JPH07331463A - Method for measuring propagation of microwave - Google Patents

Method for measuring propagation of microwave

Info

Publication number
JPH07331463A
JPH07331463A JP12858094A JP12858094A JPH07331463A JP H07331463 A JPH07331463 A JP H07331463A JP 12858094 A JP12858094 A JP 12858094A JP 12858094 A JP12858094 A JP 12858094A JP H07331463 A JPH07331463 A JP H07331463A
Authority
JP
Japan
Prior art keywords
microwaves
microwave
carbon
propagation
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12858094A
Other languages
Japanese (ja)
Inventor
Seiichi Watanabe
成一 渡辺
Muneo Furuse
宗雄 古瀬
Shigeru Shirayone
茂 白米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12858094A priority Critical patent/JPH07331463A/en
Publication of JPH07331463A publication Critical patent/JPH07331463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To measure propagation of microwaves with less influence of disturbance by using a material coated with a material which generates heat by absorbing the microwaves for a material surface which is irreversibly changed by heating. CONSTITUTION:The rear surface of thermosensitive paper 1, etc., which are irreversibly changed by heating is patterned and coated with carbon 2, etc., which generate heat by absorbing the microwaves. The thermosensitive paper 1 with such carbon 2 is fixed by an adhesive tape, etc., to a fixing frame 3 formed to a cylindrical shape by a cardboard, etc., and is arranged on a quartz plate 5 in a treating chamber 4, by which the measurement of the propagation of the microwaves is executed. A material 10 to be treated is subjected to an etching treatment by the plasma formed by the incident microwaves on the inside of the treating chamber 4. At this time, the uniformity of the plasma in the treating chamber 4 is best when the spacing (h) between an upper waveguide pipe 8b and the quartz plate 5 is changed and the doughnut-shaped electric field distribution of the microwaves appears as the pattern changed to the black of the thermosensitive paper 1 with the carbon 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波の電界強度
分布を計測するマイクロ波伝播計測方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave propagation measuring method for measuring the electric field intensity distribution of microwaves.

【0002】[0002]

【従来の技術】従来、マイクロ波の伝播状態を2次元的
に測定できるマイクロ波伝播計測方法には、例えば、文
献「小国文一著、マイクロ波およびミリ波回路、丸善(1
964)」に記載のように、塩化コバルト法があった。該塩
化コバルト法とは、ピンク色の塩化コバルト(II)六水和
物CoCl2・6H2Oが誘電損失によりマイクロ波を吸収し加
熱され、その結果110℃以上になると結晶水を失い、青
色の無水の塩化コバルト(II)CoCl2に変化することを利
用したものである。具体的には、塩化コバルト水溶液を
噴霧した濾紙を使用するものである。
2. Description of the Related Art Conventionally, a microwave propagation measuring method capable of two-dimensionally measuring a microwave propagation state is described in, for example, a document "Fumikazu Oguni, Microwave and Millimeter Wave Circuits, Maruzen (1
964) ”, there was a cobalt chloride method. The cobalt chloride method means that pink cobalt (II) chloride hexahydrate CoCl 2 .6H 2 O absorbs microwaves due to dielectric loss and is heated. It is used to convert into anhydrous cobalt (II) chloride CoCl 2 of. Specifically, a filter paper sprayed with an aqueous cobalt chloride solution is used.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、
(1).塩化コバルト水溶液がマイクロ波の伝播に影響を
与えること。(2).マイクロ波の照射により青色の無水
の塩化コバルト(II)CoCl2に変更した箇所が、大気中の
水分を吸収し、数分間で再びピンク色の塩化コバルト(I
I)六水和物CoCl2・6H2Oに戻るため、短時間内に取り出
し、写真撮映等を終了しなければならないという不具合
点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
(1). Aqueous cobalt chloride solution affects microwave propagation. (2). The place changed to blue anhydrous cobalt (II) chloride CoCl 2 by microwave irradiation absorbs moisture in the atmosphere, and again within a few minutes, pink cobalt chloride (I)
I) There was a problem that the hexahydrate CoCl 2 · 6H 2 O had to be taken out within a short time and the photography and the like had to be completed in order to return to CoCl 2 .6H 2 O.

【0004】本発明の目的は、マイクロ波伝播に与える
影響が少なく、マイクロ波を照射した時、変化が不可逆
であるマイクロ波伝播計測法を提供することにある。
An object of the present invention is to provide a microwave propagation measuring method which has little influence on microwave propagation and whose change is irreversible when irradiated with microwaves.

【0005】[0005]

【課題を解決するための手段】上記目的は、マイクロ波
を吸収し発熱する材料、たとえばカーボンを、加熱する
ことにより不可逆に変化する材料の表面に、たとえば感
熱紙に、塗付した材料を用いてマイクロ波の電界強度分
布を計測することにより、達成される。
The above-mentioned object is to use a material which is applied to the surface of a material which absorbs microwaves and generates heat, for example, carbon, which is irreversibly changed by heating, for example, thermal paper. This is achieved by measuring the electric field strength distribution of microwaves.

【0006】[0006]

【作用】マイクロ波を吸収し発熱する材料、たとえばカ
ーボンを、加熱することにより不可逆に変化する材料、
たとえば感熱紙に、塗付された材料を、マイクロ波導波
路に設置し、マイクロ波を照射すると、マイクロ波の電
界強度が強い箇所に設けられたマイクロ波を吸収し発熱
する材料が発熱し、加熱することにより不可逆に変化す
る材料を変化させるように作用する。それによって、マ
イクロ波の電界強度分布を2次元的に計測することが可
能になる。
[Function] A material that absorbs microwaves and generates heat, for example, a material that irreversibly changes when heated,
For example, when a material coated on thermal paper is placed in a microwave waveguide and irradiated with microwaves, the material that absorbs the microwaves and is heated by the location where the electric field strength of the microwave is strong generates heat and heats up. This acts to change the material that changes irreversibly. Thereby, the electric field intensity distribution of the microwave can be measured two-dimensionally.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1乃至図3によ
り説明する。図1に示すように、加熱することにより不
可逆に変化する材料、本実施例の場合感熱紙1の裏面
に、マイクロ波を吸収することにより発熱する材料、本
実施例の場合カーボン2を、パターニング(本実施例の
場合、水玉模様に)し、塗付する。このカーボン2を塗
付した感熱紙を、厚紙等で円筒状に作製した固定枠3
に、接着テープ等で固定する。このようにして作成され
たカーボン2付き感熱紙1にマイクロ波を照射すると、
マイクロ波の電界強度の強い箇所のカーボンが導波損失
により発熱する。本実施例で使用した感熱紙は、55℃以
下では変化しないが、60℃から徐々に変化し、70℃で黒
色となり、それ以上の温度では、黒色度に変化がないと
いう特性がある。したがって、マイクロ波の電界強度が
大きく、カーボンの発熱により、約60℃以上に加熱され
た箇所が黒く変化するため、マイクロ波電界強度の2次
元分布を計測できる。なお、マイクロ波吸収材と感熱材
をあらかじめ混合して塗布したシートでも同様な効果が
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, a material that changes irreversibly by heating, a material that generates heat by absorbing microwaves on the back surface of the thermal paper 1 in this embodiment, and a carbon 2 in this embodiment are patterned. (In the case of the present embodiment), and apply. The thermal paper coated with this carbon 2 is a cylindrical fixed frame 3 made of cardboard or the like.
Then, fix it with adhesive tape. When the thermal paper 1 with carbon 2 thus created is irradiated with microwaves,
The carbon in the place where the electric field strength of the microwave is strong generates heat due to the waveguide loss. The thermal paper used in this example has a characteristic that it does not change at 55 ° C. or lower, but gradually changes from 60 ° C. to become black at 70 ° C., and above that temperature, the blackness does not change. Therefore, the electric field strength of the microwave is large, and the portion heated to about 60 ° C. or higher changes to black due to the heat generation of carbon, so that the two-dimensional distribution of the microwave electric field strength can be measured. Note that a similar effect can be obtained with a sheet obtained by previously mixing and applying a microwave absorbing material and a heat sensitive material.

【0008】図2に、図1に示すカーボン2付き感熱紙
1を用いて、有磁場マイクロ波エッチング装置内でマイ
クロ波伝播計測を行った具体事例を示す。
FIG. 2 shows a specific example in which microwave propagation measurement is carried out in a magnetic field microwave etching apparatus using the thermal paper 1 with carbon 2 shown in FIG.

【0009】図2において、容器4a、容器4b、石英板5
で区画された処理室4の内部を真空排気装置(図示省略)
により減圧した後、ガス供給装置(図示省略)によりエッ
チングガスを処理室4内に導入し、所望の圧力に調整す
る。また処理室4は、コイル6により生成される磁場領
域内にある。マグネトロン7より発した、この場合、2.
45GHzのマイクロ波は、導波管8a、8bを伝播し、処理室
4内に入射される。このマイクロ波によって生成された
プラズマにより、ウエハ載置用電極9に載置された被処
理材10がエッチング処理される。また被処理材10のエッ
チング形状を制御するため、ウエハ載置用電極9には、
整合器(図示省略)を介して高周波電源11が接続され、高
周波電圧が印加されている。
In FIG. 2, container 4a, container 4b, and quartz plate 5
A vacuum exhaust device (not shown) inside the processing chamber 4 partitioned by
After the pressure is reduced by, the etching gas is introduced into the processing chamber 4 by a gas supply device (not shown) and adjusted to a desired pressure. Further, the processing chamber 4 is in the magnetic field region generated by the coil 6. Emitted from magnetron 7, in this case 2.
The 45 GHz microwave propagates through the waveguides 8a and 8b and enters the processing chamber 4. By the plasma generated by the microwave, the processing target material 10 placed on the wafer mounting electrode 9 is etched. Further, in order to control the etching shape of the material 10 to be processed, the wafer mounting electrode 9
A high frequency power supply 11 is connected via a matching unit (not shown), and a high frequency voltage is applied.

【0010】本実施例では、エッチングガスとしてCl2
を使用し、被処理材としてpoly-Si付きウエハを使用し
た。図1に示すカーボン2付き感熱紙1を固定した枠3
を石英板5上に配置し、マイクロ波伝播計測を行った。
その結果、上部導波管8bと石英板5との間隔hを変更す
るとマイクロ波伝播状態が変化することがわかった。上
部導波管8b石英板5との間隔hを変更し、ドーナツ状の
マイクロ波電界強度分布、たとえばTE01モードマイクロ
波の電界強度分布が、カーボン2付き感熱紙1上の黒色
変化パターンとして出現した時、処理室4内のプラズマ
の均一性が最も良好であった。このように、本発明にお
けるマイクロ波伝播計測法を用いて、マイクロ波を用い
たプラズマ処理装置、たとえばマイクロ波エッチング装
置、マイクロ波CVD装置およびマイクロ波アッシング装
置等のマイクロ波導波路の形状を決める等の、装置開発
を行うことができる。図3は、カーボン2付き感熱紙3
がプラズマの生成に与える影響について調べたものであ
る。この場合には、TE11モードのマイクロ波を導入し
た。カーボン2付き感熱紙3の有無にかかわらず、ウエ
ハ載置用電極9に埋設された平板プローブを使用して測
定した電子密度分布はほとんど変化ないことから、本発
明のマイクロ波伝播計測法は外乱の少ない計測法である
と言える。
In this embodiment, Cl 2 is used as an etching gas.
Was used, and a wafer with poly-Si was used as a material to be processed. Frame 3 to which thermal paper 1 with carbon 2 shown in FIG. 1 is fixed
Was placed on the quartz plate 5 and microwave propagation measurement was performed.
As a result, it was found that the microwave propagation state changes when the distance h between the upper waveguide 8b and the quartz plate 5 is changed. By changing the interval h between the upper waveguide 8b and the quartz plate 5, a donut-shaped microwave electric field intensity distribution, for example, a TE 01 mode microwave electric field intensity distribution appears as a black change pattern on the thermal paper 1 with carbon 2. At that time, the uniformity of plasma in the processing chamber 4 was the best. As described above, by using the microwave propagation measurement method of the present invention, the shape of the microwave waveguide of a plasma processing apparatus using microwaves, such as a microwave etching apparatus, a microwave CVD apparatus, and a microwave ashing apparatus, is determined. The device development can be performed. Figure 3 shows thermal paper 3 with carbon 2.
This is an examination of the effect of the plasma generation on plasma. In this case, TE 11 mode microwave was introduced. Regardless of the presence or absence of the thermal paper 3 with the carbon 2, the electron density distribution measured by using the flat plate probe embedded in the wafer mounting electrode 9 hardly changes. It can be said that this measurement method has few

【0011】本発明によれば、マイクロ波の伝播に与え
る影響が少なく、マイクロ波電界強度分布を測定できる
という効果がある。またマイクロ波伝播状態を2次元的
にしかも、時間的に変化することなく把握できるので、
マイクロ波を利用したプラズマ処理装置を短期間に開発
できるという効果がある。本実施例では有磁場マイクロ
波エッチング装置について述べたが、その他マイクロ波
を利用したエッチング装置、CVD装置およびアッシング
装置についても同様の作用効果がある。
According to the present invention, there is little effect on the propagation of microwaves, and there is an effect that the microwave electric field strength distribution can be measured. Also, because the microwave propagation state can be grasped two-dimensionally and without changing with time,
There is an effect that a plasma processing apparatus using microwaves can be developed in a short period of time. Although the magnetic field microwave etching apparatus has been described in the present embodiment, other etching apparatuses, CVD apparatus and ashing apparatus utilizing microwaves also have the same operation and effect.

【0012】[0012]

【発明の効果】本発明によれば、マイクロ波の伝播に与
える影響が少なく、マイクロ波電界強度分布を測定でき
るという効果がある。またマイクロ波伝播状態を2次元
的にしかも、時間的に変化することなく把握できるとい
う効果がある。
According to the present invention, there is little effect on the propagation of microwaves, and the microwave electric field strength distribution can be measured. Further, there is an effect that the microwave propagation state can be grasped two-dimensionally and without changing with time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のカーボン付き感熱紙を用い
たマイクロ波伝播計測用部品の縦断面図である。
FIG. 1 is a vertical sectional view of a microwave propagation measuring component using a thermal paper with carbon according to an embodiment of the present invention.

【図2】本発明のマイクロ波伝播計測により開発した有
磁場マイクロ波エッチング装置の処理室部の縦断面図で
ある。
FIG. 2 is a vertical cross-sectional view of a processing chamber portion of a magnetic field microwave etching apparatus developed by microwave propagation measurement according to the present invention.

【図3】本発明のマイクロ波伝播計測がマイクロ波の伝
播に与える影響を調べるため、測定したウエハ載置用電
極上での電子密度分布を示す説明図である。
FIG. 3 is an explanatory diagram showing a measured electron density distribution on a wafer mounting electrode in order to investigate the influence of the microwave propagation measurement of the present invention on the propagation of microwaves.

【符号の説明】[Explanation of symbols]

1…感熱紙、2…カーボン、3…枠、4…処理室、5…
石英板、6…コイル、7…マグネトロン、8…導波管、
9…ウエハ載置用電極、10…被処理材、11…高周波電
源。
1 ... Thermal paper, 2 ... Carbon, 3 ... Frame, 4 ... Processing chamber, 5 ...
Quartz plate, 6 ... Coil, 7 ... Magnetron, 8 ... Waveguide,
9 ... Electrodes for wafer placement, 10 ... Materials to be processed, 11 ... High frequency power source.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】加熱されることにより不可逆に変化する材
料に、マイクロ波を吸収し発熱する材料を、塗付した材
料を用いてマイクロ波の電界強度分布を計測することを
特徴とするマイクロ波伝播計測方法。
1. A microwave characterized in that a material that absorbs heat and absorbs microwaves is applied to a material that changes irreversibly when heated, and the electric field intensity distribution of the microwave is measured by using the applied material. Propagation measurement method.
【請求項2】請求項1に記載のマイクロ波伝播計測方法
を用いて、マイクロ波導波部及びプラズマ生成部におけ
るマイクロ波伝播状態を計測することを特徴とするマイ
クロ波伝播計測方法。
2. A microwave propagation measuring method, characterized in that the microwave propagation measuring method according to claim 1 is used to measure a microwave propagation state in a microwave waveguide section and a plasma generating section.
JP12858094A 1994-06-10 1994-06-10 Method for measuring propagation of microwave Pending JPH07331463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12858094A JPH07331463A (en) 1994-06-10 1994-06-10 Method for measuring propagation of microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12858094A JPH07331463A (en) 1994-06-10 1994-06-10 Method for measuring propagation of microwave

Publications (1)

Publication Number Publication Date
JPH07331463A true JPH07331463A (en) 1995-12-19

Family

ID=14988271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12858094A Pending JPH07331463A (en) 1994-06-10 1994-06-10 Method for measuring propagation of microwave

Country Status (1)

Country Link
JP (1) JPH07331463A (en)

Similar Documents

Publication Publication Date Title
TW589675B (en) Plasma treatment device and plasma treatment method
JPH06224155A (en) Rf-ecr plasma etching apparatus
KR970071945A (en) Plasma treatment method and apparatus
JPS60126832A (en) Dry etching method and device thereof
KR20020043446A (en) Plasma processing apparatus
JPS5947733A (en) Plasma processing apparatus
JP3979453B2 (en) Microwave plasma processing equipment
JPH07331463A (en) Method for measuring propagation of microwave
JP2004186409A (en) Method for measuring temperature and plasma treatment apparatus
JPH08274067A (en) Plasma generating device
JPH07169740A (en) Microwave plasma treating device
Kanoh et al. Microwave-excited large-area plasma source using a slot antenna
JP2532227B2 (en) Carbon film vapor phase synthesizer
JP3517400B2 (en) Temperature measuring device for etching equipment
JP2000150196A (en) Plasma processing method and its device
JPH07288191A (en) Plasma treatment method and apparatus therefor
JP4165946B2 (en) Microwave plasma processing equipment
JP2641450B2 (en) Plasma processing equipment
JP2595128B2 (en) Microwave plasma processing equipment
JP2623827B2 (en) Microwave plasma processing equipment
JP2000174009A (en) Plasma processing device, semiconductor manufacture device and liquid crystal manufacture device
JPH10294199A (en) Microwave plasma processing device
JPH11204295A (en) Microwave plasma treating apparatus
JPH10261496A (en) Microwave plasma treatment method and apparatus
JP2921302B2 (en) Microwave plasma processing equipment