JPH07332778A - Method and apparatus for controlling temperature of two-stage compression refrigerator - Google Patents

Method and apparatus for controlling temperature of two-stage compression refrigerator

Info

Publication number
JPH07332778A
JPH07332778A JP12928594A JP12928594A JPH07332778A JP H07332778 A JPH07332778 A JP H07332778A JP 12928594 A JP12928594 A JP 12928594A JP 12928594 A JP12928594 A JP 12928594A JP H07332778 A JPH07332778 A JP H07332778A
Authority
JP
Japan
Prior art keywords
stage
temperature
pipe
outlet
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12928594A
Other languages
Japanese (ja)
Inventor
Osamu Yoneda
治 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP12928594A priority Critical patent/JPH07332778A/en
Publication of JPH07332778A publication Critical patent/JPH07332778A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To provide energy conservation by applying the condensing heat of high-temperature high-stage discharge gas from the high-stage discharge tube of a two-stage compressor from an evaporator to a fluid to be cooled, and controlling the temperature of the fluid, thereby cancelling excess refrigerating capacity of the discharge gas of the compressor. CONSTITUTION:A branch tube 7 branched from the high-stage discharge tube 6 of a two-stage compressor 1 coupled to the inlet of a condenser 2 is provided. A heater 5 for passing a high-temperature high-stage discharge gas from the tube 6 of the compressor 1 as a heating fluid to its heat transfer tube 5a to the tube 7 via a two-way flow control valve 8 is provided at the outlet of the fluid 3 to be cooled of an evaporator 3. The temperature of the fluid 36 fed to the outlet of the heater 5 via the evaporator 3 is detected by a temperature sensor 31, the valve 8 is switched to match the temperature set by a temperature controller 30 provided at the outlet of the heater 5 of the fluid 36 from the evaporator 3, thereby controlling the temperature of the fluid 36 to be cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は25℃〜−60℃の常温
から超低温に及ぶ被冷却流体(空気)温度を必要とし、
しかも、この温度範囲の設定温度に対して±0.2℃の
精度を維持する必要がある半導体環境試験装置等の恒温
装置に使用する一元冷凍装置における廃熱を利用して温
度制御を可能とした二段圧縮冷凍装置の温度制御方法お
よびその装置に関する。
BACKGROUND OF THE INVENTION The present invention requires a fluid (air) temperature to be cooled ranging from room temperature to ultra-low temperature of 25 ° C to -60 ° C.
Moreover, it is possible to control the temperature by utilizing the waste heat in the unitary refrigerating device used for the constant temperature device such as the semiconductor environment test device which needs to maintain the accuracy of ± 0.2 ° C. with respect to the set temperature in this temperature range. The present invention relates to a temperature control method for a two-stage compression refrigeration system and the apparatus therefor.

【0002】[0002]

【従来の技術】従来、この種の恒温装置には、液体窒素
と電熱ヒーターを組み合わせたものがある。
2. Description of the Related Art Conventionally, there is a constant temperature device of this type in which liquid nitrogen and an electric heater are combined.

【0003】また、この他に周知の二元冷凍装置または
一元冷凍装置により冷却した被冷却流体を電熱ヒーター
を用いて再加熱することは一般に行われている。
In addition, it is generally practiced to reheat a fluid to be cooled, which has been cooled by a well-known binary refrigeration system or single refrigeration system, by using an electric heater.

【0004】この内、二元冷凍装置については、蒸発器
からの被冷却流体の温度を二元冷凍装置の廃熱を利用し
て制御する二元冷凍装置の温度制御方法およびその装置
には、本発明と同一出願人の発明に係る特願平5−12
1589号が存在する。
Among these, regarding the dual refrigeration system, the temperature control method for the dual refrigeration system and the device for controlling the temperature of the fluid to be cooled from the evaporator by utilizing the waste heat of the binary refrigeration system are as follows: Japanese Patent Application No. 5-12 relating to the invention of the same applicant as the present invention
1589 exists.

【0005】また、一元冷凍装置については、図2に示
すように電熱ヒーター5b出口の被冷却流体36の温度
を温度センサー31により感知し、電熱ヒーター5bと
信号線34で結線し、常温から超低温に及ぶ温度範囲に
温度設定が可能な温度コントローラー30を前記温度セ
ンサー31に信号線32で結線し、所望の被冷却空気温
度を得る等の技術がある。
Further, in the single refrigeration system, as shown in FIG. 2, the temperature of the fluid to be cooled 36 at the outlet of the electric heater 5b is detected by a temperature sensor 31 and is connected to the electric heater 5b by a signal line 34, and the temperature is changed from room temperature to ultra low temperature. There is a technique in which a temperature controller 30 capable of setting a temperature in a temperature range of up to 10 is connected to the temperature sensor 31 by a signal line 32 to obtain a desired cooled air temperature.

【0006】[0006]

【発明が解決しようとする課題】従来の液体窒素と電熱
ヒーターを組み合わせたものでは、液体窒素の沸点(−
195.8℃)が低いため、液体窒素を蒸発させなが
ら、適宜温度に試験試料を冷却している。
In the conventional combination of liquid nitrogen and an electric heater, the boiling point of liquid nitrogen (-
195.8 ° C.), the test sample is cooled to an appropriate temperature while evaporating the liquid nitrogen.

【0007】すなわち、この適宜温度を得るために、液
体窒素量を制御して恒温装置内に噴射して蒸発させ、例
えば−3℃,−45℃,−55℃等の一定温度に保持し
て半導体環境試験を行っている。
That is, in order to obtain this appropriate temperature, the amount of liquid nitrogen is controlled and injected into a thermostatic device to evaporate, and kept at a constant temperature such as -3 ° C, -45 ° C, -55 ° C. Conducting semiconductor environmental tests.

【0008】そのために、液体窒素の消費が大量とな
り、常に必要な量だけの液体窒素を準備しておく必要が
あり、高価に付き、試験中に液体窒素の注ぎ足しを行う
ため、注ぎ足しに手間がかかり、連続運転ができないと
いう欠点があった。
Therefore, the consumption of liquid nitrogen becomes large, and it is necessary to always prepare the required amount of liquid nitrogen, which is expensive, and the liquid nitrogen is added during the test. There was a drawback that it took time and labor and continuous operation was not possible.

【0009】その上、窒素ガスの漏洩や超低温の液体窒
素の取扱い上において危険性があり、その漏洩により作
業環境の悪化を招くという欠点があった。
In addition, there is a drawback in that there is a danger in leaking nitrogen gas and handling of ultra-low temperature liquid nitrogen, and the leak causes deterioration of working environment.

【0010】また、恒温装置に従来より周知の二元冷凍
装置または一元冷凍装置を適用したものでは、作業性の
面から冷却降下時に、被冷却空気を約30分間で常温よ
り超低温に至る温度範囲の一定温度に冷却急降下させる
冷凍能力を具備する必要がある。
Further, in the case where a conventionally known binary refrigerating device or single refrigerating device is applied to the constant temperature device, in view of workability, the temperature range of the cooled air from the normal temperature to an ultra-low temperature in about 30 minutes at the time of cooling down. It is necessary to have a refrigerating capacity to cool down rapidly to a certain temperature.

【0011】そのためには、最低設定温度の冷凍負荷に
対して約3倍の冷凍能力を有する冷凍圧縮機が必要とな
り、その設備費が高価に付く上に、省エネルギー化でき
ないという欠点があった。
For that purpose, a refrigerating compressor having a refrigerating capacity about three times as high as the refrigerating load at the minimum set temperature is required, which has a drawback that the equipment cost is expensive and energy saving cannot be achieved.

【0012】それに、この種の恒温装置は冷凍負荷が比
較的小さく、小規模で、二元冷凍装置または一元冷凍装
置の圧縮機には容量制御機構を有するものはなく、前記
温度範囲の設定温度が高い場合ほど恒温装置の冷凍負荷
が小さく、逆に各冷凍装置の圧縮機の冷凍能力は大きく
なる。
In addition, this type of constant temperature device has a relatively small refrigeration load, is small in scale, and there is no compressor having a capacity control mechanism in a binary refrigeration device or a single refrigeration device. The higher the value, the smaller the refrigeration load of the constant temperature device, and conversely the larger the refrigeration capacity of the compressor of each refrigeration device.

【0013】つまり、冷凍能力が冷凍負荷より大きいこ
とにより、余剰冷凍能力が生じ、設定温度におけるその
温度の維持が困難になるので、この余剰冷凍能力を電熱
ヒーターにより加熱して相殺し、設定温度を維持するた
め、省エネルギー化できないという欠点があった。
That is, since the refrigerating capacity is larger than the refrigerating load, a surplus refrigerating capacity is generated, and it becomes difficult to maintain the temperature at the set temperature. Therefore, the surplus refrigerating capacity is heated by the electric heater to cancel the set refrigerating capacity. Therefore, there is a drawback that energy saving cannot be performed in order to maintain the above.

【0014】そこで、本発明の出願人は以前に前記特願
平5−121589号で、二元冷凍装置の被冷却流体の
温度を二元冷凍装置の廃熱を利用して制御する二元冷凍
装置の温度制御方法およびその装置を発明したが、今回
新規に廃熱を利用した一元冷凍装置における二段圧縮冷
凍装置の温度制御方法およびその装置を発明したもので
ある。
Therefore, the applicant of the present invention has previously described in Japanese Patent Application No. 5-121589 mentioned above that the temperature of the fluid to be cooled in the binary refrigerating apparatus is controlled by utilizing the waste heat of the binary refrigerating apparatus. The present invention has invented a temperature control method for a device and a device therefor, but this time newly invented a temperature control method for a two-stage compression refrigeration device and a device for a unitary refrigeration device utilizing waste heat.

【0015】本発明は半導体環境試験装置等の恒温装置
に使用する一元冷凍装置において、二段圧縮機の高段吐
出ガスが保有している凝縮熱量を利用して前記余剰冷凍
能力を相殺し、省エネルギー化を可能とする二段圧縮冷
凍装置の温度制御方法およびその装置を提供することを
目的とする。
According to the present invention, in a unitary refrigerating apparatus used for a constant temperature apparatus such as a semiconductor environment test apparatus, the excess refrigerating capacity is offset by utilizing the heat of condensation possessed by the high-stage discharge gas of the two-stage compressor, An object of the present invention is to provide a temperature control method for a two-stage compression refrigeration system and a device therefor that can save energy.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するする
ために、二段圧縮機の高段吐出管にコンデンサーの入口
を連結し、コンデンサーの出口にエコノマイザーの入口
を連結し、エコノマイザーの出口に膨張弁を介して蒸発
器の入口を連結し、蒸発器の出口に二段圧縮機の低段吸
入管を連結し、コンデンサーの出口よりの分岐管に膨張
弁を介してエコノマイザー内の伝熱管入口と連結し、そ
の伝熱管出口を二段圧縮機の低段吐出管と高段吸入管の
連結管と連結してなる二段圧縮冷凍サイクルにおいて、
コンデンサーの入口と連結した二段圧縮機の高段吐出管
を分岐した分岐管を設ける。
In order to achieve the above object, the inlet of a condenser is connected to the high-stage discharge pipe of a two-stage compressor, and the inlet of an economizer is connected to the outlet of the condenser. The outlet is connected to the inlet of the evaporator via an expansion valve, the outlet of the evaporator is connected to the low-stage suction pipe of the two-stage compressor, and the branch pipe from the outlet of the condenser is connected via the expansion valve to the inside of the economizer. In the two-stage compression refrigeration cycle, which is connected to the heat transfer pipe inlet and the heat transfer pipe outlet is connected to the connecting pipe of the low-stage discharge pipe and the high-stage suction pipe of the two-stage compressor,
A branch pipe is provided that branches the high-stage discharge pipe of the two-stage compressor connected to the inlet of the condenser.

【0017】そしてその分岐管に二方流量制御弁を介し
てその伝熱管に二段圧縮機の高段吐出管よりの高温の高
段吐出ガスを加熱流体として通過させるヒーターを、蒸
発器の被冷却流体出口に設ける。
A heater for passing the high-temperature high-stage discharge gas from the high-stage discharge pipe of the two-stage compressor as a heating fluid is passed through the branch pipe through the two-way flow control valve to the heat transfer pipe. Provided at the cooling fluid outlet.

【0018】また、前記分岐管の分岐部とコンデンサー
入口との間の高段吐出管に、前記ヒーターの液出口より
の高段吐出ガスを蒸発器の被冷却流体で冷却した凝縮液
を膨張弁を介して冷却液体入口より導入する熱交換器を
設ける。
In the high-stage discharge pipe between the branch portion of the branch pipe and the condenser inlet, a condensate obtained by cooling the high-stage discharge gas from the liquid outlet of the heater with the cooled fluid of the evaporator is used as an expansion valve. A heat exchanger introduced through the cooling liquid inlet is provided.

【0019】さらに、熱交換器の冷却ガス出口に高段吐
出管内の高温の高段吐出ガスと熱交換してガス化した冷
媒を二段圧縮機の高段吸入管に導入する配管を設ける。
Further, a pipe is provided at the cooling gas outlet of the heat exchanger for introducing the refrigerant gasified by exchanging heat with the high-temperature high-stage discharge gas in the high-stage discharge pipe into the high-stage suction pipe of the two-stage compressor.

【0020】そして前記蒸発器からの被冷却流体のヒー
ター出口に25℃〜−60℃の常温から超低温までの任
意温度に設定可能な温度コントローラーと結線した温度
センサーを設け、その温度コントローラーと前記二方流
量制御弁を結線する信号線を設ける。
At the heater outlet of the fluid to be cooled from the evaporator, a temperature sensor connected to a temperature controller capable of setting an arbitrary temperature from normal temperature to ultra-low temperature of 25 ° C. to −60 ° C. is provided. Provide a signal line to connect the one-way flow control valve.

【0021】そうすることにより温度コントローラーで
設定した温度に合せて二方流量制御弁を開閉させ、被冷
却流体の温度を制御させるようにし、二段圧縮機の高段
吐出管よりの高温の高段吐出ガスの凝縮熱を蒸発器から
の被冷却流体に与え、被冷却流体の温度を制御するよう
にした。
By doing so, the two-way flow control valve is opened / closed in accordance with the temperature set by the temperature controller to control the temperature of the fluid to be cooled, and the temperature higher than that of the high-stage discharge pipe of the two-stage compressor is controlled. The condensation heat of the stage discharge gas is applied to the fluid to be cooled from the evaporator to control the temperature of the fluid to be cooled.

【0022】[0022]

【作用】二段圧縮機1の高段吐出管6にコンデンサー2
の入口を連結し、コンデンサー2の出口にエコノマイザ
ー4の入口を連結し、エコノマイザー4の出口に膨張弁
21を介して蒸発器3の入口管22を連結し、蒸発器3
の出口管23に配管23aを介して二段圧縮機1の低段
吸入管24を連結し、コンデンサー2の出口よりの分岐
管18に膨張弁13を介してエコノマイザー4内の伝熱
管4a入口を連結し、その伝熱管4a出口を二段圧縮機
1の低段吐出管25と高段吸入管16の連結管19と連
結してなる一元冷凍装置における二段圧縮冷凍サイクル
において、コンデンサー2の入口と連結した二段圧縮機
1の高段吐出管6を分岐した分岐管7を設け、その分岐
管7に二方流量制御弁8を介してその伝熱管5aに二段
圧縮機1の高段吐出管6よりの高温の高段吐出ガスを加
熱流体として通過させるヒーター5を、蒸発器3の被冷
却流体36出口に設ける。
[Operation] The condenser 2 is connected to the high-stage discharge pipe 6 of the two-stage compressor 1.
Is connected to the outlet of the condenser 2, the inlet of the economizer 4 is connected to the outlet of the condenser 2, and the inlet pipe 22 of the evaporator 3 is connected to the outlet of the economizer 4 via the expansion valve 21.
The lower stage suction pipe 24 of the two-stage compressor 1 is connected to the outlet pipe 23 of the condenser 2 via the pipe 23a, and the branch pipe 18 from the outlet of the condenser 2 is connected to the heat transfer pipe 4a inlet in the economizer 4 via the expansion valve 13. In the two-stage compression refrigeration cycle in the single refrigeration system in which the outlet of the heat transfer pipe 4a is connected to the low-stage discharge pipe 25 of the two-stage compressor 1 and the connecting pipe 19 of the high-stage suction pipe 16. A branch pipe 7 that branches the high-stage discharge pipe 6 of the two-stage compressor 1 connected to the inlet is provided, and the branch pipe 7 is connected to the heat transfer pipe 5a via the two-way flow control valve 8 and the height of the two-stage compressor 1 is increased. A heater 5 that allows high-temperature high-stage discharge gas from the stage discharge pipe 6 to pass therethrough as a heating fluid is provided at the outlet of the cooled fluid 36 of the evaporator 3.

【0023】そして前記分岐管7の分岐部とコンデンサ
ー2入口との間の高段吐出管6に、高段吐出ガスを蒸発
器3の被冷却流体36で冷却した前記ヒーター5の液出
口10よりの凝縮液を冷却液体入口12より膨張弁13
を介して導入する熱交換器37を設け、熱交換器37の
冷却ガス出口にその高段吐出管6内の高温の高段吐出ガ
スと熱交換してガス化した冷媒を二段圧縮機1の高段吸
入管16に導入する配管39を設ける。
Then, in the high-stage discharge pipe 6 between the branch portion of the branch pipe 7 and the inlet of the condenser 2, from the liquid outlet 10 of the heater 5 in which the high-stage discharge gas is cooled by the cooled fluid 36 of the evaporator 3. The condensate from the cooling liquid inlet 12 to the expansion valve 13
A heat exchanger 37 introduced through the heat exchanger 37 is provided, and a refrigerant gasified by exchanging heat with the high-temperature high-stage discharge gas in the high-stage discharge pipe 6 is provided at the cooling gas outlet of the heat exchanger 37 in the two-stage compressor 1 A pipe 39 to be introduced into the high-stage suction pipe 16 is provided.

【0024】また、前記蒸発器3よりの被冷却流体36
のヒーター5出口に25℃〜−60℃の常温から超低温
までの任意温度に設定可能な温度コントローラー30と
結線した温度センサー31を設ける。
Further, the fluid to be cooled 36 from the evaporator 3 is
At the outlet of the heater 5, a temperature sensor 31 connected to a temperature controller 30 capable of setting an arbitrary temperature from normal temperature to ultra-low temperature of 25 ° C. to −60 ° C. is provided.

【0025】そしてその温度コントローラー30と前記
二方流量制御弁8を結線する信号線33を設け、蒸発器
3を経てヒーター5の出口に至った被冷却流体36の温
度を温度センサー31で検出し、温度コントローラー3
0で設定した温度に合せて二方流量制御弁8を開閉さ
せ、被冷却流体36の温度を制御させるようにしたか
ら、この温度センサー31で検出した温度が温度コント
ローラー30での前記設定温度まで冷却降下すると、温
度コントローラー30から設定信号が発せられる。
A signal line 33 for connecting the temperature controller 30 and the two-way flow control valve 8 is provided, and the temperature sensor 31 detects the temperature of the fluid 36 to be cooled which has reached the outlet of the heater 5 through the evaporator 3. , Temperature controller 3
Since the two-way flow control valve 8 is opened and closed according to the temperature set at 0 to control the temperature of the fluid 36 to be cooled, the temperature detected by the temperature sensor 31 reaches the set temperature at the temperature controller 30. When the temperature drops by cooling, a setting signal is issued from the temperature controller 30.

【0026】この信号により二方流量制御弁8を制御
し、二段圧縮機1の高段吐出管6の分岐管7よりヒータ
ー5の伝熱管5aに流入する加熱流体としての高段吐出
ガス量を調節する。
The two-way flow control valve 8 is controlled by this signal, and the amount of high-stage discharge gas as the heating fluid flowing from the branch pipe 7 of the high-stage discharge pipe 6 of the two-stage compressor 1 into the heat transfer pipe 5a of the heater 5 is controlled. Adjust.

【0027】また、ヒーター5では被冷却流体36と伝
熱管5aに流入する前記高段吐出ガスとが熱交換し、被
冷却流体36は加熱されて余剰冷凍能力を相殺し、温度
コントローラー30の設定温度を維持することができ
る。
In the heater 5, the fluid 36 to be cooled exchanges heat with the high-stage discharge gas flowing into the heat transfer tube 5a, and the fluid 36 to be cooled is heated to offset the excess refrigerating capacity and set by the temperature controller 30. The temperature can be maintained.

【0028】一方、被冷却流体36と熱交換した加熱流
体としての高段吐出ガスは冷却されて液化し、ヒーター
5の液出口10から配管11を経て膨張弁13で膨張し
て減圧される。
On the other hand, the high-stage discharge gas as the heating fluid that has exchanged heat with the fluid to be cooled 36 is cooled and liquefied, and is expanded and decompressed by the expansion valve 13 from the liquid outlet 10 of the heater 5 through the pipe 11.

【0029】そして前記分岐管7の分岐部とコンデンサ
ー2入口との間の高段吐出管6に設けた熱交換器37の
冷却液体入口12から流入し、コンデンサー2に流入す
る前の高段吐出ガスと熱交換して気化し、冷却ガス出口
38より二段圧縮機1の高段吸入管16に配管39を介
して戻る。
Then, the high-stage discharge is introduced from the cooling liquid inlet 12 of the heat exchanger 37 provided in the high-stage discharge pipe 6 between the branch portion of the branch pipe 7 and the condenser 2 inlet, and before flowing into the condenser 2. The gas exchanges heat with gas to be vaporized, and returns from the cooling gas outlet 38 to the high-stage suction pipe 16 of the two-stage compressor 1 via the pipe 39.

【0030】すなわち、二段圧縮機1の高段吐出ガスの
一部は、高段吐出ガス管6の分岐管7より二方流量制御
弁8を経てヒーター5に流入するので、コンデンサー2
へ流入する高段吐出ガス量が減少する。
That is, since a part of the high-stage discharge gas of the two-stage compressor 1 flows into the heater 5 from the branch pipe 7 of the high-stage discharge gas pipe 6 through the two-way flow control valve 8, the condenser 2
The amount of high-stage discharge gas that flows into is reduced.

【0031】それと共に熱交換器37で、ヒーター5に
おいて液化した冷媒によってコンデンサー2へ流入する
前の高段吐出ガスをさらに冷却するので、コンデンサー
2内へ供給する冷却水入口26より冷却水出口27への
冷却水量を減少させることができる。
At the same time, in the heat exchanger 37, the high-stage discharge gas before flowing into the condenser 2 is further cooled by the refrigerant liquefied in the heater 5, so that the cooling water inlet 26 to the cooling water outlet 27 supplied into the condenser 2 are cooled. The amount of cooling water can be reduced.

【0032】この冷却水量の節減は冷却水出口27に付
設した制水弁28と、その制水弁28とコンデンサー2
との間に設けた感圧管29で構成し、コンデンサー2内
の冷媒圧力で制水弁28を自動開閉制御して行う。
This reduction in the amount of cooling water is achieved by a water control valve 28 attached to the cooling water outlet 27, the water control valve 28 and the condenser 2.
It is constituted by a pressure sensitive tube 29 provided between and, and the water pressure control valve 28 is automatically opened / closed by the refrigerant pressure in the condenser 2.

【0033】[0033]

【実施例】以下に本発明の実施の一例を示した添付図面
に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0034】図1は本発明の二段圧縮冷凍装置のもの
で、図2は従来の二段圧縮冷凍装置のものである。
FIG. 1 shows a two-stage compression refrigeration system of the present invention, and FIG. 2 shows a conventional two-stage compression refrigeration system.

【0035】図1および図2に示す符号1は周知の二段
圧縮機で、蒸発器3の伝熱管3aの出口管23を配管2
3aにより二段圧縮機1の低段吸入管24と連結し、そ
の低段吐出管25と高段吸入管16とを連結管19で連
結し、高段吐出管6をコンデンサー2の入口と連結した
ものである。
Reference numeral 1 shown in FIGS. 1 and 2 is a well-known two-stage compressor, in which the outlet pipe 23 of the heat transfer pipe 3a of the evaporator 3 is connected to the pipe 2
3a is connected to the low-stage suction pipe 24 of the two-stage compressor 1, the low-stage discharge pipe 25 and the high-stage suction pipe 16 are connected by a connecting pipe 19, and the high-stage discharge pipe 6 is connected to the inlet of the condenser 2. It was done.

【0036】そしてコンデンサー2の出口液管17にエ
コノマイザー4の入口を連結し、エコノマイザー4の出
口よりの液管20に膨張弁21を介して蒸発器3の伝熱
管3aの入口管22を連結したものである。
The outlet liquid pipe 17 of the condenser 2 is connected to the inlet of the economizer 4, and the inlet pipe 22 of the heat transfer pipe 3a of the evaporator 3 is connected to the liquid pipe 20 from the outlet of the economizer 4 via the expansion valve 21. It is a connection.

【0037】一方、コンデンサー2内の冷却水用伝熱管
2aに冷却水入口26より冷却水を供給し、冷却水出口
27に設けた、コンデンサー2内の冷媒圧力を感圧管2
9で感知して自動開閉制御する制水弁28によりその流
量を調節する。
On the other hand, the cooling water is supplied from the cooling water inlet 26 to the cooling water heat transfer tube 2a in the condenser 2, and the pressure of the refrigerant in the condenser 2 provided at the cooling water outlet 27 is controlled by the pressure sensitive tube 2
The flow rate is adjusted by the water control valve 28 which is detected by 9 and is controlled to open and close automatically.

【0038】また、エコノマイザー4の入口から出口へ
の冷媒液の流れと向流としたエコノマイザー4内の伝熱
管4aの出口管と、二段圧縮機1の低段吐出管25と高
段吸入管16との連結管19とを配管15で連結する。
Further, the outlet pipe of the heat transfer pipe 4a in the economizer 4, which is countercurrent to the flow of the refrigerant liquid from the inlet to the outlet of the economizer 4, the low-stage discharge pipe 25 and the high-stage of the two-stage compressor 1. The suction pipe 16 and the connecting pipe 19 are connected by a pipe 15.

【0039】そしてコンデンサー2の出口液管17から
の分岐液管18に膨張弁13を介してエコノマイザー4
内の伝熱管4aの入口管とを配管14で連結する。
The economizer 4 is connected to the branch liquid pipe 18 from the outlet liquid pipe 17 of the condenser 2 via the expansion valve 13.
A pipe 14 is connected to the inlet pipe of the heat transfer pipe 4a therein.

【0040】前記二段圧縮機1の高段吐出管6からの分
岐管7を、電動による二方流量制御弁8を介して蒸発器
3の被冷却流体36の出口に設けたヒーター5の伝熱管
5aのガス入口9と連結する。
The branch pipe 7 from the high-stage discharge pipe 6 of the two-stage compressor 1 is transferred to the heater 5 provided at the outlet of the fluid to be cooled 36 of the evaporator 3 via an electrically driven two-way flow control valve 8. It is connected to the gas inlet 9 of the heat pipe 5a.

【0041】また、前記二段圧縮機1の高段吐出管6
の、分岐管7の分岐部とコンデンサー2との間に連結し
た高段吐出ガスを被冷却流体とする熱交換器37の冷却
液体入口12と、ヒーター5の伝熱管5aの液出口10
とを配管11に前記同様の膨張弁13を介して連結す
る。
Further, the high-stage discharge pipe 6 of the two-stage compressor 1
The cooling liquid inlet 12 of the heat exchanger 37, which uses the high-stage discharge gas connected between the branch portion of the branch pipe 7 and the condenser 2 as the fluid to be cooled, and the liquid outlet 10 of the heat transfer pipe 5a of the heater 5.
Are connected to the pipe 11 via the expansion valve 13 similar to the above.

【0042】そしてヒーター5の伝熱管5aの液出口1
0よりの冷媒液を膨張弁13を経て減圧して冷却液体入
口12より導き、熱交換器37で高段吐出ガスと熱交換
し、気化した冷媒ガスを熱交換器37の冷却ガス出口3
8から二段圧縮機1の低段吐出管25と高段吸入管16
との連結管19に導入する配管39を設ける。
Liquid outlet 1 of heat transfer tube 5a of heater 5
The refrigerant liquid from 0 is decompressed through the expansion valve 13 and guided from the cooling liquid inlet 12, and heat-exchanges with the high-stage discharge gas in the heat exchanger 37, and the vaporized refrigerant gas is cooled by the cooling gas outlet 3 of the heat exchanger 37.
8 to the low-stage discharge pipe 25 and the high-stage suction pipe 16 of the two-stage compressor 1.
A pipe 39 to be introduced into the connecting pipe 19 is provided.

【0043】さらに、送風機35を設備したヒーター5
の被冷却流体36の出口に温度センサー31を設け、そ
の温度センサー31に25℃〜−60℃の常温から超低
温に及ぶ温度範囲の任意温度に設定が可能な温度コント
ローラー30を信号線32で結線する。
Further, the heater 5 equipped with the blower 35
A temperature sensor 31 is provided at the outlet of the fluid to be cooled 36, and a temperature controller 30 capable of setting an arbitrary temperature in a temperature range from normal temperature to ultra-low temperature of 25 ° C. to −60 ° C. is connected to the temperature sensor 31 by a signal line 32. To do.

【0044】そして温度コントローラー30と二方流量
制御弁8のパルスモーター操作部とを信号線33で結線
し、ヒーター5の被冷却流体出口温度が温度コントロー
ラー30での設定温度になるように二方流量制御弁8を
開閉し、ヒーター5の伝熱管5aを流れる二段圧縮機1
の高段吐出管6よりの加熱流体としての高段吐出ガスの
量を制御する。
Then, the temperature controller 30 and the pulse motor operating portion of the two-way flow control valve 8 are connected by a signal line 33 so that the temperature of the outlet of the fluid to be cooled of the heater 5 becomes the temperature set by the temperature controller 30. Two-stage compressor 1 that opens and closes the flow control valve 8 and flows through the heat transfer tube 5a of the heater 5.
The amount of high-stage discharge gas as the heating fluid from the high-stage discharge pipe 6 is controlled.

【0045】[0045]

【発明の効果】本発明は以上のような構成を有するか
ら、ヒーター5の被冷却流体出口の温度が温度コントロ
ーラー30の設定温度に達すると、ヒーター5の伝熱管
5aを流れる二段圧縮機1の高段吐出管6よりの加熱流
体としての高段吐出ガスの量を減少するように二方流量
制御弁8を閉方向に調節することができる。
Since the present invention has the above-described structure, when the temperature of the cooled fluid outlet of the heater 5 reaches the set temperature of the temperature controller 30, the two-stage compressor 1 flowing through the heat transfer pipe 5a of the heater 5 is provided. The two-way flow control valve 8 can be adjusted in the closing direction so as to reduce the amount of the high-stage discharge gas as the heating fluid from the high-stage discharge pipe 6.

【0046】それによって高段吐出ガスの全量はコンデ
ンサー2に流入せず、一部は二方流量制御弁8を経て加
熱流体としてヒーター5に流入するから、高段吐出ガス
の凝縮熱(廃熱)を利用して蒸発器3の余剰冷凍能力を
相殺することができ、従来のように電熱ヒーター5bを
設ける必要がなく、大幅な省エネルギー化が可能とな
る。
As a result, the entire amount of the high-stage discharge gas does not flow into the condenser 2, but a part of the high-stage discharge gas flows into the heater 5 as a heating fluid through the two-way flow control valve 8. ) Can be used to offset the excess refrigerating capacity of the evaporator 3, and it is not necessary to provide the electric heater 5b as in the conventional case, and a large energy saving can be achieved.

【0047】また、温度コントローラー30で被冷却流
体36の温度を一定に保持している間は、高段吐出ガス
の一部は加熱流体としてヒーター5で被冷却流体36と
熱交換し、液化され、分岐管7の分岐部とコンデンサー
2間の高段吐出管6に設けた熱交換器37に膨張弁13
を介して供給され、コンデンサー2へ流入する前の高段
吐出ガスを冷却・液化するから、コンデンサー2内の冷
却水用伝熱管2aに冷却水入口26より供給される冷却
水量を皆無に近い状態にまで節減できる。
While the temperature controller 30 keeps the temperature of the fluid 36 to be cooled constant, part of the high-stage discharge gas is liquefied by exchanging heat with the fluid 36 to be cooled by the heater 5 as heating fluid. The expansion valve 13 is attached to the heat exchanger 37 provided in the high-stage discharge pipe 6 between the branch portion of the branch pipe 7 and the condenser 2.
Since the high-stage discharge gas that has been supplied via the condenser 2 and before flowing into the condenser 2 is cooled and liquefied, the amount of cooling water supplied from the cooling water inlet 26 to the cooling water heat transfer pipe 2a in the condenser 2 is almost zero. You can save up to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二段圧縮冷凍装置の冷媒および冷却水
の系統図である。
FIG. 1 is a system diagram of a refrigerant and cooling water of a two-stage compression refrigeration system of the present invention.

【図2】従来の二段圧縮冷凍装置の冷媒および冷却水の
系統図である。
FIG. 2 is a system diagram of a refrigerant and cooling water of a conventional two-stage compression refrigeration system.

【符号の説明】[Explanation of symbols]

1 二段圧縮機 2 コンデンサー 2a 冷却水用伝熱管 3 蒸発器 3a 伝熱管 4 エコノマイザー 4a 伝熱管 5 ヒーター 5a 伝熱管 5b 電熱ヒーター 6 高段吐出管 7 分岐管 8 二方流量制御弁 9 ガス入口 10 液出口 11 配管 12 冷却液体入口 13 膨張弁 14,15 配管 16 高段吸入管 17 出口液管 18 分岐液管 19 連結管 20 出口液管 21 膨張弁 22 入口管 23 出口管 23a 配管 24 低段吸入管 25 低段吐出管 26 冷却水入口 27 冷却水出口 28 制水弁 29 感圧管 30 温度コントローラー 31 温度センサー 32,33,34 信号線 35 送風機 36 被冷却流体 37 熱交換器 38 冷却ガス出口 39 配管 1 Two-stage compressor 2 Condenser 2a Cooling water heat transfer tube 3 Evaporator 3a Heat transfer tube 4 Economizer 4a Heat transfer tube 5 Heater 5a Heat transfer tube 5b Electric heat heater 6 High-stage discharge pipe 7 Branch pipe 8 Two-way flow control valve 9 Gas inlet 10 Liquid Outlet 11 Piping 12 Cooling Liquid Inlet 13 Expansion Valve 14, 15 Piping 16 High Stage Intake Pipe 17 Outlet Liquid Pipe 18 Branching Liquid Pipe 19 Connecting Pipe 20 Outlet Liquid Pipe 21 Expansion Valve 22 Inlet Pipe 23 Outlet Pipe 23a Pipe 24 Low Stage Suction pipe 25 Low-stage discharge pipe 26 Cooling water inlet 27 Cooling water outlet 28 Water control valve 29 Pressure sensing pipe 30 Temperature controller 31 Temperature sensor 32, 33, 34 Signal line 35 Blower 36 Cooled fluid 37 Heat exchanger 38 Cooling gas outlet 39 Piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一元冷凍装置における二段圧縮冷凍サイ
クルにおいて、二段圧縮機の高段吐出管よりの高温の高
段吐出ガスの凝縮熱を蒸発器からの被冷却流体に与え、
被冷却流体の温度を制御させるようにしたことを特徴と
する二段圧縮冷凍装置の温度制御方法。
1. In a two-stage compression refrigeration cycle of a one-stage refrigeration system, heat of condensation of high-temperature high-stage discharge gas from a high-stage discharge pipe of a two-stage compressor is applied to a fluid to be cooled from an evaporator,
A temperature control method for a two-stage compression refrigeration system, characterized in that the temperature of a fluid to be cooled is controlled.
【請求項2】 二段圧縮機の高段吐出管にコンデンサー
の入口を連結し、コンデンサーの出口にエコノマイザー
の入口を連結し、エコノマイザーの出口に膨張弁を介し
て蒸発器の入口を連結し、蒸発器の出口に二段圧縮機の
低段吸入管を連結し、コンデンサーの出口よりの分岐管
に膨張弁を介してエコノマイザー内の伝熱管入口を連結
し、その伝熱管出口を二段圧縮機の低段吐出管と高段吸
入管の連結管と連結してなる一元冷凍装置における二段
圧縮冷凍サイクルにおいて、コンデンサーの入口と連結
した二段圧縮機の高段吐出管を分岐した分岐管を設け、
その分岐管に二方流量制御弁を介してその伝熱管に二段
圧縮機の高段吐出管よりの高温の高段吐出ガスを加熱流
体として通過させるヒーターを、蒸発器の被冷却流体出
口に設け、前記分岐管の分岐部とコンデンサー入口との
間の高段吐出管に、前記ヒーターの液出口よりの高段吐
出ガスを蒸発器の被冷却流体で冷却した凝縮液を冷却液
体入口より膨張弁を介して導入する熱交換器を設け、熱
交換器の冷却ガス出口にその高段吐出管内の高温の高段
吐出ガスと熱交換してガス化した冷媒を二段圧縮機の高
段吸入管に導入する配管を設け、前記蒸発器からの被冷
却流体のヒーター出口に25℃〜−60℃の常温から超
低温までの任意温度に設定可能な温度コントローラーと
結線した温度センサーを設け、その温度コントローラー
と前記二方流量制御弁を結線する信号線を設け、温度コ
ントローラーで設定した温度に合せて二方流量制御弁を
開閉させ、被冷却流体の温度を制御させるようにしたこ
とを特徴とする二段圧縮冷凍装置の温度制御装置。
2. A high-stage discharge pipe of a two-stage compressor is connected to an inlet of a condenser, an outlet of the condenser is connected to an inlet of an economizer, and an outlet of the economizer is connected to an inlet of an evaporator through an expansion valve. Then, connect the low-stage suction pipe of the two-stage compressor to the outlet of the evaporator, connect the heat transfer pipe inlet in the economizer to the branch pipe from the condenser outlet via the expansion valve, and connect the heat transfer pipe outlet to In the two-stage compression refrigeration cycle of the one-stage refrigeration system that is connected to the connecting pipe of the low-stage discharge pipe and the high-stage suction pipe of the two-stage compressor, the high-stage discharge pipe of the two-stage compressor connected to the inlet of the condenser was branched. Provide a branch pipe,
At the outlet of the cooled fluid of the evaporator, a heater that allows high-temperature discharge gas of higher temperature from the high-stage discharge pipe of the two-stage compressor to pass through the branch pipe as a heating fluid through the two-way flow control valve Provided in the high-stage discharge pipe between the branch portion of the branch pipe and the condenser inlet, the condensed liquid obtained by cooling the high-stage discharge gas from the liquid outlet of the heater with the cooled fluid of the evaporator is expanded from the cooling liquid inlet. A heat exchanger that is introduced through a valve is installed, and the cooling gas outlet of the heat exchanger heat-exchanges with the high-temperature high-stage discharge gas in the high-stage discharge pipe to inject the gasified refrigerant into the high-stage suction of the two-stage compressor. A pipe for introducing into the pipe is provided, and a temperature sensor connected to a temperature controller capable of setting an arbitrary temperature from normal temperature to super low temperature of 25 ° C to -60 ° C is provided at the heater outlet of the fluid to be cooled from the evaporator. Controller and two-way flow control The temperature of the two-stage compression refrigeration system is characterized in that a signal line connecting the valves is provided, and the temperature of the fluid to be cooled is controlled by opening and closing the two-way flow control valve according to the temperature set by the temperature controller. Control device.
JP12928594A 1994-06-10 1994-06-10 Method and apparatus for controlling temperature of two-stage compression refrigerator Pending JPH07332778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12928594A JPH07332778A (en) 1994-06-10 1994-06-10 Method and apparatus for controlling temperature of two-stage compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12928594A JPH07332778A (en) 1994-06-10 1994-06-10 Method and apparatus for controlling temperature of two-stage compression refrigerator

Publications (1)

Publication Number Publication Date
JPH07332778A true JPH07332778A (en) 1995-12-22

Family

ID=15005804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12928594A Pending JPH07332778A (en) 1994-06-10 1994-06-10 Method and apparatus for controlling temperature of two-stage compression refrigerator

Country Status (1)

Country Link
JP (1) JPH07332778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133210A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
US9353976B2 (en) 2009-12-25 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus
CN113406129A (en) * 2021-07-28 2021-09-17 重庆大学 Liquid nitrogen evaporator for X-ray single crystal diffractometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133210A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
US9353976B2 (en) 2009-12-25 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus
CN113406129A (en) * 2021-07-28 2021-09-17 重庆大学 Liquid nitrogen evaporator for X-ray single crystal diffractometer

Similar Documents

Publication Publication Date Title
KR900003052B1 (en) Refrigerant flow control system for use with refrigerator
TW200937001A (en) Test chamber with temperature and humidity control
NO170781B (en) CLOSED COOLING SYSTEM
US20210341192A1 (en) Heat pump device
JPH04254156A (en) Heat pump type hot water supply device
JPH07332778A (en) Method and apparatus for controlling temperature of two-stage compression refrigerator
JPH04366369A (en) Air conditioning apparatus
JP3021987B2 (en) Refrigeration equipment
JP2541740B2 (en) Two-stage compression refrigeration apparatus capacity control method and apparatus
JPH06331226A (en) Temperature control method and device thereof for binary refrigerating system
JPH06213170A (en) Capacity control method for two-stage compression refrigerating device and device therefor
JPH02279966A (en) Air conditioner
JPH11142016A (en) Multi-chamber type air conditioning apparatus
JPH0882449A (en) Temperature control device for refrigerator
JP3009481B2 (en) Heat pump type air conditioner
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner
JPH02223778A (en) Defrosting device for air-conditioning machine
JP2024066056A (en) Refrigeration equipment
JPH0363471A (en) Air conditioner
JPH1047794A (en) Freezer
JPH06241583A (en) Freezer device
JPH0579894B2 (en)
JPH04366365A (en) Controlling device for operation of refrigerating plant
JPS6015084Y2 (en) Refrigeration equipment
JPS6350629B2 (en)