JPH07333113A - Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus - Google Patents

Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus

Info

Publication number
JPH07333113A
JPH07333113A JP6152795A JP15279594A JPH07333113A JP H07333113 A JPH07333113 A JP H07333113A JP 6152795 A JP6152795 A JP 6152795A JP 15279594 A JP15279594 A JP 15279594A JP H07333113 A JPH07333113 A JP H07333113A
Authority
JP
Japan
Prior art keywords
particle size
fluidized bed
powder
size measuring
powder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6152795A
Other languages
Japanese (ja)
Inventor
Takahide Ohata
▲たか▼英 尾畑
Kazunori Wakiya
和紀 脇屋
Kazumasa Yamazaki
一正 山崎
Koji Tabata
浩治 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUHIN SANGYO INTELLIGENCE CONTROL GIJUTSU KENKYU KUMIAI
Original Assignee
SHOKUHIN SANGYO INTELLIGENCE CONTROL GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUHIN SANGYO INTELLIGENCE CONTROL GIJUTSU KENKYU KUMIAI filed Critical SHOKUHIN SANGYO INTELLIGENCE CONTROL GIJUTSU KENKYU KUMIAI
Priority to JP6152795A priority Critical patent/JPH07333113A/en
Publication of JPH07333113A publication Critical patent/JPH07333113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To provide particle size measuring apparatus which can measure directly the particle size of powder particles during a treatment process of the powder particles, especially during granulation. CONSTITUTION:A particle size measuring apparatus 1 is provided with a sampling apparatus 3, a capillary tube 4, a particle size sensor 5 employing laser light, and a computer 7. The capillary tube 4 is composed of a horizontal hollow part through which laser light passes and vertical hollow part which becomes free fall route of powder particles G and both end parts of the horizontal hollow part are provided with reflection preventive coating glass 43 and in the inside of the reflection preventive coating glass 43, an air purge system 44. Further, partitioning valves 81, 82 are installed in the upper and the lower sides of the horizontal hollow part and a leak valve 83 is installed between the partitioning valves 81, 82. An air sending pipeline 6 to communicate the capillary tube 4 and a fluidizing chamber 21 is installed and a route through which the powder particles are sent back to the fluidizing chamber 21 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の目的】[Object of the Invention]

【産業上の利用分野】本発明は流動層処理装置、コーテ
ィング装置等による粉粒体の処理工程における粒度測定
方法に関するものであり、特に造粒中の粉粒体を直接、
粒度測定することができる装置に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle size measuring method in a process of treating a powder or granular material by a fluidized bed processing device, a coating device or the like.
The present invention relates to an apparatus capable of measuring particle size.

【0002】[0002]

【発明の背景】従来より、粉粒体の処理工程において
は、造粒あるいはコーティングを行う場合、流動層処理
装置が多く使用されている。このような装置を操作する
にあたっては、例えば造粒操作においては、造粒時の層
内水分、噴霧ノズルからの噴霧液速度、液を微粒化する
ための噴霧圧、熱風温度等の操作因子を調整し、目的の
粒径の製品を得ている。このため、あらかじめ操作因子
の制御値を設定しておいて装置の運転を行い、造粒途中
での操作因子の調整は目視観察により制御値を変更して
行っている。従って、例えば季節により外気湿度が変わ
った場合等には噴霧液速度を調整する等の操作が必要と
なるが、この操作は専らオペレータの経験に委ねられ、
その結果、操作ミスの要因となっていた。また仮にオペ
レータの判断が正しかったとしても従来は、直接造粒中
の層内の造粒物の粒度を測定する適当な手段がなかった
ため、例えば造粒途中あるいは終了後にサンプリングを
行い、粒度測定を行う方法によって確認せざるを得ず、
そのデータに基づく操作を行ったとしてももはやタイミ
ングが遅れ、結果的に有効な判断操作とはならなかっ
た。このため、近赤外線水分計を用いて常時層内水分を
監視したり、あるいは、水分計からの出力を用いて層内
水分が一定となるような制御も行なわれているが、いず
れにしても、間接的に粒径を制御しているにすぎない。
また特開平5−285363号に開示されるように、装
置内部の流動している粒子を、装置壁面に設けた硝子窓
の外側に設けた光学センサにより内部を撮像し、画像処
理により内部の粒子の状態を検出する方法もあるが、粒
子の硝子面への付着対策が複雑になり、装置のサニタリ
ー性、洗浄性の面から実用的ではない。
2. Description of the Related Art Conventionally, a fluidized bed processing apparatus has been widely used in the step of granulating or coating in the step of treating powder and granules. In operating such an apparatus, for example, in granulation operation, the operation factors such as in-layer water content during granulation, spray liquid velocity from the spray nozzle, spray pressure for atomizing the liquid, hot air temperature, etc. Adjusted to obtain the product with the target particle size. For this reason, the control value of the operation factor is set in advance, the apparatus is operated, and the adjustment of the operation factor during granulation is performed by changing the control value by visual observation. Therefore, for example, when the outside air humidity changes depending on the season, it is necessary to perform an operation such as adjusting the spray liquid velocity, but this operation is exclusively entrusted to the experience of the operator,
As a result, it has been a cause of operational errors. Even if the operator's judgment was correct, conventionally there was no suitable means for directly measuring the particle size of the granulated product in the layer during granulation, so for example, sampling was performed during or after granulation, and the particle size was measured. I have no choice but to confirm depending on the method
Even if the operation based on the data was performed, the timing was already delayed, and as a result, the judgment operation was not effective. Therefore, the near-infrared moisture meter is constantly used to monitor the moisture content in the layer, or the output from the moisture meter is used to control the moisture content in the layer to be constant. However, the particle size is indirectly controlled.
Further, as disclosed in Japanese Patent Laid-Open No. 5-285363, the inside of the apparatus is imaged by an optical sensor provided outside a glass window provided on the apparatus wall surface, and the internal particles are subjected to image processing. Although there is a method of detecting the state of, the measure for adhering particles to the glass surface becomes complicated, and it is not practical in terms of the sanitary property and cleaning property of the device.

【0003】[0003]

【開発を試みた技術的事項】本発明はこのような背景の
認識に基づきなされたものであって、造粒中の流動層内
の粉粒体の粒度を直接測定することのできる、新規な流
動層処理装置における粉粒体の粒度測定装置の開発を試
みたものである。
[Technical Items Attempted to Develop] The present invention has been made on the basis of the recognition of such a background, and it is possible to directly measure the particle size of the granular material in the fluidized bed during granulation. This is an attempt to develop a particle size measuring device for powder particles in a fluidized bed processing device.

【0004】[0004]

【発明の構成】[Constitution of the invention]

【目的達成の手段】すなわち請求項1記載の流動層処理
装置における粉粒体の粒度測定装置は、粉粒体の乾燥、
造粒、コーティング等を行う流動層処理装置の適所に接
続されるサンプリング装置と、このサンプリング装置か
ら連通状態に分岐するように取付けられた導管と、前記
導管と交差状に組み合わされるレーザ光式粒径センサ
と、前記粒径センサの出力をデータ処理するコンピュー
タとを具えることを特徴とする。
[Means for Achieving the Object] That is, a particle size measuring device for powder particles in a fluidized bed processing apparatus according to claim 1 is
A sampling device connected to a proper place of a fluidized bed processing device for granulating, coating, etc., a conduit attached so as to branch from the sampling device into a communicating state, and a laser light type particle combined with the conduit in an intersecting manner. It is characterized by comprising a diameter sensor and a computer for data processing the output of the particle size sensor.

【0005】また請求項2記載の流動層処理装置におけ
る粉粒体の粒度測定装置は、前記要件に加え、前記導管
は、レーザ光式粒径センサのレーザ光が通過する水平中
空部と、粉粒体の自由落下経路となる垂直中空部とから
成り、水平中空部の両端部分には反射防止コーティング
ガラスを具えることを特徴とする。
In addition to the above requirements, in the particle size measuring apparatus for powder particles in a fluidized bed processing apparatus according to a second aspect, the conduit has a horizontal hollow portion through which laser light of a laser light particle size sensor passes, and a powder. It is characterized by comprising a vertical hollow portion which is a free fall path of particles, and antireflection coating glass is provided at both end portions of the horizontal hollow portion.

【0006】更にまた請求項3記載の流動層処理装置に
おける粉粒体の粒度測定装置は、前記要件に加え、前記
反射防止コーティングガラスの内側には、エアパージ機
構を具えることを特徴とする。
Furthermore, in addition to the above requirements, the particle size measuring apparatus for powder particles in the fluidized bed processing apparatus according to claim 3 is characterized in that an air purging mechanism is provided inside the antireflection coating glass.

【0007】更にまた請求項4記載の流動層処理装置に
おける粉粒体の粒度測定装置は、前記要件に加え、前記
水平中空部の上下にはそれぞれ仕切弁を具え、更にこれ
ら仕切弁の間にリーク弁を具えることを特徴とする。
Furthermore, in addition to the above requirements, the particle size measuring apparatus for powder particles in the fluidized bed processing apparatus according to claim 4 is provided with sluice valves above and below the horizontal hollow portion, respectively, and further between these sluice valves. It is characterized by having a leak valve.

【0008】更にまた請求項5記載の流動層処理装置に
おける粉粒体の粒度測定装置は、前記要件に加え、前記
導管と流動室とを連結する空輸配管を設け、粉粒体が流
動室に返送される経路を形成することを特徴とする。こ
れら発明により前記目的を達成しようとするものであ
る。
Furthermore, in addition to the above requirements, the particle size measuring apparatus for powder particles in the fluidized bed processing apparatus according to claim 5 is provided with an air-introducing pipe connecting the conduit and the fluid chamber, and the particle particles are provided in the fluid chamber. It is characterized by forming a route to be returned. The above objects are intended to be achieved by these inventions.

【0009】[0009]

【発明の作用】まず請求項1記載の発明によれば、サン
プリング装置によって、処理中の粉粒体を定量的にサン
プリングし、サンプリングした粉粒体を導管によってレ
ーザ光式粒径センサに導き粒径測定を行い、コンピュー
タにより測定データを解析し、平均粒子径、均一度、粒
度分布、等のあらかじめ設定された項目を算出する。
According to the first aspect of the present invention, the powdery material being processed is quantitatively sampled by the sampling device, and the sampled powdery material is guided by the conduit to the laser light type particle size sensor. The diameter is measured, the measurement data is analyzed by a computer, and preset items such as average particle diameter, homogeneity, and particle size distribution are calculated.

【0010】また請求項2記載の発明によれば、前記導
管の水平中空部の両端部分には反射防止コーティングガ
ラスを具えるので、レーザ光式粒径センサのレーザ光を
透過する。
According to the second aspect of the invention, since the antireflection coating glass is provided at both ends of the horizontal hollow portion of the conduit, the laser beam of the laser beam type particle size sensor is transmitted.

【0011】更にまた請求項3記載の発明によれば、前
記反射防止コーティングガラスの内側には、エアパージ
機構を具えるので、反射防止コーティングガラスへの粉
粒体の付着を回避する。
Further, according to the third aspect of the present invention, since an air purging mechanism is provided inside the antireflection coating glass, adhesion of the powder or granules to the antireflection coating glass is avoided.

【0012】更にまた請求項4記載の発明によれば、前
記水平中空部の上下にはそれぞれ仕切弁を具え、更にこ
れら仕切弁の間にリーク弁を具えるので、これら弁の切
り替えにより、粉粒体Gの移動経路を選択することがで
きる。
Further, according to the invention as defined in claim 4, since the sluice valves are provided on the upper and lower sides of the horizontal hollow portion, and the leak valve is further provided between these sluice valves, the powder is changed by switching these valves. It is possible to select the movement path of the grain G.

【0013】更にまた請求項5記載の発明によれば、前
記導管と流動室とを連結する空輸配管を設け、粉粒体が
流動室に返送される経路を形成するので、測定された粉
粒体を流動室に返送する。
Further, according to the invention of claim 5, since an air transportation pipe for connecting the conduit and the flow chamber is provided to form a route for returning the powdery or granular material to the flowable chamber, the measured powdery or granular particles are formed. Return the body to the flow chamber.

【0014】[0014]

【実施例】以下本発明を図示の実施例に基づいて具体的
に説明する。符号1は本発明の粒度測定装置であって、
このものは流動層処理装置2の流動室21の外部におけ
る適宜の位置に付設され、サンプリング装置3と、導管
4と、レーザ光式粒径センサ5と、空輸配管6と、コン
ピュータ7とを具えて成る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to illustrated embodiments. Reference numeral 1 is a particle size measuring device of the present invention,
This is provided at an appropriate position outside the flow chamber 21 of the fluidized bed processing apparatus 2, and includes a sampling device 3, a conduit 4, a laser beam particle size sensor 5, an air transportation pipe 6, and a computer 7. It consists of

【0015】まず本発明を適用する流動層処理装置2に
ついて簡単に説明する。このものは粉粒体Gの乾燥、造
粒、コーティング等を行う装置であり、流動室21と、
噴霧室23、フィルタ室等により構成される。流動層処
理装置2は公知の構成とし、流動室21に空気を送り込
み、原料粉体を膨張させて流動化された粉体層である流
動層を形成し、これに水やバインダ液を加えて、粉粒体
Gを凝集形成するものである。流動室21は流動層処理
装置2の下部を構成し逆円錐台形をしており、その外周
面の適宜の位置にはサンプリングノズル22が設けられ
ている。噴霧室23には水、あるいは結合剤となるバイ
ンダ液を噴霧するための噴霧ノズル24が設置されてい
る。フィルタ室には原料粉体と乾燥用空気とを分離する
ためのバグフィルタが組み込んであり、装置外へ原料粉
体が飛散しないようにしてある。更に底部には、多孔板
あるいは金網等が設けられており、ここから空気を送り
込む。
First, the fluidized bed processing apparatus 2 to which the present invention is applied will be briefly described. This is an apparatus for drying, granulating, coating, etc. the powder G, and includes a flow chamber 21,
It is composed of a spray chamber 23, a filter chamber, and the like. The fluidized bed processing apparatus 2 has a known structure, and air is sent into the fluidized chamber 21 to expand the raw material powder to form a fluidized bed, which is a fluidized powder bed, and water or a binder liquid is added thereto. , To aggregate and form the granular material G. The fluid chamber 21 constitutes the lower part of the fluidized bed processing apparatus 2 and has an inverted truncated cone shape, and a sampling nozzle 22 is provided at an appropriate position on the outer peripheral surface thereof. The spray chamber 23 is provided with a spray nozzle 24 for spraying water or a binder liquid serving as a binder. A bag filter for separating the raw material powder and the drying air is incorporated in the filter chamber to prevent the raw material powder from scattering outside the apparatus. Further, a perforated plate, a wire net, or the like is provided at the bottom portion, and air is sent from here.

【0016】次にサンプリング装置3について説明す
る。サンプリング装置3は、一例として流動層処理装置
2における流動室21に標準仕様として設けられること
のあるサンプリングノズル22を利用して流動室21の
外部に付設されるものであり、このようにした場合には
既設の装置についても改造することなく設置が可能であ
る。サンプリング装置3は図2に示すように実質的にス
クリューコンベヤを構成するものであって、管状のケー
シング31内にスクリュー32を配し、更にこれを回転
駆動するエアモータ33をケーシング31の一端に設け
る。ケーシング31の先端には粒子取入口34を設け、
流動室21に対して粒子取入口34がその内部に臨むよ
うにして設置される。
Next, the sampling device 3 will be described. The sampling device 3 is attached to the outside of the flow chamber 21 by utilizing a sampling nozzle 22 which may be provided as a standard specification in the flow chamber 21 of the fluidized bed processing device 2 as an example. The existing equipment can be installed without modification. The sampling device 3 substantially constitutes a screw conveyor as shown in FIG. 2, in which a screw 32 is arranged in a tubular casing 31, and an air motor 33 for rotationally driving the screw 32 is provided at one end of the casing 31. . A particle inlet 34 is provided at the tip of the casing 31,
The particle intake port 34 is installed so as to face the inside of the flow chamber 21.

【0017】流動室21内の流動状態にある粉粒対G
は、粒子取入口34より取り込まれ、スクリュー32に
より流動室21の外、つまりサンプリング装置3内部へ
と移送される。このときスクリュー32の回転を調整す
ることにより、サンプリング量を調整することが可能で
ある。スクリュー32の回転数はエアモータ33へ供給
するエアの圧力を調整することにより変えることが可能
であり、測定に必要な最低限の量をサンプリングするこ
とができる。
A pair of powder particles G in a fluid state in the fluid chamber 21
Are taken in through the particle intake port 34 and transferred by the screw 32 to the outside of the flow chamber 21, that is, the inside of the sampling device 3. At this time, the sampling amount can be adjusted by adjusting the rotation of the screw 32. The rotation speed of the screw 32 can be changed by adjusting the pressure of the air supplied to the air motor 33, and the minimum amount required for measurement can be sampled.

【0018】次に導管4について説明する。このものは
サンプリング装置3と後述する空輸配管6との間に装着
される。導管4は図3に示すようにテーパー状の垂直中
空部41と、これと交差する水平中空部42とから成
る。水平中空部42の両端部分には請求項2に開示した
ように、反射防止コーティングガラス43を具える。こ
のものは表面をコーティング処理した光学ガラスであ
り、入射するレーザ光をその境界面において反射、散乱
することなく透過させる。反射防止コーティングガラス
43の内側にはエアパージ機構44を具える。このもの
はガラス面と平行にガラスの中心に向かってエアを吹き
出すエア吹出口45を設け、配管継手46を介してエア
供給機構からエアを送るというものである。供給するエ
アの圧力を調整することにより流速を変えることが可能
である。また前記エアの供給機構は、前記エアモータ3
3を駆動するものと共有することができるし、それぞれ
独立して設けてもよい。導管4はクランプ継手によりサ
ンプリング装置3に取り付けられ、容易に着脱可能な構
造となっており、洗浄性が良い。
Next, the conduit 4 will be described. This is mounted between the sampling device 3 and an air transportation pipe 6 described later. As shown in FIG. 3, the conduit 4 includes a vertical hollow portion 41 having a tapered shape and a horizontal hollow portion 42 intersecting with the vertical hollow portion 41. Both ends of the horizontal hollow portion 42 are provided with antireflection coating glass 43 as disclosed in claim 2. This is an optical glass whose surface is coated, and allows incident laser light to pass through the boundary surface without being reflected or scattered. An air purge mechanism 44 is provided inside the antireflection coating glass 43. This is provided with an air outlet 45 that blows air toward the center of the glass in parallel with the glass surface, and sends the air from an air supply mechanism via a pipe joint 46. The flow velocity can be changed by adjusting the pressure of the supplied air. The air supply mechanism is the air motor 3
3 can be shared with those for driving, or they can be provided independently. The conduit 4 is attached to the sampling device 3 by a clamp joint, has a structure that can be easily attached and detached, and has good washability.

【0019】次に仕切弁81、82、リーク弁83と導
管4について説明する。これらの弁は一般に使用される
フルボアタイプのサニタリーボールバルブあるいはバタ
フライバルブである。図1に示すように、仕切弁81は
サンプリング装置3と導管4との間に設けられ、仕切弁
82は導管4と後述する空輸配管6との間に設けられ
る。またリーク弁83は、垂直中空部41の水平中空部
42よりもサンプリング装置3側に設けられる。
Next, the gate valves 81 and 82, the leak valve 83 and the conduit 4 will be described. These valves are commonly used full bore type sanitary ball valves or butterfly valves. As shown in FIG. 1, the sluice valve 81 is provided between the sampling device 3 and the conduit 4, and the sluice valve 82 is provided between the conduit 4 and the air pipe 6 described later. The leak valve 83 is provided closer to the sampling device 3 than the horizontal hollow portion 42 of the vertical hollow portion 41.

【0020】次に空輸配管6について説明する。このも
のは図1に示すように、導管4の垂直中空部41の排出
部に接続された仕切弁82と、流動層処理装置2におけ
る流動室21とを接続するように具えられる中空部材で
ある。従ってサンプリング装置3から導管4を経由した
粉粒体Gは、仕切弁82が開放されているときは空輸配
管6に到り、流動室21内へと移送される。
Next, the air piping 6 will be described. As shown in FIG. 1, this is a hollow member provided to connect the sluice valve 82 connected to the discharge portion of the vertical hollow portion 41 of the conduit 4 and the flow chamber 21 in the fluidized bed processing apparatus 2. . Therefore, the granular material G from the sampling device 3 via the conduit 4 reaches the air transportation pipe 6 when the sluice valve 82 is opened, and is transferred into the flow chamber 21.

【0021】次にレーザ光式粒径センサ5について説明
する。このものは既存のセンサであり、図4に示すよう
に、He−Neレーザ51から発射され、コリメータ5
2を経たレーザ光が、粉粒体Gによりラマン散乱した光
をセンサ53により受光し、その強さ等から散乱物質で
ある粉粒体Gの粒径を測定するものである。ラマン効果
を利用しているため散乱光の波長が発射光と異なるので
SN比が高く、高精度の測定が可能である。またサンプ
リング周期は0.6〜500msの範囲で可変である。
そして前記レーザ光が、導管4における水平中空部42
を通過するように配置される。なお本実施例ではレーザ
光散乱式の粒径センサを用いたが、レーザ光回折法等の
粒径センサを用いてもよい。
Next, the laser beam type particle size sensor 5 will be described. This is an existing sensor, and as shown in FIG. 4, it is emitted from a He-Ne laser 51 and collimator 5
The laser light passing through 2 receives light Raman-scattered by the granular material G by the sensor 53, and measures the particle size of the granular material G, which is a scattering substance, from its intensity and the like. Since the Raman effect is used, the wavelength of scattered light is different from that of emitted light, so the SN ratio is high and highly accurate measurement is possible. The sampling period is variable within the range of 0.6 to 500 ms.
Then, the laser light is emitted from the horizontal hollow portion 42 of the conduit 4.
Is arranged to pass through. Although the laser light scattering type particle size sensor is used in this embodiment, a particle size sensor such as a laser beam diffraction method may be used.

【0022】次にコンピュータ7について説明する。こ
のものは既存のパソコンであり、粒子加工に必要な平均
粒子径、均一度、粒度分布等を演算し、その結果を出力
する。またこの出力値はJIS規格のふるいに準拠して
いる。なお、本実施例ではコンピュータ7にパソコンを
用いたが、シングルボードコンピュータやEWS等を用
いてもよい。
Next, the computer 7 will be described. This is an existing personal computer, which calculates the average particle size, uniformity, particle size distribution, etc. necessary for particle processing, and outputs the results. The output value complies with the JIS standard sieve. Although a personal computer is used as the computer 7 in this embodiment, a single board computer, EWS or the like may be used.

【0023】上述したように構成される粒度測定装置1
に対し粉粒体Gは、導管4における垂直中空部41内を
重力で落下し、落下中に水平中空部42両側面に設けた
反射防止コーティングガラス43間のほぼ中心を通過
し、その際に照射されているレーザ光により粒子径の測
定が行なわれる。この際、反射防止コーティングガラス
43部にはガラスへの粉粒体Gの付着による外乱を避け
るためにガラス面に対してエアパージされている。
Particle size measuring device 1 constructed as described above
On the other hand, the granular material G falls by gravity in the vertical hollow portion 41 of the conduit 4, and during the fall, passes through almost the center between the antireflection coating glasses 43 provided on both side surfaces of the horizontal hollow portion 42, and at that time, The particle diameter is measured by the irradiated laser light. At this time, the glass surface of 43 parts of the antireflection coating is air-purged in order to avoid the disturbance due to the adhesion of the granular material G to the glass.

【0024】粉粒体Gのサンプリングは連続的に可能で
あるが、実用上は間欠的にサンプリングを行えば充分粒
子成長に対しての対応が可能であり、例えば数十秒に一
度エアモータ33を回転させてサンプリングを行い、必
要なデータを取ればよく、サンプリング量は最小限でよ
い。このような一連の測定を行うにあたっては、仕切弁
81を開放し仕切弁82及びリーク弁83を閉鎖する。
粒径測定のなされた粉粒体Gは、垂直中空部41排出部
付近に溜まる。この粉粒体Gを流動室21に返送するに
あたっては、仕切弁81を閉鎖し、仕切弁82及びリー
ク弁83を開放する。流動層処理装置2は通常負圧で運
転されているので、リーク弁83から外気が進入し導管
4、仕切弁82及び空輸配管6を経由して流動室21内
へと達するとともに、粉粒体Gを空輸する。粉粒体Gを
流動室21に返送するにあたって別の方法として仕切弁
81及びリーク弁83を閉鎖し、仕切弁82を開放す
る。このようにすると反射防止コーティングガラス43
部にパージしているエアにより、粉粒体Gは流動室21
内へ戻されるので、粒度測定による製品の損失がなくな
る。また、粉粒体Gを外部に取り出すときには、仕切弁
81及び仕切弁82を閉鎖し、リーク弁83を開放すれ
ばここから垂直中空部41排出部付近に溜まった粉粒体
Gを取り出すことができる。
The powder G can be continuously sampled, but in practice, intermittent sampling can sufficiently cope with particle growth. For example, the air motor 33 can be set once every several tens of seconds. Sampling can be performed by rotating and sampling, and necessary data can be obtained, and the sampling amount can be minimized. In performing such a series of measurements, the gate valve 81 is opened and the gate valve 82 and the leak valve 83 are closed.
The granular material G whose particle size has been measured is collected near the discharge portion of the vertical hollow portion 41. When returning the granular material G to the flow chamber 21, the gate valve 81 is closed and the gate valve 82 and the leak valve 83 are opened. Since the fluidized bed processing apparatus 2 is normally operated at a negative pressure, outside air enters from the leak valve 83 and reaches the inside of the fluidized chamber 21 via the conduit 4, the partition valve 82 and the air transportation pipe 6, and the granular material Air transport G. As another method for returning the granular material G to the flow chamber 21, the sluice valve 81 and the leak valve 83 are closed and the sluice valve 82 is opened. In this way, the antireflection coating glass 43
Due to the air that is being purged into the part, the granular material G is moved to the flow chamber 21.
As it is put back in, there is no loss of product due to particle size measurement. Further, when taking out the granular material G to the outside, if the sluice valve 81 and the sluice valve 82 are closed and the leak valve 83 is opened, the granular material G accumulated near the discharge portion of the vertical hollow portion 41 can be taken out from here. it can.

【0025】上述したようにして行われるレーザ光式粒
径センサ5による所要測定時間は約2秒であり、この間
に200回の測定を行い、その平均を演算して出力する
ことが可能である。またレーザ光式粒度センサ5は1μ
m〜2000μmまでの非常に広い範囲の粒径を、1台
のセンサで測定することが可能であり、通常の造粒操作
における粒度範囲を全てカバーしている。また本装置か
らの出力はJIS規格のふるいに準拠しており、従来一
般的に用いられている粒度測定法との比較が容易に可能
である。
The required measurement time by the laser light type particle size sensor 5 performed as described above is about 2 seconds, during which 200 measurements can be performed and the average thereof can be calculated and output. . In addition, the laser beam type particle size sensor 5 is 1 μ
It is possible to measure a very wide range of particle sizes from m to 2000 μm with a single sensor, which covers the entire particle size range in a normal granulation operation. Further, the output from this device complies with the JIS standard sieve, and can be easily compared with the particle size measuring method generally used conventionally.

【0026】本発明の流動層処理装置2における粉粒体
Gの粒度測定装置1の構成及び使用方法は前記したとお
りであり、以下具体的なデータを示し、αコーンスター
チを3kg仕込み、結合剤に水を用いて造粒した実施例
について説明する。
The structure and method of use of the particle size measuring apparatus 1 for the powdery or granular material G in the fluidized bed processing apparatus 2 of the present invention are as described above. The concrete data are shown below, 3 kg of α corn starch was charged, and the binder was used. An example of granulating with water will be described.

【0027】まず、造粒開始後から流動室21からのサ
ンプリングを行い、同時にレーザ光式粒径センサ5での
測定を行った平均粒子径と、従来より用いているふるい
分け法で測定した結果とを比較したグラフを図5に示
す。横軸はふるい分け法による計測粒子径であり、縦軸
はレーザ法による計測粒子径である。計測は平均粒子径
がD20、D50、D80の三種類をオフライン、オン
ラインでそれぞれ行った。
First, after the granulation was started, sampling from the flow chamber 21 was performed, and at the same time, the average particle diameter measured by the laser beam type particle size sensor 5 and the result measured by the sieving method used conventionally. A graph comparing the above is shown in FIG. The horizontal axis is the particle diameter measured by the sieving method, and the vertical axis is the particle diameter measured by the laser method. The measurement was performed offline and online for three types of average particle diameters of D20, D50, and D80, respectively.

【0028】レーザ光式粒径センサ5で測定した平均粒
子径は、ふるい分け法で測定した結果と非常によく一致
しており、従来不可能であった造粒中の流動室21内の
粉粒体Gの状態をリアルタイムで把握することが可能で
ある。
The average particle size measured by the laser beam type particle size sensor 5 is very well in agreement with the result measured by the sieving method, and the powder particles in the flow chamber 21 during granulation, which has been impossible in the past, can be obtained. It is possible to grasp the state of the body G in real time.

【0029】また本発明の粒度測定装置1は、流動層処
理装置2のみならず、例えば一般の乾燥装置、粉体の貯
留装置、輸送中の配管内の粉体、等々、粉体を扱う装置
に適用ができる。
Further, the particle size measuring apparatus 1 of the present invention is not limited to the fluidized bed processing apparatus 2, but may be an apparatus for handling powder such as a general drying apparatus, a powder storage apparatus, powder in a pipe during transportation, etc. Can be applied to.

【0030】[0030]

【発明の効果】本発明は以上述べたような構成を有する
ものであり、以下のような効果を奏する。まず請求項1
記載の発明によれば、サンプリング装置3によって粉粒
体Gを定量的にサンプリングし、サンプリングした粉粒
体Gを導管4によってレーザ光式粒径センサ5に導き粒
径測定を行い、コンピュータにより測定データを解析
し、平均粒子径、均一度、粒度分布、等の項目を算出す
る。
The present invention has the structure as described above, and has the following effects. First, claim 1
According to the invention described above, the sampling device 3 quantitatively samples the granular material G, the sampled granular material G is guided to the laser light type particle size sensor 5 by the conduit 4, and the particle size is measured and measured by the computer. The data is analyzed and items such as average particle size, uniformity, particle size distribution, etc. are calculated.

【0031】また請求項2記載の発明によれば、前記導
管4の水平中空部42の両端部分には反射防止コーティ
ングガラス43を具えるので、レーザ光式粒径センサ5
のレーザ光を反射、散乱することなく透過する。
According to the second aspect of the present invention, since the antireflection coating glass 43 is provided at both ends of the horizontal hollow portion 42 of the conduit 4, the laser light type particle size sensor 5 is provided.
The laser light of is reflected and transmitted without being scattered.

【0032】更にまた請求項3記載の発明によれば、前
記反射防止コーティングガラス43の内側には、エアパ
ージ機構44を具えるので、反射防止コーティングガラ
ス43への粉粒体Gの付着を回避する。
Furthermore, according to the third aspect of the invention, since the air purging mechanism 44 is provided inside the antireflection coating glass 43, the adhesion of the powder or granules G to the antireflection coating glass 43 is avoided. .

【0033】更にまた請求項4記載の発明によれば、前
記水平中空部42の上下にはそれぞれ仕切弁81、82
を具え、更にこれら仕切弁81、82の間にリーク弁8
3を具えるので、これら弁の切り替えにより、粉粒体G
の移動経路を選択すことができる。
Further, according to the invention of claim 4, sluice valves 81 and 82 are provided above and below the horizontal hollow portion 42, respectively.
And a leak valve 8 between the sluice valves 81 and 82.
3 is provided, so by switching these valves, powder G
It is possible to select the moving route of.

【0034】更にまた請求項5記載の発明によれば、前
記導管4と流動室21とを連結する空輸配管6を設け、
粉粒体Gが流動室21に返送される経路を形成するの
で、測定された粉粒体Gを流動室21に返送する。これ
らによって造粒操作等の粉粒体G加工時、処理容器内の
粉粒体Gをサンプリングし、レーザ光式センサ5で粉粒
体Gを測定することにより、粉粒体Gの状態をリアルタ
イムで測定することが可能となり、測定結果を操作因子
の制御に用いることにより最適な造粒制御を行うことが
できるため、品質の安定化、生産の合理化に極めて有効
である。更に、測定は既存の流動層処理装置2に後付け
される粒度測定装置1により、流動室21外部にて行わ
れるため、サニタリー性、洗浄性での問題もなくなる。
またこれまで困難であった造粒のメカニズム解析等への
応用が可能である。
Further, according to the invention of claim 5, an air transportation pipe 6 for connecting the conduit 4 and the flow chamber 21 is provided,
Since the granular material G forms a path for returning to the fluid chamber 21, the measured granular material G is returned to the fluid chamber 21. By these, during the processing of the granular material G such as granulation operation, the granular material G in the processing container is sampled and the granular material G is measured by the laser light type sensor 5, so that the state of the granular material G can be real time. Since it is possible to perform the measurement, the optimum granulation control can be performed by using the measurement result for the control of the operation factor, which is extremely effective for stabilizing the quality and rationalizing the production. Furthermore, since the measurement is performed outside the fluidizing chamber 21 by the particle size measuring device 1 that is attached to the existing fluidized bed processing device 2, there is no problem in sanitary property and cleaning property.
It can also be applied to the analysis of the mechanism of granulation, which has been difficult until now.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粒度測定装置を流動層造粒装置に付設
した状態を示す骨格図である。
FIG. 1 is a skeleton diagram showing a state in which a particle size measuring device of the present invention is attached to a fluidized bed granulating device.

【図2】サンプリング装置を示す縦断側面図である。FIG. 2 is a vertical side view showing a sampling device.

【図3】導管を示す縦断側面図である。FIG. 3 is a vertical side view showing a conduit.

【図4】レーザ光式粒径センサの内部構造を模式的に示
すブロック図である。
FIG. 4 is a block diagram schematically showing an internal structure of a laser beam particle size sensor.

【図5】ふるい分け法による計測粒子径と本発明の粒度
測定装置による計測粒子径を比較するグラフである。
FIG. 5 is a graph comparing the particle size measured by the sieving method and the particle size measured by the particle size measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 粒度測定装置 2 流動層処理装置 3 サンプリング装置 4 導管 5 レーザ光式粒径センサ 6 空輸配管 7 コンピュータ 21 流動室 22 サンプリングノズル 23 噴霧室 24 噴霧ノズル 31 ケーシング 32 スクリュー 33 エアモータ 34 粒子取入口 41 垂直中空部 42 水平中空部 43 反射防止コーティングガラス 44 エアパージ機構 45 エア吹出口 46 配管継手 51 He−Neレーザ 52 コリメータ 53 センサ 81 仕切弁 82 仕切弁 83 リーク弁 G 粉粒体 1 Particle Size Measuring Device 2 Fluidized Bed Processing Device 3 Sampling Device 4 Conduit 5 Laser Light Type Particle Size Sensor 6 Air Transport Piping 7 Computer 21 Flowing Chamber 22 Sampling Nozzle 23 Spraying Chamber 24 Spraying Nozzle 31 Casing 32 Screw 33 Air Motor 34 Particle Intake 41 Vertical Hollow part 42 Horizontal hollow part 43 Anti-reflection coating glass 44 Air purge mechanism 45 Air outlet 46 Piping joint 51 He-Ne laser 52 Collimator 53 Sensor 81 Gate valve 82 Gate valve 83 Leak valve G Granules

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月13日[Submission date] July 13, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 一正 静岡県榛原郡吉田町神戸1235 株式会社大 川原製作所内 (72)発明者 田畑 浩治 静岡県榛原郡吉田町神戸1235 株式会社大 川原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazumasa Yamazaki 1235, Okawara Manufacturing Co., Ltd., Yoshida-cho, Haibara-gun, Shizuoka Prefecture (72) Inventor Koji Tabata 1235 Kobe, Yoshida-cho, Shizuoka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粉粒体の乾燥、造粒、コーティング等を
行う流動層処理装置の適所に接続されるサンプリング装
置と、このサンプリング装置から連通状態に分岐するよ
うに取り付けられた導管と、前記導管と交差状に組み合
わされるレーザ光式粒径センサと、前記粒径センサの出
力をデータ処理するコンピュータとを具えることを特徴
とする、流動層処理装置における粉粒体の粒度測定装
置。
1. A sampling device connected to an appropriate place of a fluidized bed processing device for drying, granulating, coating, etc. of powder and granules, and a conduit attached so as to branch from the sampling device into a communicating state, A particle size measuring device for powder particles in a fluidized bed processing device, comprising: a laser beam particle size sensor that is combined with a conduit in a cross shape; and a computer that processes the output of the particle size sensor.
【請求項2】 前記導管は、レーザ光式粒径センサのレ
ーザ光が通過する水平中空部と、粉粒体の自由落下経路
となる垂直中空部とから成り、水平中空部の両端部分に
は反射防止コーティングガラスを具えることを特徴とす
る、請求項1記載の流動層処理装置における粉粒体の粒
度測定装置。
2. The conduit is composed of a horizontal hollow portion through which the laser light of the laser light type particle size sensor passes, and a vertical hollow portion that serves as a free fall path for powder particles, and both end portions of the horizontal hollow portion are provided. The particle size measuring apparatus for powder particles in a fluidized bed processing apparatus according to claim 1, characterized by comprising antireflection coated glass.
【請求項3】 前記反射防止コーティングガラスの内側
には、エアパージ機構を具えることを特徴とする、請求
項1または2記載の流動層処理装置における粉粒体の粒
度測定装置。
3. The particle size measuring apparatus for a powder or granular material in a fluidized bed processing apparatus according to claim 1, wherein an air purging mechanism is provided inside the antireflection coating glass.
【請求項4】 前記水平中空部の上下にはそれぞれ仕切
弁を具え、更にこれら仕切弁の間にリーク弁を具えるこ
とを特徴とする、請求項1、2または3記載の流動層処
理装置における粉粒体の粒度測定装置。
4. The fluidized bed treatment apparatus according to claim 1, wherein a partition valve is provided above and below said horizontal hollow portion, and a leak valve is provided between these partition valves. Particle size measuring device for powder and granular material.
【請求項5】 前記導管と流動室とを連結する空輸配管
を設け、粉粒体が流動室に返送される経路を形成するこ
とを特徴とする、請求項1、2、3または4記載の流動
層処理装置における粉粒体の粒度測定装置。
5. The air transport pipe for connecting the conduit and the flow chamber is provided to form a path for returning the granular material to the flow chamber, according to claim 1, 2, 3 or 4. Particle size measuring device for powder particles in fluidized bed processing equipment.
JP6152795A 1994-06-10 1994-06-10 Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus Pending JPH07333113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6152795A JPH07333113A (en) 1994-06-10 1994-06-10 Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6152795A JPH07333113A (en) 1994-06-10 1994-06-10 Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus

Publications (1)

Publication Number Publication Date
JPH07333113A true JPH07333113A (en) 1995-12-22

Family

ID=15548319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6152795A Pending JPH07333113A (en) 1994-06-10 1994-06-10 Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus

Country Status (1)

Country Link
JP (1) JPH07333113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947035B1 (en) * 2008-02-28 2010-03-10 김영훈 Analysis System for Air of Harmful Environment by IR Spectroscopy
JP2014039179A (en) * 2012-08-17 2014-02-27 Chino Corp Monitoring window purge structure
CN104236951A (en) * 2013-06-12 2014-12-24 阿克森斯公司 Device for sampling solids from a sealed enclosure and method using same
JP2018151273A (en) * 2017-03-14 2018-09-27 沢井製薬株式会社 Particle diameter measuring method, particle diameter measuring apparatus and quality control method using the same
US10151677B2 (en) 2014-07-08 2018-12-11 Halliburton Energy Services, Inc. Real-time optical flow imaging to determine particle size distribution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175645A (en) * 1986-01-30 1987-08-01 Nikkiso Co Ltd Online automatic powdery and granular material grain size analyzer
JPS6337889B2 (en) * 1981-03-19 1988-07-27 Boeicho Gijutsu Kenkyu Honbucho
JPH0234603Y2 (en) * 1985-02-20 1990-09-18
JPH0310145A (en) * 1989-06-08 1991-01-17 Okawara Mfg Co Ltd Moisture detecting device in fluid-bed processing apparatus
JPH0466567U (en) * 1990-10-19 1992-06-11
JPH0566190A (en) * 1990-11-22 1993-03-19 Satake Eng Co Ltd Device and method for analyzing fine particle and grinder roll interval adjustor using it
JPH05285363A (en) * 1992-04-09 1993-11-02 Powrex:Kk Controlling device for particle working equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337889B2 (en) * 1981-03-19 1988-07-27 Boeicho Gijutsu Kenkyu Honbucho
JPH0234603Y2 (en) * 1985-02-20 1990-09-18
JPS62175645A (en) * 1986-01-30 1987-08-01 Nikkiso Co Ltd Online automatic powdery and granular material grain size analyzer
JPH0310145A (en) * 1989-06-08 1991-01-17 Okawara Mfg Co Ltd Moisture detecting device in fluid-bed processing apparatus
JPH0466567U (en) * 1990-10-19 1992-06-11
JPH0566190A (en) * 1990-11-22 1993-03-19 Satake Eng Co Ltd Device and method for analyzing fine particle and grinder roll interval adjustor using it
JPH05285363A (en) * 1992-04-09 1993-11-02 Powrex:Kk Controlling device for particle working equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947035B1 (en) * 2008-02-28 2010-03-10 김영훈 Analysis System for Air of Harmful Environment by IR Spectroscopy
JP2014039179A (en) * 2012-08-17 2014-02-27 Chino Corp Monitoring window purge structure
CN104236951A (en) * 2013-06-12 2014-12-24 阿克森斯公司 Device for sampling solids from a sealed enclosure and method using same
US10151677B2 (en) 2014-07-08 2018-12-11 Halliburton Energy Services, Inc. Real-time optical flow imaging to determine particle size distribution
JP2018151273A (en) * 2017-03-14 2018-09-27 沢井製薬株式会社 Particle diameter measuring method, particle diameter measuring apparatus and quality control method using the same

Similar Documents

Publication Publication Date Title
US5194297A (en) System and method for accurately depositing particles on a surface
CA1327460C (en) Method of automatic particle analysis and means for performing the analysis
KR101815327B1 (en) Device for determining particle sizes
RU2092817C1 (en) Method of determination of composition of loose products and device for its realization
JP4020785B2 (en) Sampling device
US10189054B2 (en) Deviation handling apparatus and deviation handling method
Petrak et al. In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT)
JP2003519793A (en) Method and apparatus for monitoring coatings on particles during manufacture of a pharmaceutical product
Närvänen et al. A new rapid on-line imaging method to determine particle size distribution of granules
CN102686998A (en) Assembly and method for measuring pourable products
US5750996A (en) Apparatus for nondestructively inspecting a coated article and associated method
JPH07333113A (en) Particle size measuring apparatus for powder/grain in fluidized bed treating apparatus
US6674529B2 (en) Method and apparatus for determining physical collective parameters of particles of gases
CN112033913A (en) Device and method for measuring water content of nano single particles based on surface plasmon resonance imaging
JP3909382B2 (en) Granulation control method of granular material in fluidized bed processing apparatus
Rantanen et al. Determination of particle size in a fluidized bed granulator with a near infrared set‐up
KR20000029455A (en) Method and device for sampling dispersed streams of material
Schmidt-Lehr et al. Online control of particle size during fluidised bed granulation
JP2013071104A (en) Fluidized bed apparatus
Scheibelhofer et al. Automatic correction for window fouling of near infrared probes in fluidised systems
JP4472494B2 (en) Powder processing equipment
JP3351812B2 (en) Controller for particle processing equipment
WO1997008181A1 (en) Solid sucralose
EP0917907A2 (en) Granulation method and system with particle size distribution control
JPS61200444A (en) Method and apparatus for measuring moisture of particulate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090108

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090108

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100108

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100108

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14