JPH07322659A - Thermionic generating element and adjusting method of clearance of electrode thereof - Google Patents

Thermionic generating element and adjusting method of clearance of electrode thereof

Info

Publication number
JPH07322659A
JPH07322659A JP6114944A JP11494494A JPH07322659A JP H07322659 A JPH07322659 A JP H07322659A JP 6114944 A JP6114944 A JP 6114944A JP 11494494 A JP11494494 A JP 11494494A JP H07322659 A JPH07322659 A JP H07322659A
Authority
JP
Japan
Prior art keywords
electrode
emitter
gap
collector
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6114944A
Other languages
Japanese (ja)
Inventor
Hisakimi Katou
寿仁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP6114944A priority Critical patent/JPH07322659A/en
Publication of JPH07322659A publication Critical patent/JPH07322659A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermionic generating element, in, which a clearance between an emitter electrode and a collector electrode can be adjusted and maintained at a specified value for a prolonged term, and an adjusting method of the clearance of the electrodes. CONSTITUTION:In a thermionic generating element 1 with an emitter electrode 2 emitting thermions, a collector electrode 4 collecting thermions from the emitter electrode 2 and electrode supporting materials 3, 5 being extended and mounted on each of the emitter electrode 2 and the collector electrode 4 and supporting both electrodes in a specified clearance, the specified clearance is adjusted by the bent electrode supporting materials 3, 4 deformed in response to a temperature change. The clearance between the emitter electrode 2 and the collector electrode 4 is adjusted by the deformation of the electrode supporting materials 3, 4 in response to heat generated by currents flowing through each electrode supporting material 3, 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温の金属表面から熱
電子が放出される現象を利用して、熱エネルギーを電気
エネルギーに直接に変換を行なう熱電子発電素子及びそ
の電極間隙を調節する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes a phenomenon in which thermoelectrons are emitted from a high temperature metal surface to adjust a thermoelectron power generation element for directly converting thermal energy into electric energy and its electrode gap. It is about the method.

【0002】[0002]

【従来の技術】従来の熱電子発電素子1′は、例えば図
4に示す原理図のように、三つのエミッタ電極2a〜2
cがワイヤーによって分割されているならば、ワイヤー
を流れる電流Ia〜Icは各部分のギャップによって変
化する。このことを非並列電極の調節に用いることが出
来る。ワイヤーを流れる電流Ia〜Icの変化によっ
て、温度変化が起り、ワイヤーの長さが変化し、その変
化分だけでも製作の不良による非並列性のほとんどを補
償するのに十分である。今、熱電子を放出するエミッタ
電極、例えばエミッタ電極2aと熱電子を捕集するコレ
クタ電極4との間隙(以下、「電極空間距離」という)
が小さくなると、このワイヤーの出力電流Iaが増す。
その結果、この増大した電流Iaによりワイヤーが、そ
れまで以上に加熱され、熱膨張により延びて電極空間距
離を大きくする方向に変化させて電極の間隙を調節する
(1992年版 アイ イ シイ イ シイ フ゜ロシーテ゛インク゛(IECEC Procee
ding)第6巻 167〜169頁)。
2. Description of the Related Art A conventional thermoelectron power generation element 1'includes three emitter electrodes 2a to 2a as shown in the principle diagram of FIG.
If c is divided by a wire, the currents Ia-Ic flowing through the wire will change due to the gap in each part. This can be used to adjust the non-parallel electrodes. A change in the currents Ia to Ic flowing through the wire causes a change in temperature and a change in the length of the wire, and the change alone is sufficient to compensate for most of the non-parallelism due to manufacturing defects. Now, a gap between an emitter electrode that emits thermoelectrons, for example, the emitter electrode 2a and a collector electrode 4 that traps thermoelectrons (hereinafter, referred to as "electrode space distance").
Becomes smaller, the output current Ia of this wire increases.
As a result, the increased current Ia causes the wire to be heated more than before, and the wire expands due to thermal expansion to change the direction of increasing the electrode space distance to adjust the electrode gap (1992 edition). DINCE (IECEC Procee
ding) Vol. 6, pp. 167-169).

【0003】[0003]

【発明が解決しようとする課題】熱電子発電素子は、電
極空間距離を0.5mm以下に、時には数十μm以下に
設定しなければならず、この電極空間距離を10000
時間以上も維持しなければならない。作動温度は、およ
そ1200℃以上であり、又、高真空気密を維持する特
殊な構造を要するので、上記電極空間距離の長期間の維
持は困難である。
In the thermoelectron power generation element, the electrode space distance must be set to 0.5 mm or less, and sometimes to several tens of μm or less. This electrode space distance is 10,000 or less.
You have to keep more than hours. The operating temperature is approximately 1200 ° C. or higher, and a special structure for maintaining high vacuum airtightness is required, so that it is difficult to maintain the electrode space distance for a long period of time.

【0004】上記従来技術である作動中の熱電子発電素
子の電極空間距離をワイヤーの長さの変化で調節する方
法は、熱膨張による直線的変位のみで調節を行なうの
で、電極空間距離を十分大きく変化させるには、ワイヤ
ーを細く長くする必要があり、この部分での電気的損失
が大きくなる、という問題があった。
In the prior art method of adjusting the electrode space distance of the thermoelectric power generating element in operation by changing the length of the wire, since the adjustment is performed only by the linear displacement due to thermal expansion, the electrode space distance is sufficient. In order to make a large change, it is necessary to make the wire thin and long, and there is a problem that electrical loss in this portion becomes large.

【0005】本発明の第1の目的は、熱電子発電素子に
おいて、エミッタ電極とコレクタ電極との電極空間距離
が長期間にわたって所定の間隙に維持された熱電子発電
素子を提供することである。
A first object of the present invention is to provide a thermoelectron power generation element in which the electrode space distance between the emitter electrode and the collector electrode is maintained at a predetermined gap for a long period of time.

【0006】本発明の第2の目的は、熱電子発電素子に
おいて、エミッタ電極とコレクタ電極との間隙である電
極空間距離が長期間にわたって電気的損失がなく、所定
の間隙に調節、維持される熱電子発電素子の電極間隙調
節方法を提供することである。
A second object of the present invention is to adjust and maintain the electrode space distance, which is the gap between the emitter electrode and the collector electrode, in the thermoelectron power generation element for a long period of time without electrical loss and at a predetermined gap. An object of the present invention is to provide a method for adjusting an electrode gap of a thermoelectron power generation element.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、熱電子を放出するエミッタ電極と、該エ
ミッタ電極からの熱電子を捕集するコレクタ電極と、前
記エミッタ電極及びコレクタ電極の各々に延設して設け
られ、前記両電極を所定の間隙に支持する電極支持材と
を備えた熱電子発電素子において、前記所定の間隙は、
温度変化に応じて変形する前記電極支持材によって調節
されるものである。
In order to solve the above problems, the present invention provides an emitter electrode that emits thermoelectrons, a collector electrode that collects thermoelectrons from the emitter electrode, the emitter electrode and the collector electrode. In the thermoelectron power generation element provided with extending to each of, and an electrode support member for supporting the both electrodes in a predetermined gap, the predetermined gap,
It is adjusted by the electrode supporting member which is deformed according to the temperature change.

【0008】更に、上記発明において、前記温度変化に
応じて変形する電極支持材は、屈曲しているものであ
る。
Further, in the above invention, the electrode supporting member which deforms in accordance with the temperature change is bent.

【0009】又、本発明は、電極支持材で支持されたエ
ミッタ電極から放出される熱電子を同じく電極支持材で
支持されたコレクタ電極で捕集する、前記エミッタ電極
とコレクタ電極との電極間隙は、前記各電極支持材を流
れる電流による発生熱に対応して前記電極支持材が変形
することによって調節されることである。
Further, according to the present invention, the thermoelectrons emitted from the emitter electrode supported by the electrode supporting material are collected by the collector electrode also supported by the electrode supporting material, the electrode gap between the emitter electrode and the collector electrode. Is to be adjusted by deforming the electrode support material in response to heat generated by the current flowing through each electrode support material.

【0010】[0010]

【作用】本発明によれば、所定の間隙は、温度変化に応
じて変形する前記電極支持材によって調節されるもので
あるので、電極支持材の熱変形を起す部分の温度を大き
く変化させることなく、両電極間の間隙を大きく調整す
ることが出来る。この場合、電極支持材の内部の熱膨張
率の違いにより、温度変化を角度の変化として電極の間
隙を調節するものである。
According to the present invention, since the predetermined gap is adjusted by the electrode supporting member which is deformed according to the temperature change, it is possible to greatly change the temperature of the portion of the electrode supporting member which is thermally deformed. Instead, it is possible to greatly adjust the gap between both electrodes. In this case, the gap between the electrodes is adjusted by changing the temperature by changing the angle due to the difference in the coefficient of thermal expansion inside the electrode support material.

【0011】更に、上記発明において、温度変化に応じ
て変形する電極支持材は、屈曲しているものであるの
で、エミッタ電極とコレクタ電極との所定の間隙は、確
実、容易に大きく調整することが出来る。
Further, in the above invention, since the electrode supporting member which deforms in response to temperature change is bent, the predetermined gap between the emitter electrode and the collector electrode can be adjusted surely and easily by a large amount. Can be done.

【0012】又、電極間隙は、各電極支持材を流れる電
流による発生熱に対応して電極支持材が変形することに
よって調節されるので、長期間にわたって電気的損失が
なく、所定の間隙に調節、維持される。
Further, since the electrode gap is adjusted by the electrode support member being deformed in response to the heat generated by the current flowing through each electrode support member, there is no electrical loss for a long period of time, and the electrode gap is adjusted to a predetermined gap. , Maintained.

【0013】[0013]

【実施例】以下、本発明に係る熱電子発電素子及びその
電極間隙調節方法の実施例を図面に基づいて詳細に説明
する。図1は本発明に係る平行平板型熱電子発電素子の
正面図、図2は図1における熱電子発電素子の両電極の
間隙が調節された状態の正面図、図3は本発明に係る平
行円板型熱電子発電素子のコレクタ電極を主体に示した
正面図である。
Embodiments of the thermoelectron power generation element and the electrode gap adjusting method therefor according to the present invention will be described below in detail with reference to the drawings. 1 is a front view of a parallel plate type thermoelectric power generating element according to the present invention, FIG. 2 is a front view of the thermoelectric power generating element in FIG. 1 in which a gap between both electrodes is adjusted, and FIG. 3 is a parallel view according to the present invention. FIG. 3 is a front view mainly showing a collector electrode of a disc type thermoelectric power generating element.

【0014】図1は、本発明に係る平行平板型熱電子発
電素子の正面図である。本発明の熱電子発電素子1は、
熱電子を放出するエミッタ電極2と、このエミッタ電極
2からの熱電子を捕集するコレクタ電極4と、エミッタ
電極2及びコレクタ電極4の各々に延設して設けられ、
両電極を所定の間隙dに支持する電極支持材3、5とを
備えたものである。所定の間隙dは、温度変化に応じて
変形する電極支持材3、5の変形によって調節されるも
のである。
FIG. 1 is a front view of a parallel plate type thermoelectric power generating element according to the present invention. The thermoelectron power generation element 1 of the present invention is
An emitter electrode 2 that emits thermoelectrons, a collector electrode 4 that collects thermoelectrons from the emitter electrode 2, and an emitter electrode 2 and a collector electrode 4 are provided so as to extend respectively.
The electrode supporting members 3 and 5 for supporting both electrodes in a predetermined gap d are provided. The predetermined gap d is adjusted by the deformation of the electrode support members 3 and 5 which are deformed according to the temperature change.

【0015】このような構造を有する本発明に係る熱電
子発電素子1は、次のように作用する。高温のエミッタ
電極2は、熱電子を放出し、低温のコレクタ電極4に捕
集される。エミッタ電極2の電極支持材3及びコレクタ
電極4の電極支持材5は、各々屈曲部7が円弧状の略L
字形の形状をしており、屈曲部7の内側と外側では熱膨
張率が異なる。図2に示すように、電極支持材3、5の
温度変化により内側或いは外側へ曲がるので、電極間隙
dをd′に調節することが出来る。尚、図2は、電極間
隙d′が電極支持材3、5の温度変化前の電極間隙dよ
り大きくなった場合を示す。
The thermoelectron power generation element 1 according to the present invention having such a structure operates as follows. The high-temperature emitter electrode 2 emits thermoelectrons and is collected by the low-temperature collector electrode 4. The electrode supporting member 3 of the emitter electrode 2 and the electrode supporting member 5 of the collector electrode 4 each have a bent portion 7 in an arc shape and are substantially L-shaped.
It has a V shape, and the coefficient of thermal expansion is different between the inside and outside of the bent portion 7. As shown in FIG. 2, the electrode support members 3 and 5 bend inward or outward due to temperature changes, so that the electrode gap d can be adjusted to d '. Note that FIG. 2 shows a case where the electrode gap d ′ is larger than the electrode gap d before the temperature change of the electrode support members 3 and 5.

【0016】又、本発明に係る熱電子発電素子の電極間
隙調節方法は、既出の図1で説明した平行平板型熱電子
発電素子においては、エミッタ電極2とコレクタ電極4
との間隙である電極空間距離dが、何らかの原因又は長
期の使用で小さくなると、コレクタ電極4で捕集される
熱電子が増え、電子凝縮によりコレクタ電極4が加熱さ
れ、熱伝導により電極支持材5の温度が上昇する。同時
に熱電子発電素子1を流れる電流が増えるので、抵抗加
熱により電極支持材3、5の温度が上昇し、電極支持材
3、5の屈曲部7、7が変形する。そして、二つの電極
支持材3、5の屈曲部7、7の外側が伸びて、屈曲部
7、7の温度変化が角度変化となり、その結果、既出の
図2に示すように、エミッタ電極2とコレクタ電極4の
位置関係は、電極空間距離dから大きい電極空間距離
d′に調節される。
Further, the electrode gap adjusting method of the thermoelectron power generating element according to the present invention is the same as that of the parallel plate type thermoelectron power generating element described in FIG.
If the electrode space distance d, which is a gap between the electrode and the electrode, becomes small for some reason or for long-term use, the number of thermoelectrons collected by the collector electrode 4 increases, the collector electrode 4 is heated by electron condensation, and the electrode support material is thermally conductive. The temperature of 5 rises. At the same time, since the current flowing through the thermoelectron power generation element 1 increases, the temperature of the electrode support materials 3, 5 rises due to resistance heating, and the bent portions 7, 7 of the electrode support materials 3, 5 are deformed. The outside of the bent portions 7, 7 of the two electrode support members 3, 5 extends, and the temperature change of the bent portions 7, 7 causes an angle change. As a result, as shown in FIG. The positional relationship between the collector electrode 4 and the collector electrode 4 is adjusted from the electrode space distance d to a large electrode space distance d '.

【0017】図3は、本発明に係る平行円板型熱電子発
電素子のコレクタ電極を主体に示した正面図である。熱
電子を放出するエミッタ電極2と、このエミッタ電極2
からの熱電子を捕集するコレクタ電極4と、コレクタ電
極4に延設して設けられた電極支持材5a、5bとを有
する熱電子発電素子である。電極支持材5a、5bは、
円板状のコレクタ電極4の周囲に等間隔に、又は全周に
配置され、各々の電極支持材5a、5bは、屈曲部7、
7を有している。屈曲部7、7は、温度変化によって形
状が変わり、コレクタ電極4を上下することが出来る。
FIG. 3 is a front view mainly showing the collector electrode of the parallel disk type thermoelectric power generating element according to the present invention. An emitter electrode 2 that emits thermoelectrons and this emitter electrode 2
The thermoelectron power generation element has a collector electrode 4 for collecting thermoelectrons from the electrode and electrode support members 5a and 5b provided so as to extend on the collector electrode 4. The electrode support materials 5a and 5b are
The electrode support members 5a and 5b are arranged at equal intervals around the disk-shaped collector electrode 4 or around the entire circumference.
Have 7. The bent portions 7 and 7 change their shapes depending on the temperature change, and the collector electrode 4 can be moved up and down.

【0018】又、平行円板型熱電子発電素子の電極間隙
調節方法においては、例えば、図3において、円板状の
コレクタ電極4とエミッタ電極2との電極間隙d1が小
さくなったとすると、コレクタ電極4で捕集される熱電
子が増え、電子凝縮によりコレクタ電極4が加熱され、
熱伝導により電極支持材5aの温度が上昇する。同時に
熱電子発電素子1を流れる電流が増えるので、抵抗加熱
により電極支持材5aの温度が上昇し、電極支持材5a
の屈曲部7が変形する。そして、電極支持材5aの屈曲
部7の外側が伸びて、屈曲部7の温度変化が角度変化と
なり、その結果、エミッタ電極2とコレクタ電極4の位
置関係は、調整され、小さくなり過ぎた電極空間距離d
1はより大きいd1に調節される。この様にして、電極空
間距離d1の偏った変化を補正するだけでなく、エミッ
タ電極2とコレクタ電極4の平均的な電極空間距離の変
化も補正し、エミッタ電極2とコレクタ電極4を平行に
保つことが出来る。
Further, in the electrode gap adjusting method of the parallel disk type thermoelectric power generating element, for example, in FIG. 3, if the electrode gap d 1 between the disk-shaped collector electrode 4 and the emitter electrode 2 is reduced, The number of thermoelectrons collected by the collector electrode 4 increases and the collector electrode 4 is heated by electron condensation,
The temperature of the electrode supporting member 5a rises due to the heat conduction. At the same time, since the current flowing through the thermoelectron power generation element 1 increases, the temperature of the electrode supporting member 5a rises due to resistance heating, and the electrode supporting member 5a
The bent portion 7 of is deformed. Then, the outside of the bent portion 7 of the electrode supporting member 5a extends, and the temperature change of the bent portion 7 causes an angle change. As a result, the positional relationship between the emitter electrode 2 and the collector electrode 4 is adjusted and becomes too small. Spatial distance d
1 is adjusted to a larger d 1 . In this way, not only the biased change in the electrode space distance d 1 but also the change in the average electrode space distance between the emitter electrode 2 and the collector electrode 4 are corrected so that the emitter electrode 2 and the collector electrode 4 are parallel to each other. Can be kept at

【0019】以上この発明を図示の実施例について説明
したが、それを以ってこの発明をそれらの実施例のみに
限定するものではなく、この発明の精神を逸脱せずして
種々改変を加えて多種多様の変形をなし得ることは云う
までもない。
Although the present invention has been described with reference to the illustrated embodiments, it is not intended to limit the present invention to those embodiments only, and various modifications may be made without departing from the spirit of the present invention. It goes without saying that various modifications can be made.

【0020】[0020]

【発明の効果】本発明によれば、温度変化に応じて変形
する電極支持材によって調節されるものであるので、電
極支持材の熱変形を起す部分の温度を大きく変化させる
ことなく、熱電子発電素子を長期間使用した時に生じる
電極空間距離の変化を調節することが出来る。更に、小
型で簡便な構造とすることが出来、なおかつ電気損失を
小さくすることが出来る。
According to the present invention, the temperature is adjusted by the electrode supporting member which is deformed according to the temperature change. Therefore, the temperature of a portion of the electrode supporting member which is thermally deformed is not significantly changed, and the thermoelectron It is possible to adjust the change in the electrode space distance that occurs when the power generating element is used for a long time. Further, it is possible to make the structure small and simple and to reduce the electric loss.

【0021】更に、上記発明において、温度変化に応じ
て変形する電極支持材は、屈曲しているものであるの
で、上記発明の効果に加え、エミッタ電極とコレクタ電
極との所定の間隙は、両電極間の間隙を大きく調整する
ことが出来、確実、容易に調整することが出来る。
Further, in the above invention, since the electrode supporting member which is deformed in response to temperature change is bent, in addition to the effect of the above invention, the predetermined gap between the emitter electrode and the collector electrode is The gap between the electrodes can be adjusted significantly, and can be adjusted reliably and easily.

【0022】又、エミッタ電極とコレクタ電極との電極
間隙は、各電極支持材を流れる電流による発生熱に対応
して電極支持材が変形することによって調節されるの
で、長期間にわたって電気的損失がなく、所定の間隙に
調節、維持される。
Further, the electrode gap between the emitter electrode and the collector electrode is adjusted by the deformation of the electrode supporting material in response to the heat generated by the current flowing through each electrode supporting material, so that the electrical loss is caused for a long period of time. Instead, it is adjusted and maintained at a predetermined gap.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る平行平板型熱電子発電素子の正面
図である。
FIG. 1 is a front view of a parallel plate type thermoelectric power generating element according to the present invention.

【図2】図1における熱電子発電素子の両電極の間隙が
調節された状態の正面図である。
FIG. 2 is a front view showing a state in which a gap between both electrodes of the thermoelectron power generation element in FIG. 1 is adjusted.

【図3】本発明に係る平行円板型熱電子発電素子のコレ
クタ電極を主体に示した正面図である。
FIG. 3 is a front view mainly showing a collector electrode of the parallel disk type thermoelectric power generating element according to the present invention.

【図4】従来技術に係る熱電子発電素子を説明する原理
図である。
FIG. 4 is a principle diagram illustrating a thermoelectron power generation element according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 熱電子発電素子 2 エミッタ電極 3 電極支持材(エミッタ電極側) 4 コレクタ電極 5、5a、5b 電極支持材(コレクタ電極側) 7 屈曲部 d、d′、d1、d2 電極空間距離DESCRIPTION OF SYMBOLS 1 Thermionic power generation element 2 Emitter electrode 3 Electrode supporting material (emitter electrode side) 4 Collector electrode 5, 5a, 5b Electrode supporting material (collector electrode side) 7 Bent part d, d ', d 1 , d 2 Electrode space distance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱電子を放出するエミッタ電極と、該エ
ミッタ電極からの熱電子を捕集するコレクタ電極と、前
記エミッタ電極及びコレクタ電極の各々に延設して設け
られ、前記両電極を所定の間隙に支持する電極支持材と
を備えた熱電子発電素子において、前記所定の間隙は、
温度変化に応じて変形する前記電極支持材によって調節
されるものであることを特徴とする熱電子発電素子。
1. An emitter electrode that emits thermoelectrons, a collector electrode that collects thermoelectrons from the emitter electrode, and each of the emitter electrode and the collector electrode are provided so as to extend, and both electrodes are predetermined. In the thermoelectron power generation element provided with an electrode support member that supports the gap, the predetermined gap is
A thermoelectron power generation element, characterized in that it is adjusted by the electrode support material that is deformed according to temperature changes.
【請求項2】 請求項1において、前記温度変化に応じ
て変形する電極支持材は、屈曲しているものであること
を特徴とする熱電子発電素子。
2. The thermoelectron power generation element according to claim 1, wherein the electrode support member that deforms according to the temperature change is bent.
【請求項3】 電極支持材で支持されたエミッタ電極か
ら放出される熱電子を同じく電極支持材で支持されたコ
レクタ電極で捕集する、前記エミッタ電極とコレクタ電
極との電極間隙は、前記各電極支持材を流れる電流によ
る発生熱に対応して前記電極支持材が変形することによ
って調節されることを特徴とする熱電子発電素子の電極
間隙調節方法。
3. An electrode gap between the emitter electrode and the collector electrode, in which the thermoelectrons emitted from the emitter electrode supported by the electrode support material are collected by the collector electrode also supported by the electrode support material, An electrode gap adjusting method for a thermionic power generation element, wherein the electrode supporting member is adjusted by being deformed in response to heat generated by an electric current flowing through the electrode supporting member.
JP6114944A 1994-05-27 1994-05-27 Thermionic generating element and adjusting method of clearance of electrode thereof Withdrawn JPH07322659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6114944A JPH07322659A (en) 1994-05-27 1994-05-27 Thermionic generating element and adjusting method of clearance of electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6114944A JPH07322659A (en) 1994-05-27 1994-05-27 Thermionic generating element and adjusting method of clearance of electrode thereof

Publications (1)

Publication Number Publication Date
JPH07322659A true JPH07322659A (en) 1995-12-08

Family

ID=14650524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6114944A Withdrawn JPH07322659A (en) 1994-05-27 1994-05-27 Thermionic generating element and adjusting method of clearance of electrode thereof

Country Status (1)

Country Link
JP (1) JPH07322659A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013367A1 (en) * 2000-08-07 2002-02-14 Norio Akamatsu Solar energy converter
JP2007037318A (en) * 2005-07-28 2007-02-08 Daikin Ind Ltd Thermoelectronic power generating element
US7253549B2 (en) * 2002-03-06 2007-08-07 Borealis Technical Limited Thermionic vacuum diode device with adjustable electrodes
US7589348B2 (en) 2005-03-14 2009-09-15 Borealis Technical Limited Thermal tunneling gap diode with integrated spacers and vacuum seal
ITMI20091540A1 (en) * 2009-09-07 2011-03-08 Baxi Spa IGNITION DEVICE WITH ELECTRIC DISCHARGE PERFECTED FOR BOILER
JP2013229971A (en) * 2012-04-24 2013-11-07 Denso Corp Thermoelectric power generation element
WO2019023268A1 (en) * 2017-07-24 2019-01-31 Spark Thermionics, Inc. Small gap device system and method of fabrication
US11791142B2 (en) 2020-01-23 2023-10-17 Spark Thermionics, Inc. Small gap device system and method of fabrication

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1315278A1 (en) * 2000-08-07 2003-05-28 Norio Akamatsu Solar energy converter
US6653547B2 (en) 2000-08-07 2003-11-25 Norio Akamatsu Solar energy converter
EP1315278A4 (en) * 2000-08-07 2005-10-12 Norio Akamatsu Solar energy converter
WO2002013367A1 (en) * 2000-08-07 2002-02-14 Norio Akamatsu Solar energy converter
US7253549B2 (en) * 2002-03-06 2007-08-07 Borealis Technical Limited Thermionic vacuum diode device with adjustable electrodes
US7589348B2 (en) 2005-03-14 2009-09-15 Borealis Technical Limited Thermal tunneling gap diode with integrated spacers and vacuum seal
JP2007037318A (en) * 2005-07-28 2007-02-08 Daikin Ind Ltd Thermoelectronic power generating element
ITMI20091540A1 (en) * 2009-09-07 2011-03-08 Baxi Spa IGNITION DEVICE WITH ELECTRIC DISCHARGE PERFECTED FOR BOILER
JP2013229971A (en) * 2012-04-24 2013-11-07 Denso Corp Thermoelectric power generation element
WO2019023268A1 (en) * 2017-07-24 2019-01-31 Spark Thermionics, Inc. Small gap device system and method of fabrication
US11170984B2 (en) 2017-07-24 2021-11-09 Spark Thermionics, Inc. Small gap device system and method of fabrication
US11791143B2 (en) 2017-07-24 2023-10-17 Spark Thermionics, Inc. Small gap device system and method of fabrication
US11791142B2 (en) 2020-01-23 2023-10-17 Spark Thermionics, Inc. Small gap device system and method of fabrication

Similar Documents

Publication Publication Date Title
US5028835A (en) Thermionic energy production
JPH05283021A (en) X-ray tube
JPH07322659A (en) Thermionic generating element and adjusting method of clearance of electrode thereof
JPH07147127A (en) Anisotropic thermal decomposition graphite heater
US5841219A (en) Microminiature thermionic vacuum tube
JP3038830B2 (en) Conduction-cooled multistage collector
US3689794A (en) Punctiform cathode, in particular suitable for detachable electric discharge tubes
JP2928480B2 (en) Cathode support structure for direct heat type electron gun
JPH08237972A (en) Thermoelectron power generation electrode unit and its production
JP3597269B2 (en) Thermionic generator
JP3025095B2 (en) Long electron beam generator
JP3608822B2 (en) Electron gun
US3440474A (en) Resilient means for supporting a directly heated planar cathode
JP2001084931A (en) Hot cathode of x-ray tube
JPS6346952B2 (en)
JP2903880B2 (en) Cold cathode electron gun
JP2738694B2 (en) Method for producing impregnated cathode assembly
JPS6228041Y2 (en)
US4532452A (en) Cathode structure for a cathodoluminescent display devices
JPH01320747A (en) X-ray tube
JPS596029B2 (en) electron gun
JP2001084932A (en) Hot cathode of x-ray tube and manufacturing method thereof
JPH0680244U (en) Cathode structure
JPH07169422A (en) X-ray tube
JPH0554209B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731