JPH07321354A - Photovoltaic element and manufacture - Google Patents

Photovoltaic element and manufacture

Info

Publication number
JPH07321354A
JPH07321354A JP6108412A JP10841294A JPH07321354A JP H07321354 A JPH07321354 A JP H07321354A JP 6108412 A JP6108412 A JP 6108412A JP 10841294 A JP10841294 A JP 10841294A JP H07321354 A JPH07321354 A JP H07321354A
Authority
JP
Japan
Prior art keywords
conductor
photovoltaic
photovoltaic element
cutting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6108412A
Other languages
Japanese (ja)
Other versions
JP3774483B2 (en
Inventor
Kenji Takada
健司 高田
Koji Tsuzuki
幸司 都築
Tatsuo Fujisaki
達雄 藤崎
Yoshifumi Takeyama
祥史 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10841294A priority Critical patent/JP3774483B2/en
Publication of JPH07321354A publication Critical patent/JPH07321354A/en
Application granted granted Critical
Publication of JP3774483B2 publication Critical patent/JP3774483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Dicing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve productivity by preventing short circuit by cutting off and arranging insulation partly between a second conductor that collects power generated from a photovoltaic layer of a first conductor and a photovoltaic layer. CONSTITUTION:An amorphous silicon semiconductor 102 and a transparent conductor film 103 are formed on a stainless board 101 that is a first conductor, and on which a copper foil 108 that is the second conductor and a grid 109 comprised of conductive paste are formed. Insulating polyester tapes 105 and 107 are arranged between the copper foil 108 that is the second conductor, the grid 109 and the photovoltaic layer. The polyester tapes 105 and 107 prevent the stainless board 101, the copper foil 108 and the grid 109 from contacting and short circuiting caused by burr on cutting edges at the cutting part A and B in the cutting of the photovoltaic layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光起電力素子及びその製
造方法に係わり、特に様々なサイズ及び出力の光起電力
素子を効率よく生産できる光起電力素子及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic element and a method of manufacturing the same, and more particularly to a photovoltaic element and a method of manufacturing the same that can efficiently produce photovoltaic elements of various sizes and outputs.

【0002】[0002]

【従来の技術】現在、光起電力装置の出力は6V系、1
2V系が主流となっており、それに応じた光起電力素子
の組立、更にバッテリー及びインバーターとの連動等の
システム化が行われている。
2. Description of the Related Art Currently, the output of a photovoltaic device is a 6V system, 1
The 2V system is the mainstream, and assembling of photovoltaic elements according to it and further systematization such as interlocking with batteries and inverters are being carried out.

【0003】様々な用途に対応するためには、サイズや
出力の異なる光起電力素子の組立てが必要となる。様々
なサイズ及び出力の光起電力素子が目的に応じ組立てら
れ、ラミネーションなどの表面保護が施される。
In order to support various uses, it is necessary to assemble photovoltaic elements having different sizes and outputs. Photovoltaic devices of various sizes and outputs are assembled according to the purpose, and surface protection such as lamination is applied.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、様々な
サイズの光起電力素子を量産するには、そのサイズに応
じてそれぞれ量産ラインが必要となる。それらを1つの
ラインで製造しようとすると、例えば搬送機構及び各部
材供給のアライメント機構の変更などが、その度必要と
なることから生産性は悪くなる。
However, in order to mass-produce photovoltaic elements of various sizes, mass-production lines are required depending on the sizes. If they are manufactured in one line, the productivity will be deteriorated because, for example, it is necessary to change the transport mechanism and the alignment mechanism for supplying each member.

【0005】また、量産ラインのタクトは限界があり、
大サイズの光起電力素子でも小サイズの光起電力素子の
場合でも同じタクトとなり、生産面積で考えた生産効率
は悪くなる。
In addition, the tact of the mass production line is limited,
The same takt time applies to both large-sized photovoltaic elements and small-sized photovoltaic elements, resulting in poor production efficiency in terms of production area.

【0006】このように、従来の方法で種々の大きさの
光起電力素子を生産しようとすると、生産性は低下せざ
るを得ず、その結果、光起電力素子の高価格化を招いて
いるのが現状である。
As described above, when the photovoltaic elements of various sizes are produced by the conventional method, the productivity is inevitably lowered, and as a result, the cost of the photovoltaic element is increased. It is the current situation.

【0007】かかる状況において、本発明は、様々な大
きさの光起電力素子を、1つの生産ラインで且つ高い生
産性で製造可能とする光起電力素子とその製造方法を提
供することを目的とする。
In such a situation, the present invention aims to provide a photovoltaic element and a method for producing the same, which can produce photovoltaic elements of various sizes with one production line and high productivity. And

【0008】[0008]

【課題を解決するための手段】本発明の光起電力素子
は、第1導体と、該第1導体上の光起電力層と、該光起
電力層上にあって該光起電力層から発生する電力を集電
するべく配置された第2導体と、該第2導体と前記光起
電力層との間の少なくとも一部に設けられた絶縁部材
と、を有することを特徴とする。
The photovoltaic element of the present invention comprises a first conductor, a photovoltaic layer on the first conductor, and a photovoltaic layer on the photovoltaic layer. It has a 2nd conductor arrange | positioned so that the electric power which generate | occur | produces may be arrange | positioned, and the insulating member provided in at least one part between this 2nd conductor and the said photovoltaic layer.

【0009】また、本発明の光起電力素子の製造方法
は、第1導体と、該第1導体上の光起電力層と、該光起
電力層上にあって該光起電力層から発生する電力を集電
するべく配置された第2導体と、該第2導体と前記光起
電力層との間の少なくとも一部に設けられた絶縁部材
と、を有する光起電力素子の製造方法において、 i)前記第1導体上に前記光起電力層を形成する工程と ii)前記光起電力層上の一部に前記絶縁部材を配置し固
定する工程と iii)前記絶縁部材及び前記光起電力層上に前記光起電力
層から発生する電力を集電すべく配置される前記第2導
体を形成する工程と iv)前記第1導体、前記光起電力層、前記絶縁部材及び
前記第2導体を同時に切断する工程と、からなることを
特徴とする。
Further, in the method for manufacturing a photovoltaic element of the present invention, the first conductor, the photovoltaic layer on the first conductor, and the photovoltaic layer on the photovoltaic layer and generated from the photovoltaic layer. A method for manufacturing a photovoltaic element, comprising: a second conductor arranged to collect the electric power to be collected; and an insulating member provided at least at a part between the second conductor and the photovoltaic layer. I) a step of forming the photovoltaic layer on the first conductor, ii) a step of disposing and fixing the insulating member on a part of the photovoltaic layer, and iii) the insulating member and the photovoltaic Forming on the power layer the second conductor arranged to collect the power generated from the photovoltaic layer; and iv) the first conductor, the photovoltaic layer, the insulating member and the second And a step of cutting the conductor at the same time.

【0010】前記絶縁部材は、前記第2導体と前記光起
電力層との間で、且つ前記光起電力層の周縁部に配置さ
れていることを特徴とする。また、前記絶縁性部材は、
厚みが15μm以上であるのが好ましい。
The insulating member is arranged between the second conductor and the photovoltaic layer and at a peripheral portion of the photovoltaic layer. In addition, the insulating member,
The thickness is preferably 15 μm or more.

【0011】さらに、前記切断は、シャー刃切断機を用
いることが好ましい。
Further, it is preferable to use a shear blade cutting machine for the cutting.

【0012】[0012]

【作用】本発明による光起電力素子の製造方法は様々な
サイズの光起電力素子が必要である場合でも、光起電力
素子をサイズ別に製造する必要がなく、大サイズの光起
電力素子を量産し、その後で必要に応じた切断分割を行
うことによって、所望のサイズの光起電力素子が得られ
ることから、非常に生産性がある光起電力素子の製造方
法である。つまり本発明による光起電力素子は大サイズ
の光起電力素子の切断分割により得た光起電力素子であ
る。
In the method of manufacturing a photovoltaic element according to the present invention, even if the photovoltaic element of various sizes is required, it is not necessary to manufacture the photovoltaic element according to size, and the photovoltaic element of large size can be manufactured. This is a highly productive method for manufacturing a photovoltaic element, since a photovoltaic element having a desired size can be obtained by mass-production and then cutting and dividing as required. That is, the photovoltaic element according to the present invention is a photovoltaic element obtained by cutting and dividing a large-sized photovoltaic element.

【0013】そして、本発明者らは、切断分割の際に発
生するバリ等により基板と導電性電極とが短絡し、それ
が光起電力素子特性の低下及び歩留まり低下の原因であ
ることを見いだし、この知見を基に本発明を完成した。
即ち、切断部に予め絶縁部材を設けておくことにより、
特性低下及び歩留まり低下の原因となる上記短絡の防止
が可能となったのである。
The present inventors have found that the substrate and the conductive electrode are short-circuited due to burrs or the like generated at the time of cutting and dividing, which causes the deterioration of the characteristics of the photovoltaic element and the reduction of the yield. The present invention has been completed based on this finding.
That is, by providing an insulating member in advance in the cutting portion,
It is possible to prevent the above-mentioned short circuit which causes deterioration of characteristics and yield.

【0014】以下に、切断分割を可能にした光起電力素
子の構造をより詳細に説明する。
The structure of the photovoltaic element capable of cutting and dividing will be described in more detail below.

【0015】従来の光起電力素子は導電性基板のような
第1導体上に光起電力層を設け、その直接上に導電性ペ
ーストのような第2導体を設けた構成となっていた。し
かし従来の光起電力素子を切断分割しようとすると、切
断分割する際に発生する第1導体と第2導体のバリによ
り、互いにショートしてしまう。一方、本発明による光
起電力素子は、第1導体、光起電力層、絶縁部材、第2
導体からなり、切断する部分の第2導体と光起電力層と
の間に絶縁部材を設けた大サイズ光起電力素子を切断分
割して得られる。得られた光起電力素子は周縁部で第2
導体と光起電力層の間に絶縁部材が配置された構成とな
る。この絶縁部材は、切断分割した際の第1導体と第2
導体から発生するバリによる互いのショートを防止す
る。
A conventional photovoltaic element has a structure in which a photovoltaic layer is provided on a first conductor such as a conductive substrate, and a second conductor such as a conductive paste is provided directly on the photovoltaic layer. However, when attempting to cut and divide the conventional photovoltaic element, burrs of the first conductor and the second conductor that are generated during the cutting and division cause short-circuiting with each other. On the other hand, the photovoltaic element according to the present invention includes a first conductor, a photovoltaic layer, an insulating member, and a second conductor.
It is obtained by cutting and dividing a large-sized photovoltaic element made of a conductor and provided with an insulating member between the second conductor and the photovoltaic layer in the portion to be cut. The obtained photovoltaic element has a second
The insulating member is arranged between the conductor and the photovoltaic layer. This insulating member includes a first conductor and a second conductor when cut and divided.
Prevents short-circuiting due to burrs generated from conductors.

【0016】以上のように、本発明は、1つの量産ライ
ンで搬送機構及び各部材供給のアライメント機構の変更
等をすることなしに大サイズの光起電力素子を共通して
製造し、その後シャー刃切断機などによる簡単な切断分
割によって種々のサイズの光起電力層が得られることに
なる。
As described above, according to the present invention, a large size photovoltaic element is commonly manufactured in one mass production line without changing the transport mechanism and the alignment mechanism for supplying each member, and then the shearing device is manufactured. Photovoltaic layers of various sizes can be obtained by simple cutting division with a blade cutting machine or the like.

【0017】本発明の絶縁部材には、例えばポリエステ
ルテープ、ポリイミドテープ、ウレタンテープ等が用い
られるが、特にコストが安く、且つ透明であるポリエス
テルテープを用いるのが望ましい。絶縁部材とその上の
第2導体の配置はそのアライメントが難しいため絶縁部
材は第2導体よりも大きめにすることが多い。しかし、
透明な絶縁部材を用いることにより、光起電力層の上に
第2導体よりもはみ出して配置してもシャドウロスを生
じないので、従来の構成の光起電力素子と同等の発電効
率が得られる。
For the insulating member of the present invention, for example, a polyester tape, a polyimide tape, a urethane tape or the like is used, but it is particularly preferable to use a transparent and inexpensive polyester tape. Since it is difficult to align the insulating member and the second conductor on the insulating member, the insulating member is often made larger than the second conductor. But,
By using the transparent insulating member, shadow loss does not occur even if the transparent insulating member is arranged on the photovoltaic layer so as to extend beyond the second conductor, so that power generation efficiency equivalent to that of the photovoltaic element having the conventional configuration can be obtained. .

【0018】また、絶縁部材の厚みは第1導体及び第2
導体の材質と厚みによって決定するものである。例え
ば、第1導体に厚み100μmのステンレス基板を第2
導体に厚み100μmの軟質銅を用いた一般的な構成の
時、ステンレス基板側からシャー刃が入った方の切断面
ではショートに関わるステンレス基板の軟質銅に向かう
バリは約10μm、軟質銅側からシャー刃が入った方の
切断面では短絡に関わる軟質銅のステンレス基板に向か
うバリは約10〜15μmであり、いずれも切断面でも
絶縁部材の厚みは15μm以上であれば絶縁性は保てる
ことになる。
The thickness of the insulating member is the same as that of the first conductor and the second conductor.
It is determined by the material and thickness of the conductor. For example, a 100 μm-thick stainless steel substrate is used for the second conductor as the second conductor.
When the conductor is made of soft copper with a thickness of 100 μm, the burr toward the soft copper of the stainless steel substrate, which is involved in a short circuit, is about 10 μm on the cut surface of the stainless steel substrate where the shear blade is inserted. The burr toward the stainless steel substrate of soft copper related to the short circuit is about 10 to 15 μm on the cut surface where the shear blade is inserted, and in any case, if the thickness of the insulating member is 15 μm or more, the insulating property can be maintained. Become.

【0019】歩留の良い切断分割を行うために絶縁部材
を厚くすると、ショート率は小さくなるが、光起電力層
と絶縁部材がつくる段差が大きくなると、その上の第2
導体の劣化が促進し易くなるため、絶縁部材の厚みは、
第1導体及び第2導体の材質と厚みによって適当な厚み
を選択して用いる。
If the insulating member is made thicker in order to cut and divide with a good yield, the short-circuit rate will be smaller, but if the step formed by the photovoltaic layer and the insulating member becomes large, the second layer above it will be generated.
Since the deterioration of the conductor is easy to accelerate, the thickness of the insulating member is
An appropriate thickness is selected and used according to the material and thickness of the first conductor and the second conductor.

【0020】本発明において、第1導体としてはステン
レス、アルミニウム、銅などの導電性基板が使用可能で
あるが、ステンレス基板が好ましく、特に切断分割時の
バリの小さなステンレス基板を用いることが望ましい。
In the present invention, a conductive substrate made of stainless steel, aluminum, copper or the like can be used as the first conductor, but a stainless steel substrate is preferable, and a stainless steel substrate having a small burr at the time of cutting and dividing is particularly preferable.

【0021】本発明の光起電力層は、非晶質半導体、結
晶半導体等いずれも用いることができるが、結晶性半導
体は厚く固いので切断時に破壊し易いため、アモルファ
スシリコンのような薄膜非晶質半導体が好ましい。光起
電力層は、第1導体基板上にプラズマCVD法、マイク
ロ波プラズマCVD法あるいはRFプラズマCVD法等
の公知の方法を用いて形成される。
For the photovoltaic layer of the present invention, either an amorphous semiconductor or a crystalline semiconductor can be used. However, since a crystalline semiconductor is thick and hard, it is easily broken at the time of cutting, so that a thin film amorphous such as amorphous silicon is used. Quality semiconductors are preferred. The photovoltaic layer is formed on the first conductor substrate by using a known method such as plasma CVD method, microwave plasma CVD method or RF plasma CVD method.

【0022】本発明の第2導体は、例えばアルミニウ
ム、銀、ニッケル、銅等の導電性金属粒子をフィラーに
持つ導電性ペーストを用い印刷法、塗布法により前記光
起電力層上に形成したり、あるいは例えばアルミニウ
ム、銀、ニッケル、銅、ITO等の金属単体及び透明導
電性酸化物等を用い、メッキ、蒸着、スパッタ等の方法
により形成する。
The second conductor of the present invention may be formed on the photovoltaic layer by a printing method or a coating method using a conductive paste having conductive metal particles such as aluminum, silver, nickel, and copper as a filler. Alternatively, for example, a metal simple substance such as aluminum, silver, nickel, copper, and ITO, and a transparent conductive oxide are used and formed by a method such as plating, vapor deposition, and sputtering.

【0023】光起電力素子の切断分割は、シャー刃切
断、ノコ刃切断、レーザー切断等によって行うことがで
きる。しかし、レーザー切断は切断時に高熱がかかり、
耐熱性のない絶縁部材を用いると、絶縁部材が溶融し絶
縁性を確保できなくなる。レーザー加工時の高温度に絶
え得る耐熱性のある絶縁部材は一般に少なく、またはコ
ストも高い。また、ノコ刃切断では、発生する切り粉が
光起電力素子を汚し、傷をつける場合があり、これらの
欠点のないシャー刃切断が最も好適に用いられる。シャ
ー刃切断は装置も簡単で安く、切断工程も単純なことか
らコスト面も含め生産性がよい。シャー刃切断は、第1
導体及び第2導体の材質と光起電力素子の厚みによって
最適なクリアランス調整を行い、第1導体及び第2導体
のバリを最小にして行われる。
The division of the photovoltaic element can be performed by shear blade cutting, saw blade cutting, laser cutting, or the like. However, laser cutting takes high heat when cutting,
If an insulating member having no heat resistance is used, the insulating member will melt and the insulating property cannot be secured. The number of heat-resistant insulating members that can withstand high temperatures during laser processing is generally small, or the cost is high. Further, in saw blade cutting, the generated chips may stain and damage the photovoltaic element, and shear blade cutting without these defects is most preferably used. The shear blade cutting is simple and inexpensive, and the cutting process is simple, so productivity is good in terms of cost. Shear blade cutting is the first
Optimal clearance adjustment is performed according to the material of the conductor and the second conductor and the thickness of the photovoltaic element, and the burr of the first conductor and the second conductor is minimized.

【0024】[0024]

【実施例】本発明の光起電力素子及びその製造方法を実
施例に基づいて詳しく説明するが、本発明はこれらの実
施例により限定されるものではない。
EXAMPLES The photovoltaic element of the present invention and the method for manufacturing the same will be described in detail based on examples, but the present invention is not limited to these examples.

【0025】(実施例1)図1に本発明の光起電力素子
の概略図を示す。図は、大サイズの光起電力素子を分割
切断することにより得られた光起電力素子の正面図及び
断面図である。
(Example 1) FIG. 1 shows a schematic view of a photovoltaic element of the present invention. The figures are a front view and a cross-sectional view of a photovoltaic element obtained by dividing and cutting a large-sized photovoltaic element.

【0026】第1導体であるステンレス基板101上に
アモルファスシリコン半導体102、透明導電膜(TC
O)103が形成され、その上に第2導体である銅箔1
08と導電性ぺーストからなるグリッド109が形成さ
れている。
An amorphous silicon semiconductor 102 and a transparent conductive film (TC) are formed on a stainless steel substrate 101 which is a first conductor.
O) 103 is formed, and the second conductor copper foil 1 is formed thereon.
A grid 109 composed of 08 and a conductive paste is formed.

【0027】切断線A、Bで分割された光起電力層はそ
の切断部ではTCOが除去されており且つ、第2導体で
ある銅箔108及びグリッド109と光起電力層との間
に、絶縁部材であるポリエステルテープ105、107
が設けられている。ここで用いたポリエステルテープは
基材が厚み100μmの透明テープである。ポリエステ
ルテープ105、107により切断時の第1導体(ステ
ンレス基板101)と第2導体(銅箔108及びグリッ
ド109)との短絡が防止される。ポリエステルテープ
の厚さ100μmは、切断時に切断面に発生するバリに
よる第1導体(ステンレス基板101)と第2導体(銅
箔108及びグリッド109)の接触を防ぐのに十分の
厚さである。即ち、銅箔(軟質銅100μm)108の
切断時のバリは約10μm、グリッド(導電性ぺース
ト)109の切断時のダレは数μmであった。また、ス
テンレス基板101はステンレス430BA製基板を用
いており切断時のバリは数μm程度であった。
In the photovoltaic layer divided by the cutting lines A and B, TCO is removed at the cutting portion, and between the copper foil 108 and the grid 109 as the second conductor and the photovoltaic layer, Insulating member polyester tape 105, 107
Is provided. The polyester tape used here is a transparent tape whose base material has a thickness of 100 μm. The polyester tapes 105 and 107 prevent a short circuit between the first conductor (stainless steel substrate 101) and the second conductor (copper foil 108 and grid 109) during cutting. The thickness of 100 μm of the polyester tape is sufficient to prevent contact between the first conductor (stainless steel substrate 101) and the second conductor (copper foil 108 and grid 109) due to burrs generated on the cut surface during cutting. That is, the burr when the copper foil (soft copper 100 μm) 108 was cut was about 10 μm, and the sag when the grid (conductive paste) 109 was cut was several μm. The stainless steel substrate 101 was a stainless steel 430BA substrate, and the burr at the time of cutting was about several μm.

【0028】作製した光起電力素子について開放電圧、
変換効率等を測定したところ、切断せず個別に作製した
光起電力素子の特性と同程度となり、切断時の短絡が防
止されていることが分かった。
The open-circuit voltage of the produced photovoltaic element,
When the conversion efficiency and the like were measured, it was found that the characteristics were approximately the same as the characteristics of the photovoltaic elements individually manufactured without cutting, and it was found that a short circuit at the time of cutting was prevented.

【0029】(実施例2)絶縁部材の厚みを50、3
0、15、10μmとし、その他は実施例1と同構成と
した光起電力素子を作製し、同様の測定を行った。その
結果、絶縁部材の厚さが10μmのものについては、部
分的にショートが起こり、開放電圧等の特性が低下した
が、絶縁部材の厚さが15μm以上では、特性の低下は
みられず、実用上問題となるショートは起こっていない
ことが分かった。
(Embodiment 2) The thickness of the insulating member is 50, 3
A photovoltaic element having the same structure as in Example 1 except that the thickness was 0, 15, and 10 μm was manufactured, and the same measurement was performed. As a result, for the insulating member having a thickness of 10 μm, a short circuit occurred partially and the characteristics such as open circuit voltage were deteriorated. However, when the insulating member had a thickness of 15 μm or more, the characteristics were not deteriorated. It turns out that there is no short circuit that is a practical problem.

【0030】(実施例3)図2〜6に本発明における光
起電力素子の製造方法の実施例を示す。
(Embodiment 3) FIGS. 2 to 6 show an embodiment of a method for manufacturing a photovoltaic element according to the present invention.

【0031】まず、ロール・ツー・ロール式の蒸着法に
より、第1導体であるステンレス基板201上にアモル
ファスSi202からなる光起電力層、透明導電膜(T
CO)203が積層され、続いてモジューリング量産ラ
インの搬送系に応じたサイズにロールから大サイズ光起
電力素子がカットされ、搬送系に投入される。このカッ
トにより、光起電力素子端部のTCO203と第1導体
201とが短絡し特性が低下するのを修復するために、
TCO203に分離溝204を設ける。これにより実力
通りの特性が出る光起電力素子が得られる。また、光起
電力素子はTCO203に分離溝204を設けることに
よって、複数の電気的に独立した光起電力層を持つこと
ができる。分離溝204は塩化鉄を含んだエッチングペ
ーストを自動スクリーン印刷により塗布し、加熱後水洗
浄することで形成される(以上、図2参照)。
First, by a roll-to-roll type vapor deposition method, a photovoltaic layer made of amorphous Si202 and a transparent conductive film (T) are formed on a stainless steel substrate 201 which is a first conductor.
(CO) 203 is laminated, and then a large-sized photovoltaic element is cut from a roll into a size corresponding to the transport system of the modularing mass production line, and is introduced into the transport system. Due to this cut, in order to repair the fact that the TCO 203 at the end of the photovoltaic element and the first conductor 201 are short-circuited and the characteristics are degraded,
A separation groove 204 is provided in the TCO 203. As a result, a photovoltaic element having the characteristics as they are actually obtained can be obtained. Further, the photovoltaic element can have a plurality of electrically independent photovoltaic layers by providing the TCO 203 with the separation groove 204. The separation groove 204 is formed by applying an etching paste containing iron chloride by automatic screen printing, heating and washing with water (see FIG. 2 above).

【0032】次に、絶縁部材であるポリエステルテープ
205、206、207を自動供給する。ポリエステル
テープ205、206、207は基材厚が100μm、
粘着材のアクリル樹脂が30μmからなるテープであ
る。ポリエステルテープ207は、後の切断工程時にお
ける第1導体(ステンレス基板201)と第2導体(銅
箔208及びグリッド209)のバリによる短絡を防止
する。ポリエステルテープ205、206は、テープ2
07と同様に、後の切断工程時の第1導体(ステンレス
基板201)と第2導体(銅箔208及びグリッド20
9)のバリによる短絡を防止すると共に、分離溝204
の外側での短絡の影響を取り除く、つまりモジューリン
グ量産ライン投入時のカットによる光起電力素子端部の
TCO203と第1導体(ステンレス基板201)との
短絡により光起電力特性が出ない領域での第1導体(ス
テンレス基板201)と第2導体(銅箔208及びグリ
ッド209)の短絡を防止するものである(以上、図3
参照)。
Next, the polyester tapes 205, 206 and 207 which are insulating members are automatically supplied. The polyester tape 205, 206, 207 has a substrate thickness of 100 μm,
This is a tape in which an acrylic resin as an adhesive material is 30 μm. The polyester tape 207 prevents a short circuit due to a burr between the first conductor (stainless steel substrate 201) and the second conductor (copper foil 208 and grid 209) in the subsequent cutting step. Polyester tape 205, 206 is tape 2
Like 07, the first conductor (stainless steel substrate 201) and the second conductor (copper foil 208 and grid 20) at the time of the subsequent cutting step.
9) The short circuit due to the burr is prevented and the separation groove 204
In the area where the photovoltaic characteristic does not appear due to the short circuit between the TCO 203 and the first conductor (stainless steel substrate 201) at the end of the photovoltaic element due to the cut when the modularing mass production line is introduced. To prevent a short circuit between the first conductor (stainless steel substrate 201) and the second conductor (copper foil 208 and grid 209) (see FIG. 3).
reference).

【0033】続いて、第2の導体である銅箔208とグ
リッド209を形成する。銅箔208は、厚さが100
μmの軟質銅テープをポリエステルテープ205、20
6上に自動供給する。グリッド209は、自動印刷によ
り導電性ペーストを分離溝204内の有効エリア及び銅
箔上に供給し、加熱して形成する(以上、図4参照)。
Then, a copper foil 208 as a second conductor and a grid 209 are formed. The copper foil 208 has a thickness of 100.
μm soft copper tape is polyester tape 205, 20
6 automatically supply. The grid 209 is formed by supplying a conductive paste onto the effective area in the separation groove 204 and on the copper foil by automatic printing and heating (see FIG. 4 above).

【0034】第2の導体が形成された光起電力素子基板
を予め設けた分離溝204部でシャー刃切断機で分割切
断し、適当な大きさとする。例えば図5では6分割、図
6では3分割に切断して光起電力素子が得られる。本実
施例では、シャー刃のクリアランスは10μmとした。
The photovoltaic element substrate on which the second conductor is formed is divided and cut by a shearing blade cutting machine at a separation groove 204 portion provided in advance to obtain an appropriate size. For example, the photovoltaic element is obtained by cutting into 6 divisions in FIG. 5 and into 3 divisions in FIG. In this example, the clearance of the shear blade was 10 μm.

【0035】作製した光起電力素子の特性は、個別に作
製した光起電力素子と同等の特性となることを確認し
た。
It was confirmed that the characteristics of the manufactured photovoltaic elements were equivalent to the characteristics of the individually manufactured photovoltaic elements.

【0036】その後、直列化、並列化などの組立をし、
フッ素樹脂フィルム、EVAなどを用い表面被覆した
後、デザイン加工して光起電力装置とする。
After that, assembling such as serialization and parallelization,
After surface coating with a fluororesin film, EVA, etc., design processing is carried out to obtain a photovoltaic device.

【0037】(実施例4)図7〜11に本発明における
光起電力素子の製造方法の他の実施例を示す。
(Embodiment 4) FIGS. 7 to 11 show another embodiment of the method for manufacturing a photovoltaic element according to the present invention.

【0038】ロール・ツー・ロール式の蒸着により、第
1導体であるステンレス基板301上にアモルファスS
iからなる光起電力層302と透明導電膜(TCO)3
03が積層され、続いてモジューリング量産ラインの搬
送系に応じたサイズにロールより大サイズ光起電力素子
がカットされ搬送系に投入される。このカットにより光
起電力素子端部のTCO303と第1導体301とが短
絡し特性が低下するため、これを修復するためTCO3
03に分離溝304を設ける。これにより実力通りの特
性が出る光起電力素子が得られる。また、光起電力層基
板はTCO303に分離溝304を設けることによっ
て、複数の電気的に独立した光起電力層とすることがで
きる。分離溝304は塩化鉄を含んだエッチングペース
トを自動スクリーン印刷により塗布し、加熱後水洗浄す
ることで形成する(以上、図7参照)。
Amorphous S is formed on the stainless steel substrate 301 as the first conductor by roll-to-roll type vapor deposition.
photovoltaic layer 302 made of i and transparent conductive film (TCO) 3
03 are stacked, and then a large-sized photovoltaic element is cut from a roll into a size corresponding to the transport system of the modular ring mass production line and is put into the transport system. Due to this cut, the TCO 303 at the end of the photovoltaic element and the first conductor 301 are short-circuited and the characteristics are deteriorated.
03 is provided with a separation groove 304. As a result, a photovoltaic element having the characteristics as they are actually obtained can be obtained. Further, the photovoltaic layer substrate can be made into a plurality of electrically independent photovoltaic layers by providing the separation groove 304 in the TCO 303. The separation groove 304 is formed by applying an etching paste containing iron chloride by automatic screen printing, heating and washing with water (see FIG. 7 above).

【0039】この工程は、実施例3と同じモジューリン
グ量産ラインでエッチングペーストの自動スクリーン印
刷のスクリーン版の取替えて行えばよい。
This step may be performed by replacing the screen plate for automatic screen printing of etching paste on the same modularing mass production line as in the third embodiment.

【0040】次に、絶縁部材であるポリエステルテープ
305、306を自動供給する。ポリエステルテープ
は、基材厚が100μm、粘着材のアクリル樹脂が30
μmからなるテープである。ポリエステルテープ30
5、306は、後の切断工程時の第1導体(ステンレス
基板301)と第2導体(銅箔308及びグリッド30
9)のバリによる短絡を防止し、且つ分離溝304の外
側での短絡防止、つまりモジューリング量産ライン投入
時のカットによる光起電力素子端部のTCO303と第
1導体(ステンレス基板301)との短絡により光起電
力特性が出ない領域での第1導体(ステンレス基板30
1)と第2導体(銅箔308及びグリッド309)の短
絡を防止する(以上、図8参照)。
Next, the polyester tapes 305 and 306 which are insulating members are automatically supplied. The polyester tape has a base material thickness of 100 μm and an acrylic adhesive resin of 30
It is a tape made of μm. Polyester tape 30
Reference numerals 5 and 306 denote the first conductor (stainless steel substrate 301) and the second conductor (copper foil 308 and grid 30) in the subsequent cutting step.
9) to prevent short circuits due to burrs, and to prevent short circuits outside the separation groove 304, that is, between the TCO 303 at the end of the photovoltaic element and the first conductor (stainless steel substrate 301) due to the cut when the modular ring mass production line is introduced The first conductor (stainless steel substrate 30) in the region where the photovoltaic characteristic does not appear due to short circuit
Short circuit between 1) and the second conductor (copper foil 308 and grid 309) is prevented (see above, FIG. 8).

【0041】この工程は、実施例3と同じモジューリン
グ量産ラインで基板中央部のポリエステルテープ207
の供給装置を作動しないことで行うことができる。
In this process, the polyester tape 207 in the central portion of the substrate is used in the same module ring mass production line as in the third embodiment.
This can be done by not operating the feeding device of.

【0042】続いて、第2の導体である銅箔308とグ
リッド309を形成する。銅箔308は、銅テープ(厚
さ100μmの軟質銅)をポリエステルテープ305、
306上に自動供給する。グリッド309は、自動印刷
により導電性ペーストを分離溝内の有効エリア及び銅箔
上に供給し、加熱して形成する(以上、図9参照)。
Subsequently, a copper foil 308 which is a second conductor and a grid 309 are formed. The copper foil 308 is a copper tape (100 μm thick soft copper) made of polyester tape 305,
306 is automatically supplied. The grid 309 is formed by supplying a conductive paste to the effective area in the separation groove and on the copper foil by automatic printing and heating (see FIG. 9 above).

【0043】第2の導体が形成された光起電力素子を予
め設けた分離溝部でシャー刃切断機で分割切断し適当な
大きさの光起電力層とする。例えば図10に示すように
3分割にした光起電力素子が得られる。また、図11に
示すように分割しないでそのまま光起電力素子としても
良い。本実施例では、切断用シャー刃のクリアランスは
10μmとした。
The photovoltaic element on which the second conductor is formed is divided and cut by a shearing blade cutting machine at a separation groove portion provided in advance to form a photovoltaic layer having an appropriate size. For example, a photovoltaic element divided into three as shown in FIG. 10 can be obtained. Further, as shown in FIG. 11, the photovoltaic element may be used as it is without being divided. In the present example, the clearance of the shearing blade for cutting was 10 μm.

【0044】得られた光起電力素子は、個別に作製した
光起電力素子と同等の特性をもつことが確認された。
It was confirmed that the obtained photovoltaic elements had the same characteristics as the individually produced photovoltaic elements.

【0045】その後、直列化、並列化などの組立をし、
フッ素樹脂フィルム、EVAなどを用い表面被覆した
後、デザイン加工を施し光起電力装置とする。
After that, assembling such as serialization and parallelization,
After surface coating with a fluororesin film, EVA, etc., design processing is performed to obtain a photovoltaic device.

【0046】[0046]

【発明の効果】切断分割部に絶縁部材を配置すること
で、切断分割の際のショートが防止され、高い特性の光
起電力素子を高い歩留まりで得ることができる。
By arranging the insulating member in the cutting / dividing portion, a short circuit at the time of cutting / dividing can be prevented, and a photovoltaic element having excellent characteristics can be obtained with a high yield.

【0047】これにより、大サイズの光起電力素子を簡
単な切断分割によって様々なサイズの光起電力素子が得
られる。
As a result, various sizes of photovoltaic devices can be obtained by simply cutting and dividing a large size photovoltaic device.

【0048】即ち、サイズ毎の量産ラインは必要なく、
搬送機構及び各部材供給のアライメント機構の変更など
をする事なしに、同一のモジューリング量産ラインで、
種々の大きさの光起電力素子を製造でき、生産効率を大
きく改善でき、光起電力素子の大幅なコストダウンを図
ることが可能となる。
That is, there is no need for a mass production line for each size,
Without changing the transport mechanism and the alignment mechanism for supplying each member, on the same module ring mass production line,
It is possible to manufacture photovoltaic elements of various sizes, greatly improve the production efficiency, and significantly reduce the cost of the photovoltaic element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光起電力素子の一例を示す概略図であ
る。
FIG. 1 is a schematic view showing an example of a photovoltaic element of the present invention.

【図2】実施例3の光起電力素子の製造方法を示す概略
図である。
FIG. 2 is a schematic view showing a method for manufacturing the photovoltaic element of Example 3.

【図3】実施例3の光起電力素子の製造方法を示す概略
図である。
FIG. 3 is a schematic view showing a method of manufacturing the photovoltaic element of Example 3.

【図4】実施例3の光起電力素子の製造方法を示す概略
図である。
FIG. 4 is a schematic view showing a method for manufacturing the photovoltaic element of Example 3.

【図5】実施例3の光起電力素子の製造方法を示す概略
図である。
FIG. 5 is a schematic view showing a method for manufacturing the photovoltaic element of Example 3.

【図6】実施例3の光起電力素子の製造方法を示す概略
図である。
FIG. 6 is a schematic view showing a method for manufacturing the photovoltaic element of Example 3.

【図7】実施例4の光起電力素子の製造方法を示す概略
図である。
FIG. 7 is a schematic view showing the method of manufacturing the photovoltaic element of Example 4.

【図8】実施例4の光起電力素子の製造方法を示す概略
図である。
FIG. 8 is a schematic view showing the method of manufacturing the photovoltaic element of Example 4.

【図9】実施例4の光起電力素子の製造方法を示す概略
図である。
FIG. 9 is a schematic view showing the method of manufacturing the photovoltaic element of Example 4.

【図10】実施例4の光起電力素子の製造方法を示す概
略図である。
FIG. 10 is a schematic view showing the method of manufacturing the photovoltaic element of Example 4.

【図11】実施例4の光起電力素子の製造方法を示す概
略図である。
FIG. 11 is a schematic view showing the method of manufacturing the photovoltaic element of Example 4.

【符号の説明】[Explanation of symbols]

101、201、301 ステンレス基板、 102、202、302 アモルファスSi半導体、 103、203、303 透明導電膜(TCO)、 204、304 分離溝、 105、107、205、206、207、305、3
06 ポリエステルテープ、 108、208、308 銅箔、 109、209、309 グリッド。
101, 201, 301 Stainless steel substrate, 102, 202, 302 Amorphous Si semiconductor, 103, 203, 303 Transparent conductive film (TCO), 204, 304 Separation groove, 105, 107, 205, 206, 207, 305, 3
06 polyester tape, 108, 208, 308 copper foil, 109, 209, 309 grid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹山 祥史 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshifumi Takeyama 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1導体と、該第1導体上の光起電力層
と、該光起電力層上にあって該光起電力層から発生する
電力を集電するべく配置された第2導体と、該第2導体
と前記光起電力層との間の少なくとも一部に設けられた
絶縁部材と、を有することを特徴とする光起電力素子。
1. A first conductor, a photovoltaic layer on the first conductor, and a second layer on the photovoltaic layer and arranged to collect electric power generated from the photovoltaic layer. A photovoltaic element, comprising: a conductor; and an insulating member provided at least at a part between the second conductor and the photovoltaic layer.
【請求項2】 前記絶縁部材は、前記第2導体と前記光
起電力層間で、且つ前記光起電力層の周縁部に配置され
ていることを特徴とする請求項1に記載の光起電力素
子。
2. The photovoltaic element according to claim 1, wherein the insulating member is arranged between the second conductor and the photovoltaic layer and at a peripheral portion of the photovoltaic layer. element.
【請求項3】 前記絶縁性部材は、厚みが15μm以上
であることを特徴とする請求項1または請求項2に記載
の光起電力素子。
3. The photovoltaic element according to claim 1, wherein the insulating member has a thickness of 15 μm or more.
【請求項4】 第1導体と、該第1導体上の光起電力層
と、該光起電力層上にあって該光起電力層から発生する
電力を集電するべく配置された第2導体と、該第2導体
と前記光起電力層との間の少なくとも一部に設けられた
絶縁部材と、を有する光起電力素子の製造方法におい
て、 i)前記第1導体上に前記光起電力層を形成する工程と ii)前記光起電力層上の一部に前記絶縁部材を配置し固
定する工程と iii)前記絶縁部材及び前記光起電力層上に前記光起電力
層から発生する電力を集電すべく配置される前記第2導
体を形成する工程と iv)前記第1導体、前記光起電力層、前記絶縁部材及び
前記第2導体を同時に切断する工程と、からなることを
特徴とする光起電力素子の製造方法。
4. A first conductor, a photovoltaic layer on the first conductor, and a second layer on the photovoltaic layer and arranged to collect electric power generated from the photovoltaic layer. A method for manufacturing a photovoltaic element, comprising: a conductor; and an insulating member provided on at least a portion between the second conductor and the photovoltaic layer, i) the photovoltaic element on the first conductor. Forming a power layer, ii) disposing and fixing the insulating member on a part of the photovoltaic layer, and iii) generating from the photovoltaic layer on the insulating member and the photovoltaic layer Forming a second conductor arranged to collect electric power; and iv) cutting the first conductor, the photovoltaic layer, the insulating member, and the second conductor at the same time. A method for manufacturing a photovoltaic element having the characteristics.
【請求項5】 前記絶縁性部材は、厚みが15μm以上
であることを特徴とする請求項4に記載の光起電力素子
の製造方法。
5. The method for manufacturing a photovoltaic element according to claim 4, wherein the insulating member has a thickness of 15 μm or more.
【請求項6】 前記切断にシャー刃切断機を用いること
を特徴とする請求項4または請求項5に記載の光起電力
素子の製造方法。
6. The method for manufacturing a photovoltaic element according to claim 4, wherein a shearing blade cutting machine is used for the cutting.
JP10841294A 1994-05-23 1994-05-23 Photovoltaic element and manufacturing method thereof Expired - Fee Related JP3774483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10841294A JP3774483B2 (en) 1994-05-23 1994-05-23 Photovoltaic element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10841294A JP3774483B2 (en) 1994-05-23 1994-05-23 Photovoltaic element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07321354A true JPH07321354A (en) 1995-12-08
JP3774483B2 JP3774483B2 (en) 2006-05-17

Family

ID=14484107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10841294A Expired - Fee Related JP3774483B2 (en) 1994-05-23 1994-05-23 Photovoltaic element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3774483B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004005A1 (en) * 1996-07-24 1998-01-29 Tdk Corporation Solar battery and method for manufacturing the same
JP2002151714A (en) * 2000-11-07 2002-05-24 Fuji Electric Co Ltd Method and apparatus for manufacturing thin-film solar cell
US6963787B2 (en) 2001-08-02 2005-11-08 Canon Kabushiki Kaisha Article to be processed having ID, and production method thereof
JP2016181625A (en) * 2015-03-24 2016-10-13 株式会社東芝 Photoelectric conversion element and manufacturing method of photoelectric conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004005A1 (en) * 1996-07-24 1998-01-29 Tdk Corporation Solar battery and method for manufacturing the same
US6225552B1 (en) 1996-07-24 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Planar solar cell array and production method of the same
JP2002151714A (en) * 2000-11-07 2002-05-24 Fuji Electric Co Ltd Method and apparatus for manufacturing thin-film solar cell
US6963787B2 (en) 2001-08-02 2005-11-08 Canon Kabushiki Kaisha Article to be processed having ID, and production method thereof
US7284690B2 (en) 2001-08-02 2007-10-23 Canon Kabushiki Kaisha Article to be processed having ID, and production method thereof
JP2016181625A (en) * 2015-03-24 2016-10-13 株式会社東芝 Photoelectric conversion element and manufacturing method of photoelectric conversion element
US10205110B2 (en) 2015-03-24 2019-02-12 Kabushiki Kaisha Toshiba Photoelectric conversion element and manufacturing method of photoelectric conversion element

Also Published As

Publication number Publication date
JP3774483B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
US9362433B2 (en) Photovoltaic interconnect systems, devices, and methods
US7498508B2 (en) High voltage solar cell and solar cell module
US4443652A (en) Electrically interconnected large area photovoltaic cells and method of producing said cells
US5821597A (en) Photoelectric conversion device
US20060260673A1 (en) Photovoltaic element and method of producing photovoltaic element
KR20140105520A (en) Automated flexible solar cell fabrication and interconnection utilizing rolls of expanded metallic mesh
JP3164183B2 (en) Photovoltaic element and module
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
JP2000068548A (en) Photovoltaic cell and manufacture thereof
WO2006123938A1 (en) Method for interconnection of solar cells
JP2011520277A (en) Method for producing single crystal solar cell
WO2016152649A1 (en) Solar cell module and method for manufacturing same
JPH10233517A (en) Photoelectric conversion device and its manufacturing method
JPH03239377A (en) Solar cell module
JP2000049369A (en) Thin-film solar battery module
US8329495B2 (en) Method of forming photovoltaic modules
JPH07321354A (en) Photovoltaic element and manufacture
JP2000150929A (en) Photovoltaic element and manufacture thereof
JPS61214483A (en) Manufacture of integrated type solar cell
JP2000077690A (en) Photoelectric converter and its manufacture
JP2002280580A (en) Integrated photovoltaic device and manufacturing method therefor
JPH11103079A (en) Manufacture of laminated photovoltaic device
JP2892929B2 (en) Manufacturing method of integrated photoelectric conversion element
JP2000196121A (en) Photovoltaic element module and its manufacture
JP2000208794A (en) Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees