JPH07326365A - Manufacture of polymeric film electrode - Google Patents

Manufacture of polymeric film electrode

Info

Publication number
JPH07326365A
JPH07326365A JP6117040A JP11704094A JPH07326365A JP H07326365 A JPH07326365 A JP H07326365A JP 6117040 A JP6117040 A JP 6117040A JP 11704094 A JP11704094 A JP 11704094A JP H07326365 A JPH07326365 A JP H07326365A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
porous layer
catalytic metal
conductive porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6117040A
Other languages
Japanese (ja)
Other versions
JP3395356B2 (en
Inventor
Kouichi Kuwaha
葉 孝 一 桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP11704094A priority Critical patent/JP3395356B2/en
Publication of JPH07326365A publication Critical patent/JPH07326365A/en
Application granted granted Critical
Publication of JP3395356B2 publication Critical patent/JP3395356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a polymeric film electrode having the capability of depositing catalytic metal only at a section required for electrode reaction. CONSTITUTION:A cation exchange resin 22 is dissolved, and the solution thereof is applied to the surface of a conductive porous layer 52 and dried. The resin 22 on the layer 52 is thereby made to replace and adsorb cations containing catalytic metal ions. Then, the resin 22 with cations containing the catalytic metal ions is reduced to deposit catalytic metal 21 on the surface of the layer 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子膜型電極の製造
方法に関するもので、例えば陽イオン交換樹脂等の固体
高分子膜を電解質とするいわゆる高分子膜型の燃料電池
等の各種の電池に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer membrane type electrode, for example, various polymer membrane type fuel cells having a solid polymer membrane such as a cation exchange resin as an electrolyte. Applies to batteries.

【0002】[0002]

【従来の技術】従来、高分子膜型燃料電池に用いる電極
の製造方法として、例えばUSP4876115号に示
される方法が知られている。この方法は、カーボン粒子
の成形体全体に触媒金属としての白金(粒径20〜50
0Å)を担持することで電極を製造する方法である。
2. Description of the Related Art Conventionally, as a method for producing an electrode used in a polymer membrane fuel cell, for example, a method shown in US Pat. No. 4,876,115 has been known. In this method, platinum as a catalyst metal (particle size 20 to 50
This is a method of manufacturing an electrode by carrying 0Å).

【0003】[0003]

【発明が解決しようとする課題】触媒金属量は例えば高
分子膜型燃料電池の発電性能に影響を与えるが、低コス
ト化のためには、触媒金属は高分子膜型燃料電池におけ
る電極反応に必要な部位即ち固体高分子膜と接触する電
極界面のみに存在することが好ましい。しかし、上記し
た方法では、カーボン粒子成形体全体に触媒金属を担持
しているので、電極反応に不必要な部位にまで触媒金属
が存在することから、その分触媒が無駄になりコストア
ップに繋がる恐れがある。
The amount of the catalytic metal affects, for example, the power generation performance of the polymer membrane fuel cell, but in order to reduce the cost, the catalytic metal is used for the electrode reaction in the polymer membrane fuel cell. It is preferable that it exists only at a necessary portion, that is, at the electrode interface in contact with the solid polymer membrane. However, in the above-mentioned method, since the catalyst metal is carried on the entire carbon particle compact, the catalyst metal is present even in a portion unnecessary for the electrode reaction, which leads to waste of the catalyst and an increase in cost. There is a fear.

【0004】故に、本発明は、電極反応に必要な部位即
ち固体高分子膜と接触する電極界面のみに触媒金属を析
出できる高分子膜型電極の製造方法を提供することを、
その技術的課題とするものである。
Therefore, the present invention provides a method for producing a polymer membrane type electrode capable of depositing a catalytic metal only at a site necessary for an electrode reaction, that is, at an electrode interface in contact with a solid polymer membrane,
This is a technical issue.

【0005】[0005]

【課題を解決するための手段】上記技術的課題を解決す
るために本発明において講じた技術的手段は、陽イオン
交換樹脂を溶解し、その溶液を導電性多孔質層の表面に
塗布し、乾燥させ、導電性多孔質層上の陽イオン交換樹
脂に触媒金属イオンを含む陽イオンを置換吸着させた
後、その触媒金属イオンをもつ陽イオン交換樹脂を含む
陽イオンを還元させて導電性多孔質層の表面に触媒金属
を析出させたことである。
The technical means taken in the present invention to solve the above technical problem is to dissolve a cation exchange resin and apply the solution to the surface of the conductive porous layer, After drying, the cation-exchange resin on the conductive porous layer is substituted and adsorbed with the cation containing the catalytic metal ion, and then the cation containing the cation-exchange resin having the catalytic metal ion is reduced to form the conductive porous layer. That is, the catalytic metal was deposited on the surface of the porous layer.

【0006】ここで、陽イオン交換樹脂としては、例え
ばフッ素系イオン交換樹脂や炭化水素系カチオン交換膜
を用いることができる。フッ素系イオン交換樹脂には、
一般式
Here, as the cation exchange resin, for example, a fluorine ion exchange resin or a hydrocarbon cation exchange membrane can be used. Fluorine-based ion exchange resin,
General formula

【0007】[0007]

【化1】 [Chemical 1]

【0008】で表されるもの、具体的には、一般式にお
いて、m=1,2,・・・、n=2で表される商品名:
Nafion(登録商標、Du Pont社)、m=
0,1、n=1〜5で表される商品名:Flemion
(登録商標、旭硝子社)、m=0,1、n=3〜5で表
される商品名:Aciplex(登録商標、旭化成
社)、m=0、n=2で表されるDow Chemic
al社の陽イオン交換樹脂を採用することができる。
What is represented by, specifically, the product name represented by m = 1, 2, ..., N = 2 in the general formula:
Nafion (registered trademark, Du Pont), m =
Product name represented by 0, 1, n = 1 to 5: Flemion
(Registered trademark, Asahi Glass Co., Ltd.), m = 0,1, product name represented by n = 3 to 5: Aciplex (registered trademark, Asahi Kasei Co., Ltd.), Do = 0 Chemical represented by m = 0, n = 2
A cation exchange resin from Al can be used.

【0009】又、炭化水素系カチオン交換膜には、Further, the hydrocarbon cation exchange membrane has

【0010】[0010]

【化2】 [Chemical 2]

【0011】で表される商品名:ネオセプタ(登録商
標、徳山曹達社)や商品名:セレミオン(登録商標、旭
硝子社)を採用することができる。
Product names represented by: Neoceptor (registered trademark, Tokuyama Soda Co., Ltd.) and product name: Selemion (registered trademark, Asahi Glass Co., Ltd.) can be adopted.

【0012】陽イオン交換樹脂は、イオン交換基として
化2に示されるようなスルホン酸基の他にカルボン酸基
をもつものがあるが、これらのうち、スルホン酸基を有
するものであることが望ましい。これは、陽イオン交換
樹脂の陽イオンが触媒金属イオンと置換し易いことと、
電気抵抗が小さいためである。
The cation exchange resin has a carboxylic acid group in addition to the sulfonic acid group as shown in Chemical formula 2 as an ion exchange group. Among these, it is preferable that the cation exchange resin has a sulfonic acid group. desirable. This is because the cation of the cation exchange resin is easily replaced with the catalytic metal ion,
This is because the electric resistance is small.

【0013】触媒金属としては、白金族元素、即ちルテ
ニウムRu,ロジウムRh,パラジウムPd,オスニウ
ムOs,イリジウムIr,白金Ptを採用することがで
きる。触媒金属イオンは、白金族元素として白金Ptを
採用するのであれば、 〔Pt(NH3 4 2+、 〔Pt(NH3 6 4+、 〔PtCl(NH3 5 3+、 等のアンミン錯イオン形態であることが好ましい。これ
は、陽イオン交換樹脂の陽イオンが触媒金属イオンと置
換し易いためである。
As the catalyst metal, platinum group elements, that is, ruthenium Ru, rhodium Rh, palladium Pd, osmium Os, iridium Ir and platinum Pt can be adopted. If platinum Pt is adopted as the platinum group element, the catalyst metal ion is [Pt (NH 3 ) 4 ] 2+ , [Pt (NH 3 ) 6 ] 4+ , [PtCl (NH 3 ) 5 ] 3+ , And the like are preferably in the form of ammine complex ions. This is because the cation of the cation exchange resin is easily replaced with the catalytic metal ion.

【0014】導電性多孔質層としては、カーボンブラッ
ク粒子からなるカーボン成形体、撥水性を付与するPT
FE又は他のフッ素樹脂がバインダとされてカーボンブ
ラック粒子を成形したカーボンテフロン混合成形体を採
用することができる。又、カーボンブラック粒子の代わ
りに黒鉛等の他の炭素粉末やカーボンファイバ、貴金属
粉末、Ti粉末等の金属微粒子を採用した成形体を採用
できる。
As the conductive porous layer, a carbon molded body composed of carbon black particles and PT for imparting water repellency
It is possible to employ a carbon Teflon mixed molded body in which carbon black particles are molded by using FE or another fluororesin as a binder. Further, instead of the carbon black particles, it is possible to adopt a molded body in which other carbon powder such as graphite or metal fine particles such as carbon fiber, noble metal powder or Ti powder is adopted.

【0015】[0015]

【作用】上記技術的手段によれば、陽イオン交換樹脂を
含む溶液を導電性多孔質層の表面に塗布し、陽イオン交
換樹脂に触媒金属イオンを含む陽イオンを吸着置換さ
せ、その触媒金属イオンをもつ陽イオン交換樹脂を還元
させて導電性多孔質層の表面に触媒金属を析出させたの
で、導電性多孔質層の必要な部位即ち固体高分子膜と接
触する電極界面に触媒金属を析出させることが可能にな
ることから、余分な触媒を用いる必要はなくなり、コス
トを低下させることができる。
According to the above technical means, a solution containing a cation exchange resin is applied to the surface of the conductive porous layer, and the cation containing the catalyst metal ion is adsorbed and replaced by the cation exchange resin to form a catalyst metal. Since the cation exchange resin having ions was reduced to deposit the catalyst metal on the surface of the conductive porous layer, the catalyst metal was deposited on the necessary part of the conductive porous layer, that is, the electrode interface in contact with the solid polymer membrane. Since it becomes possible to deposit, it is not necessary to use an extra catalyst, and the cost can be reduced.

【0016】又、陽イオン交換樹脂に金属触媒イオンを
含む陽イオンを吸着置換した後、この金属触媒イオンを
含む陽イオンをもつ陽イオン交換樹脂を導電性多孔質層
の表面に塗布する方法においては、金属触媒イオンを含
む陽イオンをもつ陽イオン交換樹脂を溶解する必要があ
るが、金属触媒は重金属が用いられるため、この金属触
媒イオンをもつ陽イオン交換樹脂を溶解することは単な
る陽イオン交換樹脂を溶解する場合と比較して非常に困
難である。このため、この金属触媒イオンをもつ陽イオ
ン交換樹脂を導電性多孔質層の表面に塗布することが困
難となり、触媒金属を導電性多孔質層の表面に析出させ
ることが困難になる。
In a method of adsorbing and replacing a cation containing a metal catalyst ion on a cation exchange resin, a cation exchange resin having a cation containing the metal catalyst ion is applied to the surface of the conductive porous layer. Needs to dissolve a cation exchange resin having a cation containing a metal catalyst ion, but since a heavy metal is used as the metal catalyst, it is only a cation to dissolve a cation exchange resin having this metal catalyst ion. It is very difficult as compared with the case of dissolving the exchange resin. Therefore, it becomes difficult to apply the cation exchange resin having the metal catalyst ions to the surface of the conductive porous layer, and it becomes difficult to deposit the catalyst metal on the surface of the conductive porous layer.

【0017】ところが、上記した技術的手段によれば、
陽イオン交換樹脂を溶解し、その溶液を導電性多孔質層
の表面に塗布した後、陽イオン交換樹脂に触媒金属イオ
ンを含む陽イオンを吸着させたので、導電性多孔質層の
表面に触媒金属イオンを含む陽イオンをもつ陽イオン交
換樹脂を確実に形成でき、触媒金属を導電性多孔質層の
表面に確実に析出させることができる。
However, according to the above technical means,
After the cation exchange resin was dissolved and the solution was applied to the surface of the conductive porous layer, the cations containing the catalytic metal ions were adsorbed on the cation exchange resin. A cation exchange resin having cations including metal ions can be reliably formed, and the catalyst metal can be reliably deposited on the surface of the conductive porous layer.

【0018】[0018]

【実施例】以下、添付図面を参照して本発明の具体例に
ついて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A specific example of the present invention will be described below with reference to the accompanying drawings.

【0019】〔実施例1〕まず、導電性カーボンである
バルカンXC−72(キャボット社製)30g、撥水剤
であるテフロンディスパージョン,ニトフロンD−2
(ダイキン工業製)21.4g及び界面活性剤であるト
リトンX−100(米山薬品工業製)2gを純水100
0ml中に入れ、ミキサーで略30分間混合して均一に
分散させる。
[Example 1] First, 30 g of Vulcan XC-72 (manufactured by Cabot Corporation) which is conductive carbon, Teflon dispersion and Nitoflon D-2 which are water repellent agents.
21.4 g (manufactured by Daikin Industries) and 2 g of Triton X-100 (manufactured by Yoneyama Pharmaceutical Co., Ltd.), which is a surfactant, were added to 100 parts of pure water.
Put in 0 ml and mix with a mixer for about 30 minutes to uniformly disperse.

【0020】その後、70〜80℃で3日間乾燥させて
原料粉を作成する。次に、この原料粉を粉砕したもの4
g及びソルベントナフサ(石津製薬製)20mlを混合
してシート状に成形して厚さ100μmの導電性カーボ
ンシートを作成する。
Then, the raw material powder is prepared by drying at 70 to 80 ° C. for 3 days. Next, crushed raw material powder 4
and 20 ml of solvent naphtha (manufactured by Ishizu Pharmaceutical Co., Ltd.) are mixed and molded into a sheet to form a conductive carbon sheet having a thickness of 100 μm.

【0021】上記導電性カーボンシートを10cm2
切断したものの表面に陽イオン交換樹脂溶液Ew910
(旭化成製)0.15mlを均一に塗布し、常温真空で
2時間乾燥させて陽イオン交換樹脂溶液Ew910中の
溶媒を蒸発させる。次いで、4価白金アンミン溶液(田
中貴金属工業製)3ml及びエタノール1.5mlの混
合溶液中に陽イオン交換樹脂をもつ導電性カーボンシー
トを16時間浸漬させ、陽イオン交換樹脂に白金アンミ
ンイオンを吸着置換させる。ここで、白金アンミンイオ
ンの置換量は0.8mgである。その後、水素雰囲気中
で白金アンミンイオンを還元し、0.53mgの白金を
導電性カーボンシートの表面に析出させる。このように
して、図1に示す高分子膜型電極1を得る。
The cation exchange resin solution Ew910 was applied to the surface of the conductive carbon sheet cut into 10 cm 2.
0.15 ml (manufactured by Asahi Kasei) is uniformly applied and dried at room temperature under vacuum for 2 hours to evaporate the solvent in the cation exchange resin solution Ew910. Then, a conductive carbon sheet having a cation exchange resin is immersed in a mixed solution of 3 ml of a tetravalent platinum ammine solution (manufactured by Tanaka Kikinzoku Kogyo) and 1.5 ml of ethanol for 16 hours to adsorb platinum ammine ions on the cation exchange resin. Replace. Here, the substitution amount of platinum ammine ion is 0.8 mg. Then, platinum ammine ions are reduced in a hydrogen atmosphere to deposit 0.53 mg of platinum on the surface of the conductive carbon sheet. Thus, the polymer film type electrode 1 shown in FIG. 1 is obtained.

【0022】図1において、11はカーボン粒子で、1
2はカーボン粒子11同志を結合させると共に撥水性を
付与するPTFE粒子で、21は触媒金属である白金粒
子で、22は陽イオン交換樹脂で、52は導電性多孔質
層である。
In FIG. 1, 11 is a carbon particle, 1
Reference numeral 2 is a PTFE particle that binds the carbon particles 11 together and imparts water repellency, 21 is a platinum particle which is a catalyst metal, 22 is a cation exchange resin, and 52 is a conductive porous layer.

【0023】図2は上記した高分子膜型電極1を用いた
高分子膜型燃料電池5の要部断面図である。
FIG. 2 is a cross-sectional view of essential parts of a polymer membrane fuel cell 5 using the polymer membrane electrode 1 described above.

【0024】同図に示すように、高分子膜型燃料電池5
は、イオン交換膜3と、イオン交換膜3の両面に白金粒
子21が対面するようにイオン交換膜3の両面にホット
プレスにより接合された前述した1対の高分子膜型電極
1,1と、1対の高分子膜型電極1,1の外側にホット
プレスにより接合された電極基材41,42とから構成
されている。
As shown in the figure, the polymer membrane fuel cell 5
Is the ion exchange membrane 3 and the pair of polymer membrane electrodes 1, 1 described above that are bonded to both sides of the ion exchange membrane 3 by hot pressing so that the platinum particles 21 face each other. It is composed of a pair of polymer film type electrodes 1, 1 and electrode base materials 41, 42 joined by hot pressing to the outside.

【0025】ここで、図3を用いて高分子膜型燃料電池
5の作動を簡単に説明すると、供給管62から水素を供
給すると、その水素が陽イオン交換樹脂22及びイオン
交換膜3内にて供給管61から供給される空気中の酸素
と反応して水と電子が生成し、発電する。
Here, the operation of the polymer membrane fuel cell 5 will be briefly described with reference to FIG. 3. When hydrogen is supplied from the supply pipe 62, the hydrogen is introduced into the cation exchange resin 22 and the ion exchange membrane 3. And reacts with oxygen in the air supplied from the supply pipe 61 to generate water and electrons to generate power.

【0026】〔実施例2〕4価白金アンミン溶液(田中
貴金属工業製)3ml及びエタノール1.5mlの混合
溶液中に陽イオン交換樹脂溶液Ew910をもつ導電性
カーボンシートを70時間浸漬させた点以外は実施例1
と同様である。この場合、白金アンミンイオンの置換量
は1.1mg、白金析出量は0.73mgとなり、実施
例1よりも多くなっている。
Example 2 A conductive carbon sheet having a cation exchange resin solution Ew910 was immersed in a mixed solution of 3 ml of a tetravalent platinum ammine solution (manufactured by Tanaka Kikinzoku Kogyo) and 1.5 ml of ethanol for 70 hours. Is Example 1
Is the same as. In this case, the platinum ammine ion substitution amount was 1.1 mg, and the platinum deposition amount was 0.73 mg, which is larger than in Example 1.

【0027】このように、実施例1,2から明らかなよ
うに、浸漬時間を長くすれば、白金析出量を多くするこ
とが可能となり、浸漬時間を制御することにより白金析
出量を調整することが可能となる。
Thus, as is clear from Examples 1 and 2, it is possible to increase the amount of platinum deposited by prolonging the immersion time, and it is possible to adjust the amount of platinum deposited by controlling the immersion time. Is possible.

【0028】〔実施例3〕導電性カーボンシートの表面
に陽イオン交換樹脂溶液Ew910(旭化成製)0.1
0mlを均一に塗布する点以外は実施例1と同様であ
る。この場合、白金アンミンイオンの置換量は0.6m
g、白金析出量は0.39mgとなり、実施例1よりも
少なくなっている。
Example 3 A cation exchange resin solution Ew910 (manufactured by Asahi Kasei) 0.1 was formed on the surface of the conductive carbon sheet.
Same as Example 1 except that 0 ml is uniformly applied. In this case, the replacement amount of platinum ammine ion is 0.6 m
g, the amount of platinum deposited was 0.39 mg, which is smaller than that in Example 1.

【0029】このように、実施例1,3から明らかなよ
うに、陽イオン交換樹脂溶液の塗布量を多くすれば、白
金析出量を多くすることが可能となり、塗布量を制御す
ることにより白金析出量を調整することが可能となる。
Thus, as is clear from Examples 1 and 3, if the coating amount of the cation exchange resin solution is increased, the amount of platinum deposited can be increased, and the platinum amount can be controlled by controlling the coating amount. It becomes possible to adjust the amount of precipitation.

【0030】上述したように、実施例1〜3では、陽イ
オン交換樹脂溶液を導電性多孔質層52の表面に塗布
し、陽イオン交換樹脂22に触媒金属イオンを含む陽イ
オンを吸着させ、その触媒金属イオンをもつ陽イオン交
換樹脂22を還元させて導電性多孔質層52の表面に触
媒金属21を析出させたので、導電性多孔質層52の必
要な部位のみに触媒金属を析出させることが可能になる
ことから、余分な触媒を用いる必要はなくなり、コスト
を低下させることができる。
As described above, in Examples 1 to 3, the cation exchange resin solution is applied to the surface of the conductive porous layer 52, and the cation exchange resin 22 is allowed to adsorb cations containing catalytic metal ions. Since the cation exchange resin 22 having the catalytic metal ions is reduced to deposit the catalytic metal 21 on the surface of the conductive porous layer 52, the catalytic metal is deposited only on the necessary portion of the conductive porous layer 52. Therefore, it is not necessary to use an extra catalyst, and the cost can be reduced.

【0031】又、陽イオン交換樹脂22を溶解し、その
溶液を導電性多孔質層52の表面に塗布した後、陽イオ
ン交換樹脂22に触媒金属イオンを含む陽イオンを吸着
させたので、導電性多孔質層22の表面に触媒金属イオ
ンをもつ陽イオン交換樹脂22を確実に形成でき、触媒
金属21を導電性多孔質層52の表面に確実に析出させ
ることができる。
After the cation exchange resin 22 is dissolved and the solution is applied to the surface of the conductive porous layer 52, the cation exchange resin 22 adsorbs the cations including the catalytic metal ions. The cation exchange resin 22 having catalytic metal ions can be reliably formed on the surface of the conductive porous layer 22, and the catalytic metal 21 can be reliably deposited on the surface of the conductive porous layer 52.

【0032】[0032]

【発明の効果】本発明は、以下の如く効果を有する。The present invention has the following effects.

【0033】陽イオン交換樹脂を含む溶液を導電性多孔
質層の表面に塗布し、陽イオン交換樹脂に触媒金属イオ
ンを含む陽イオンを吸着させ、その触媒金属イオンを含
む陽イオンをもつ陽イオン交換樹脂を還元させて導電性
多孔質層の表面に触媒金属を析出させたので、導電性多
孔質層の必要な部位即ち固体高分子膜と接触する電極界
面のみに触媒金属を析出させることが可能になることか
ら、余分な触媒を用いる必要はなくなり、コストを低下
させることができる。
A solution containing a cation exchange resin is applied to the surface of the conductive porous layer, the cation containing the catalyst metal ion is adsorbed on the cation exchange resin, and the cation having the cation containing the catalyst metal ion is adsorbed. Since the exchange resin was reduced to deposit the catalyst metal on the surface of the conductive porous layer, it is possible to deposit the catalyst metal only on the necessary part of the conductive porous layer, that is, only on the electrode interface in contact with the solid polymer membrane. Since it becomes possible, it is not necessary to use an extra catalyst, and the cost can be reduced.

【0034】又、陽イオン交換樹脂を溶解し、その溶液
を導電性多孔質層の表面に塗布した後、陽イオン交換樹
脂に触媒金属イオンを含む陽イオンを吸着させたので、
導電性多孔質層の表面に触媒金属イオンをもつ陽イオン
交換樹脂を確実に形成でき、触媒金属を導電性多孔質層
の表面に確実に析出させることができる。
Further, since the cation exchange resin is dissolved and the solution is applied to the surface of the conductive porous layer, the cation containing the catalytic metal ion is adsorbed on the cation exchange resin.
A cation exchange resin having catalytic metal ions can be reliably formed on the surface of the conductive porous layer, and the catalytic metal can be reliably deposited on the surface of the conductive porous layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1〜3に係る高分子膜型電極の
模式図である。
FIG. 1 is a schematic view of polymer film electrodes according to Examples 1 to 3 of the present invention.

【図2】実施例1〜3に係る高分子膜型電極を用いた高
分子膜型燃料電池の模式図である。
FIG. 2 is a schematic diagram of a polymer membrane fuel cell using polymer membrane electrodes according to Examples 1 to 3.

【図3】高分子膜型燃料電池の原理説明図である。FIG. 3 is a diagram illustrating the principle of a polymer membrane fuel cell.

【符号の説明】[Explanation of symbols]

1 高分子膜型電極 21 触媒金属 22 陽イオン交換樹脂 52 導電性多孔質層 1 Polymeric Membrane Electrode 21 Catalyst Metal 22 Cation Exchange Resin 52 Conductive Porous Layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/86 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01M 4/86 M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換樹脂を溶解し、その溶液を
導電性多孔質層の表面に塗布し、乾燥させ、導電性多孔
質層上の陽イオン交換樹脂に触媒金属イオンを含む陽イ
オンを置換吸着させた後、その触媒金属イオンを含む陽
イオンをもつ陽イオン交換樹脂を還元させて前記導電性
多孔質層の表面に触媒金属を析出させる高分子膜型電極
の製造方法。
1. A cation exchange resin is dissolved, the solution is applied onto the surface of the conductive porous layer, and the cation exchange resin on the conductive porous layer is dried with a cation containing a catalytic metal ion. A method for producing a polymer membrane-type electrode, which comprises displacing and adsorbing, and then reducing a cation exchange resin having a cation containing a catalytic metal ion to deposit a catalytic metal on the surface of the conductive porous layer.
JP11704094A 1994-05-30 1994-05-30 Method for producing electrode for fuel cell Expired - Fee Related JP3395356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11704094A JP3395356B2 (en) 1994-05-30 1994-05-30 Method for producing electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11704094A JP3395356B2 (en) 1994-05-30 1994-05-30 Method for producing electrode for fuel cell

Publications (2)

Publication Number Publication Date
JPH07326365A true JPH07326365A (en) 1995-12-12
JP3395356B2 JP3395356B2 (en) 2003-04-14

Family

ID=14701956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11704094A Expired - Fee Related JP3395356B2 (en) 1994-05-30 1994-05-30 Method for producing electrode for fuel cell

Country Status (1)

Country Link
JP (1) JP3395356B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241703A (en) * 1997-02-21 1998-09-11 Toyota Motor Corp Electrode and power-generating layer for fuel cell, and manufacture of the same
EP0920065A1 (en) * 1997-11-25 1999-06-02 Japan Storage Battery Company Limited Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
JP2002134119A (en) * 2000-10-19 2002-05-10 Japan Storage Battery Co Ltd Fuel cell and electrode for fuel cell
JP2003077490A (en) * 2001-08-31 2003-03-14 Honda Motor Co Ltd Solid polymer fuel cell membrane electrode compound
JP2006351320A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Manufacturing method of fuel cell
CN1324743C (en) * 2004-02-17 2007-07-04 精工爱普生株式会社 Composition for forming a functional material layer, method for forming a functional material layer
JP2007213919A (en) * 2006-02-08 2007-08-23 Gs Yuasa Corporation:Kk Electrode catalyst for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having the same
JP2012513655A (en) * 2008-12-23 2012-06-14 アイティーアイ・スコットランド・リミテッド Titanium composite electrode and manufacturing method thereof
CN103608954A (en) * 2011-04-25 2014-02-26 联合工艺公司 Catalyst material for fuel cell
JP2014160060A (en) * 2013-01-22 2014-09-04 Akita Prefecture Water repellent frame for electric field agitation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241703A (en) * 1997-02-21 1998-09-11 Toyota Motor Corp Electrode and power-generating layer for fuel cell, and manufacture of the same
EP0920065A1 (en) * 1997-11-25 1999-06-02 Japan Storage Battery Company Limited Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
JP2002134119A (en) * 2000-10-19 2002-05-10 Japan Storage Battery Co Ltd Fuel cell and electrode for fuel cell
JP2003077490A (en) * 2001-08-31 2003-03-14 Honda Motor Co Ltd Solid polymer fuel cell membrane electrode compound
CN1324743C (en) * 2004-02-17 2007-07-04 精工爱普生株式会社 Composition for forming a functional material layer, method for forming a functional material layer
JP2006351320A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Manufacturing method of fuel cell
JP2007213919A (en) * 2006-02-08 2007-08-23 Gs Yuasa Corporation:Kk Electrode catalyst for polymer electrolyte fuel cell, and polymer electrolyte fuel cell having the same
JP2012513655A (en) * 2008-12-23 2012-06-14 アイティーアイ・スコットランド・リミテッド Titanium composite electrode and manufacturing method thereof
CN103608954A (en) * 2011-04-25 2014-02-26 联合工艺公司 Catalyst material for fuel cell
EP2702625A1 (en) * 2011-04-25 2014-03-05 United Technologies Corporation Catalyst material for fuel cell
EP2702625A4 (en) * 2011-04-25 2014-10-01 United Technologies Corp Catalyst material for fuel cell
US9755245B2 (en) 2011-04-25 2017-09-05 Audi Ag Catalyst material for fuel cell
JP2014160060A (en) * 2013-01-22 2014-09-04 Akita Prefecture Water repellent frame for electric field agitation

Also Published As

Publication number Publication date
JP3395356B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
Tang et al. Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights
US6368476B1 (en) Structures and methods of manufacture for gas diffusion electrodes and electrode components
US6344291B1 (en) Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
TWI276242B (en) Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
US20030129477A1 (en) Electrode for fuel cell and method of manufacturing the same
US8236724B2 (en) Catalyst-supporting particle, composite electrolyte, catalyst electrode for fuel cell, and fuel cell using the same, and methods for fabricating these
JP2010534130A (en) catalyst
JP2003033668A (en) Method of manufacturing conductive catalyst particle and method of manufacturing gas diffusive catalyst electrode, and apparatus and vibration device used for method of manufacturing conductive catalyst particle
KR20120026041A (en) Anode-side catalyst composition for fuel cell and membrane electrode assembly (mea) for solid polymer-type fuel cell
US8309269B2 (en) Fuel cell, membrane-electrode assembly, and membrane-catalyst layer assembly
CN101803079A (en) Catalyst layer
US20080107945A1 (en) Fuel cell substrate with an overcoat
JPH07326365A (en) Manufacture of polymeric film electrode
US20090068546A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
WO2017159820A1 (en) Paste for forming electrode catalyst layer and method for manufacturing same, and methods for manufacturing membrane-electrode catalyst layer assembly, gas diffusion electrode, solid polymer fuel cell and solid polymer water electrolysis cell
KR100668354B1 (en) Method for preparing metal catalyst and electrode including the same
JP2001118582A (en) Electrode of fuel cell and method for manufacturing the same
KR101769681B1 (en) Catalyst electrode layer, membrane-electrode assembly, and fuel cell
JP4798538B2 (en) Membrane electrode assembly
JP3049267B2 (en) Composition, electrode and assembly for polymer membrane fuel cell
CN1180249A (en) Gas diffusion electrodes based on polyethersulfone carbon blends
JP2006286478A (en) Membrane electrode assembly
KR20210085300A (en) Fuel Cell Electrode Having High Durability, Method for Manufacturing The Same, and Membrane-Electrode Assembly Comprising The Same
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP3649013B2 (en) Method for producing electrode for fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees