
The ordering degree was 40% or more after the lapse of time, and the twinning frequency was 70% or more due to the application of work strain, and the hydrogen embrittlement resistance of the alloy of the present invention obtained after the reverse transformation was remarkably improved. On the other hand, as shown in FIG. 6, when the reverse transformation is not carried out even if the aging treatment is performed at a temperature within the range of the present invention and the twinning is promoted by imparting the working strain, the aging time is When the ordering degree exceeds 50% with the increase, hydrogen embrittlement due to fracture at the matching interface becomes remarkable. Further, as shown in FIG. 7, if the aging temperature was too low, the aging did not cause regularization, so twins could not be introduced and the hydrogen embrittlement resistance was not improved at all.

【0081】図8に、合金素材No.36'について、加工で
加える変形歪量を変化させ、変形歪量が加工後の延性
(伸び) と逆変態後の耐水素脆化感受性に及ぼす影響を
示す。合金素材を粉末成形法で作製した場合にも、これ
を鋳造法で作製した実施例1とと同様に、約1%という
極くわずかな変形歪量で70%以上の結晶粒に変形双晶が
発生し、耐水素脆化感受性が著しく改善された。しか
し、変形歪量が5%を越えると、実施例1と同様に、延
性が低下し、双晶発生頻度が高くても、耐水素脆化感受
性は低下した。
FIG. 8 shows that for alloy material No. 36 ', the amount of deformation strain applied during processing is changed so that the amount of deformation strain is ductility after processing.
(Elongation) and influence on hydrogen embrittlement resistance after reverse transformation are shown. Even when the alloy material is manufactured by the powder molding method, as in Example 1 manufactured by the casting method, the deformation twinning into the crystal grains of 70% or more is carried out with a very small deformation strain amount of about 1%. Occurred, and the hydrogen embrittlement resistance was significantly improved. However, when the amount of deformation strain exceeded 5%, the ductility was lowered and the hydrogen embrittlement resistance was lowered even if the twinning frequency was high, as in Example 1.

【0082】[0082]

【発明の効果】以上に説明したように、本発明の高Ni基
合金は、合金素材を鋳造法と粉末成形法のいずれの方法
で作製した場合にも、強度および靱性を保持したまま、
耐応力腐食割れ性と共に耐水素脆化性が著しく改善され
るので、これらの特性が要求される苛酷な環境下での石
油および天然ガス採掘に用いられる油井管として、さら
に地熱井管として使用した場合に極めて優れた性能を発
揮するものである。
As described above, the high Ni-based alloy of the present invention retains its strength and toughness even when the alloy material is produced by either the casting method or the powder molding method.
Since hydrogen embrittlement resistance as well as stress corrosion cracking resistance is remarkably improved, it was used as an oil well pipe used for oil and natural gas mining in harsh environments where these properties are required, and as a geothermal well pipe. In this case, it exhibits extremely excellent performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳造法で作製した高Ni基合金素材を400 ℃で時
効処理した場合の、時効時間が時効処理後の規則度、加
工後の双晶発生頻度、および逆変態後の合金の耐水素脆
化感受性に及ぼす影響を示す図である。
[Fig. 1] When a high Ni-based alloy material produced by the casting method is aged at 400 ° C, the aging time is the degree of regularity after aging, the frequency of twinning after processing, and the resistance of the alloy after reverse transformation. It is a figure which shows the influence which it has on hydrogen embrittlement susceptibility.

【図2】時効処理温度が200 ℃である場合の図1と同様
の図である。
FIG. 2 is a view similar to FIG. 1 when the aging treatment temperature is 200 ° C.

【図3】時効処理温度が650 ℃である場合の図1と同様
の図である。
FIG. 3 is a view similar to FIG. 1 when the aging treatment temperature is 650 ° C.

【図4】合金素材を鋳造法で作製した場合に、変形歪量
が加工後の転位密度および双晶発生頻度と逆変態後の耐
水素脆化感受性に及ぼす影響を示す図である。
FIG. 4 is a diagram showing the influence of the amount of deformation strain on dislocation density and twinning frequency after processing and hydrogen embrittlement resistance after reverse transformation when an alloy material is produced by a casting method.

【図5】粉末成形法で作製した高Ni基合金素材を500 ℃
での時効処理した場合の、時効時間が時効処理後の規則
度、加工後の双晶発生頻度、及び逆変態後の合金の耐水
素脆化感受性に及ぼす影響を示す図である。
[Fig. 5] High Ni-based alloy material produced by powder molding method at 500 ℃
FIG. 3 is a diagram showing the influence of the aging time on the ordering degree after aging treatment, the twinning generation frequency after processing, and the hydrogen embrittlement resistance susceptibility of the alloy after reverse transformation in the case of the aging treatment in FIG.

【図6】逆変態処理を施さなかった場合の、図5と同様
の図である。
FIG. 6 is a view similar to FIG. 5 when no reverse transformation process is performed.

【図7】時効処理温度が200 ℃である場合の図5と同様
の図である。
FIG. 7 is a view similar to FIG. 5 when the aging treatment temperature is 200 ° C.

【図8】合金素材を粉末成形法で作製した場合の図4と
同様の図である。
FIG. 8 is a view similar to FIG. 4 when an alloy material is manufactured by a powder molding method.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C: 0.001〜0.05%、Si:0.50%以下、Mn:2.0 %以
下、 Fe: 2.5〜20%、Cr:10〜27%、 Mo単独またはMoとW複合で: 3.0〜24% (但し複合の場
合はW≦10%) Al:0.30%以下、P:0.010 %以下、 S:0.0050%以下、N:0.050 %以下、 残部Ni (但しNi:60%以下) と不可避的不純物、から成
る合金組成を有し、かつ、この合金組成が原子%換算
で、 24.5%≦(Cr/52+Mo/96+W/184)/(Ni/59+Cr/52+Mo/96+W/18
4+Fe/56)≦35.3% 64.7%≦(Ni/59+Fe/56)/(Ni/59+Cr/52+Mo/96+W/184+Fe/5
6)≦75.5% の条件を満足し、双晶発生頻度が70%以上の組織を有す
る、耐応力腐食割れ性に加えて耐水素脆化割れ性にも優
れた高Ni基合金。
1. By weight%, C: 0.001 to 0.05%, Si: 0.50% or less, Mn: 2.0% or less, Fe: 2.5 to 20%, Cr: 10 to 27%, Mo alone or Mo and W composite. : 3.0 to 24% (W ≦ 10% in case of composite) Al: 0.30% or less, P: 0.010% or less, S: 0.0050% or less, N: 0.050% or less, balance Ni (but Ni: 60% or less) And an unavoidable impurity, and this alloy composition is 24.5% ≦ (Cr / 52 + Mo / 96 + W / 184) / (Ni / 59 + Cr / 52 + Mo / 96 + W / 18
4 + Fe / 56) ≦ 35.3% 64.7% ≦ (Ni / 59 + Fe / 56) / (Ni / 59 + Cr / 52 + Mo / 96 + W / 184 + Fe / 5
6) A high Ni-based alloy that satisfies the conditions of ≤75.5% and has a structure in which twinning frequency is 70% or more and that is excellent not only in stress corrosion cracking resistance but also in hydrogen embrittlement cracking resistance.
【請求項2】 前記合金組成がさらに、Ti:0.4 %以
下、V:2%以下、Co:2%以下、およびCu:2%以下
の1種または2種以上を含有する、請求項1記載の高Ni
基合金。
2. The alloy composition further contains one or more of Ti: 0.4% or less, V: 2% or less, Co: 2% or less, and Cu: 2% or less. High Ni
Base alloy.
【請求項3】 前記合金組成がさらに、Sn:0.05%以
下、Sb:0.05%以下、およびZn:0.1 %以下の1種また
は2種以上を含有する、請求項1または2記載の高Ni基
合金。
3. The high Ni-base according to claim 1, wherein the alloy composition further contains one or more of Sn: 0.05% or less, Sb: 0.05% or less, and Zn: 0.1% or less. alloy.
【請求項4】 前記合金組成がさらに、Mg:0.1 %以
下、Y:0.2 %以下、およびCa:0.1 %以下の1種また
は2種以上を含有する、請求項1〜3のいずれかに記載
の高Ni基合金。
4. The alloy composition according to claim 1, further comprising one or more of Mg: 0.1% or less, Y: 0.2% or less, and Ca: 0.1% or less. High Ni-based alloy.
【請求項5】 重量%で、 C: 0.001〜0.05%、Si:0.50%以下、Mn:2.0 %以
下、 Fe: 2.5〜20%、Cr:10〜27% Mo単独またはMoとW複合で: 3.0〜24% (但しの場合は
W≦10%) Al:0.30%以下、P:0.010 %以下、 S:0.0050%以下、N:0.050 %以下、 残部Ni (但しNi:60%以下) と不可避的不純物、 から成る合金組成を有し、かつ、この合金組成が原子%
換算で、 24.5%≦(Cr/52+Mo/96+W/184)/(Ni/59+Cr/52+Mo/96+W/18
4+Fe/56)≦35.3% 64.7%≦(Ni/59+Fe/56)/(Ni/59+Cr/52+Mo/96+W/184+Fe/5
6) ≦75.5% の条件を満足する高Ni基合金素材を、 300℃以上、規則
−不規則変態点未満で10〜500 時間時効処理を施した
後、冷間で5%以下の加工歪を加え、次いで規則−不規
則変態点以上、650 ℃以下で5秒〜10分間保持し、空冷
以上の冷却速度で冷却することからなる、耐応力腐食割
れ性に加えて耐水素脆化割れ性にも優れた高Ni基合金の
製造方法。
5. In wt%, C: 0.001 to 0.05%, Si: 0.50% or less, Mn: 2.0% or less, Fe: 2.5 to 20%, Cr: 10 to 27% Mo alone or in combination with Mo and W: 3.0 to 24% (W ≤ 10% in that case) Al: 0.30% or less, P: 0.010% or less, S: 0.0050% or less, N: 0.050% or less, balance Ni (but Ni: 60% or less) inevitable Have an alloy composition consisting of
24.5% ≤ (Cr / 52 + Mo / 96 + W / 184) / (Ni / 59 + Cr / 52 + Mo / 96 + W / 18)
4 + Fe / 56) ≦ 35.3% 64.7% ≦ (Ni / 59 + Fe / 56) / (Ni / 59 + Cr / 52 + Mo / 96 + W / 184 + Fe / 5
6) After subjecting a high Ni-based alloy material satisfying the condition of ≤75.5% to aging treatment at 300 ° C or higher and below the ordered-disordered transformation point for 10 to 500 hours, cold working strain of 5% or less is applied. In addition to the stress-corrosion cracking resistance and the hydrogen embrittlement cracking resistance, the material is then maintained at a temperature of not less than the regular-irregular transformation and not more than 650 ° C for 5 seconds to 10 minutes and cooled at a cooling rate of not less than air cooling. Is an excellent method for producing high Ni-based alloys.
【請求項6】 前記合金組成がさらに、Ti:0.4 %以
下、V:2%以下、Co:2%以下、およびCu:2%以下
の1種または2種以上を含有する、請求項5記載の高Ni
基合金の製造方法。
6. The alloy composition according to claim 5, further comprising one or more of Ti: 0.4% or less, V: 2% or less, Co: 2% or less, and Cu: 2% or less. High Ni
Base alloy manufacturing method.
【請求項7】 前記合金組成がさらに、Sn:0.05%以
下、Sb:0.05%以下、およびZn:0.1 %以下の1種また
は2種以上を含有する、請求項5または6記載の高Ni基
合金の製造方法。
7. The high Ni group according to claim 5, wherein the alloy composition further contains one or more of Sn: 0.05% or less, Sb: 0.05% or less, and Zn: 0.1% or less. Alloy manufacturing method.
【請求項8】 前記合金組成がさらに、Mg:0.1 %以
下、Y:0.2 %以下、およびCa:0.1 %以下の1種また
は2種以上を含有する、請求項5〜7のいずれかに記載
の高Ni基合金の製造方法。
8. The alloy composition according to claim 5, further comprising one or more of Mg: 0.1% or less, Y: 0.2% or less, and Ca: 0.1% or less. For manufacturing high Ni-based alloys of.
【請求項9】 前記高Ni基合金素材が鋳造法または粉末
成形法により得られたものである、請求項5〜8のいず
れかに記載の高Ni基合金の製造方法。
9. The method for producing a high Ni-base alloy according to claim 5, wherein the high Ni-base alloy material is obtained by a casting method or a powder molding method.
JP5209599A 1993-04-21 1993-08-24 High ni base alloy excellent in hydrogen embrittlement resistance and production thereof Withdrawn JPH073368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5209599A JPH073368A (en) 1993-04-21 1993-08-24 High ni base alloy excellent in hydrogen embrittlement resistance and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-94541 1993-04-21
JP9454193 1993-04-21
JP5209599A JPH073368A (en) 1993-04-21 1993-08-24 High ni base alloy excellent in hydrogen embrittlement resistance and production thereof

Publications (1)

Publication Number Publication Date
JPH073368A true JPH073368A (en) 1995-01-06

Family

ID=26435824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5209599A Withdrawn JPH073368A (en) 1993-04-21 1993-08-24 High ni base alloy excellent in hydrogen embrittlement resistance and production thereof

Country Status (1)

Country Link
JP (1) JPH073368A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157811A (en) * 1995-06-22 1997-06-17 United Technol Corp <Utc> Nickel-based alloy
US6010581A (en) * 1994-05-18 2000-01-04 Sandvik Ab Austenitic Ni-based alloy with high corrosion resistance, good workability and structure stability
JP2012047629A (en) * 2010-08-27 2012-03-08 Japan Steel Works Ltd:The Method for evaluating embrittlement sensitivity in high-pressure hydrogen environment of high-strength low-alloy steel
US11118250B2 (en) * 2016-10-04 2021-09-14 Nippon Yakin Kogyo Co., Ltd. Fe—Cr—Ni alloy and method for production thereof
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process
EP3913101A1 (en) * 2020-05-22 2021-11-24 Nippon Steel Corporation Ni-based alloy tube and welded joint
CN115747575A (en) * 2022-10-26 2023-03-07 中国科学院金属研究所 MP-4 high-strength hydrogen embrittlement-resistant membrane and preparation method thereof
CN115747576A (en) * 2022-10-26 2023-03-07 中国科学院金属研究所 Preparation method of hydrogen-brittleness-resistant and fatigue-resistant plate for hydrogen-contacting membrane of high-pressure hydrogen compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010581A (en) * 1994-05-18 2000-01-04 Sandvik Ab Austenitic Ni-based alloy with high corrosion resistance, good workability and structure stability
JPH09157811A (en) * 1995-06-22 1997-06-17 United Technol Corp <Utc> Nickel-based alloy
JP2012047629A (en) * 2010-08-27 2012-03-08 Japan Steel Works Ltd:The Method for evaluating embrittlement sensitivity in high-pressure hydrogen environment of high-strength low-alloy steel
US11118250B2 (en) * 2016-10-04 2021-09-14 Nippon Yakin Kogyo Co., Ltd. Fe—Cr—Ni alloy and method for production thereof
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process
EP3913101A1 (en) * 2020-05-22 2021-11-24 Nippon Steel Corporation Ni-based alloy tube and welded joint
CN113718133A (en) * 2020-05-22 2021-11-30 日本制铁株式会社 Ni-based alloy pipe and welded joint
CN113718133B (en) * 2020-05-22 2022-07-29 日本制铁株式会社 Ni-based alloy pipe and welded joint
CN115747575A (en) * 2022-10-26 2023-03-07 中国科学院金属研究所 MP-4 high-strength hydrogen embrittlement-resistant membrane and preparation method thereof
CN115747576A (en) * 2022-10-26 2023-03-07 中国科学院金属研究所 Preparation method of hydrogen-brittleness-resistant and fatigue-resistant plate for hydrogen-contacting membrane of high-pressure hydrogen compressor
CN115747575B (en) * 2022-10-26 2023-11-10 中国科学院金属研究所 High-strength hydrogen-embrittlement-resistant membrane with MP-4 brand and preparation method thereof
CN115747576B (en) * 2022-10-26 2024-03-22 中国科学院金属研究所 Preparation method of hydrogen embrittlement-resistant fatigue-resistant plate for hydrogen-contacting membrane of high-pressure hydrogen compressor

Similar Documents

Publication Publication Date Title
Rabadia et al. Deformation and strength characteristics of Laves phases in titanium alloys
JP6492057B2 (en) High strength copper-nickel-tin alloy
JP6607463B2 (en) Strain-induced aging strengthening in dilute magnesium alloy sheets
JP6607464B2 (en) Formable magnesium-type wrought alloy
US3356542A (en) Cobalt-nickel base alloys containing chromium and molybdenum
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
US3767385A (en) Cobalt-base alloys
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
KR20160046770A (en) Ni-BASED ALLOY FOR FORGING, METHOD FOR MANUFACTURING THE SAME, AND TURBINE COMPONENT
KR20140010022A (en) Method of producing a nano-twinned titanium material by casting
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
Zhou et al. Effects of hot-forging and subsequent annealing on microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 high-entropy alloy
Shabani et al. Investigation of microstructure, texture, and mechanical properties of FeCrCuMnNi multiphase high entropy alloy during recrystallization
WO2017204286A1 (en) HOT DIE Ni-BASED ALLOY, HOT FORGING DIE USING SAME, AND FORGED PRODUCT MANUFACTURING METHOD
RU2416656C2 (en) Procedure for fabrication of processed product including silicon containing alloy of niobium and tantalum (its versions), cups of deep drawing and targets of ion sputtering produced out of it
CN114990382B (en) Ultra-low-gap phase transition induced plasticity metastable beta titanium alloy and preparation method thereof
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
KR101630403B1 (en) Manufacture method of nuclear fuel component made of zirconium applied multi-stage cold rolling
JPH073368A (en) High ni base alloy excellent in hydrogen embrittlement resistance and production thereof
JPH073369A (en) High ni base alloy excellent in hydrogen embrittlement resistance and production thereof
Rhu et al. Tensile strength of thermomechanically processed Cu-9Ni-6Sn alloys
JP2793462B2 (en) Super corrosion resistant Ni-based alloy
JP5929251B2 (en) Iron alloy
JP2854502B2 (en) Stainless steel with excellent pitting resistance
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031