JPS61214483A - Manufacture of integrated type solar cell - Google Patents

Manufacture of integrated type solar cell

Info

Publication number
JPS61214483A
JPS61214483A JP60053255A JP5325585A JPS61214483A JP S61214483 A JPS61214483 A JP S61214483A JP 60053255 A JP60053255 A JP 60053255A JP 5325585 A JP5325585 A JP 5325585A JP S61214483 A JPS61214483 A JP S61214483A
Authority
JP
Japan
Prior art keywords
layer
electrode
solar cell
manufacturing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60053255A
Other languages
Japanese (ja)
Other versions
JPH0519990B2 (en
Inventor
Kenji Nakatani
健司 中谷
Tetsuo Sato
哲生 佐藤
Hiroshi Okaniwa
宏 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60053255A priority Critical patent/JPS61214483A/en
Priority to US06/828,197 priority patent/US4697041A/en
Priority to FR868602039A priority patent/FR2577716B1/en
Priority to DE19863604894 priority patent/DE3604894A1/en
Publication of JPS61214483A publication Critical patent/JPS61214483A/en
Publication of JPH0519990B2 publication Critical patent/JPH0519990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To join electrodes for connecting good conductive materials with a metallic electrode surface by a method wherein the electrodes for connection are formed onto each cell according to predetermined patterns, electrode sections are irradiated by laser beams, the whole layer is melted and a metallic electrode layer and the electrodes for connection are joined in an ohmic manner. CONSTITUTION:When two metallic layers 2 formed while holding an amorphous silicon semiconductor layer 3 are irradiated by laser beams and the metallic layers 2 are melted including the amorphous silicon semiconductor layer 3, the central section of irradiation is evaporated to some extent, but an excellent ohmic junction is shaped between both metallic layers 2. A layer mainly comprising either of gold, silver, copper, Al or nickel or these alloy is applied as a collection electrode or a good conductive electrode for connection as an electrode layer for connecting cells. The electrode for connection is shaped onto a transparent electrode layer patterned by employing a physical method, such as a vacuum deposition method, a sputtering method, etc. It is preferable that the film thickness of a thin film at that time extends over 0.5mum or more. Even beams within a wavelength range which several constitutional layers can absorb may be used as laser beams, and a YAG laser is employed preferably.

Description

【発明の詳細な説明】 [利用分野] 本発明は集積型の非晶質シリコン薄膜太陽電池の製造方
法に関する。さらに詳しくは、同一基板上に積層され、
複数個の区画された金属電極層。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a method for manufacturing an integrated amorphous silicon thin film solar cell. More specifically, they are stacked on the same substrate,
Multiple compartmentalized metal electrode layers.

非晶質シリコン層、透明電極層からなるセルを接続した
集積型太陽電池の製造方法に関する。
The present invention relates to a method for manufacturing an integrated solar cell in which a cell consisting of an amorphous silicon layer and a transparent electrode layer is connected.

[従来技術1 非晶質シリコン半導体膜はシランガス等のグa−放電分
解法によって低い基板温度で、広い面積に均一に堆積で
き、基板もガラス、高分子フィルム、セラミック板、金
属フォイル等の各種基板が選択できる為、太陽電池用半
導体膜として広く研究されている。
[Prior art 1] Amorphous silicon semiconductor films can be deposited uniformly over a wide area at low substrate temperatures by using silane gas or other gas discharge decomposition methods. Because the substrate can be selected, it is widely studied as a semiconductor film for solar cells.

非晶質シリコン太陽電池の基本構造としては上記各種基
板上に設けられた金属電極層/非晶質シリコン半導体層
/透明電極層の積層構造が用いられている。
The basic structure of an amorphous silicon solar cell is a laminated structure of metal electrode layer/amorphous silicon semiconductor layer/transparent electrode layer provided on the various substrates mentioned above.

非晶質シリコン層堆積の特徴を生かし特開昭59−34
668M公報に開示されたロールツーロール方式やJa
pan  Joarnal  of  Applied
  Physics誌21巻3号413ページ(198
2)に掲載されている3室分離形成法などを用いて金属
電極層を設けた大面積の長尺基板上に非晶質シリコン層
を堆積することは容易である。
Utilizing the characteristics of amorphous silicon layer deposition, JP-A-59-34
The roll-to-roll method disclosed in 668M publication and Ja
pan Journal of Applied
Physics magazine, Vol. 21, No. 3, page 413 (198
It is easy to deposit an amorphous silicon layer on a large-area elongated substrate provided with a metal electrode layer using the three-chamber separation formation method described in 2).

又、もう一方の電流取り出し電極の透明電極層を大面積
に設ける事も容易である。しかしながら太陽電池として
上記積層体を働かす為には金属電極層と透明電極層とに
リード端子を取り付ける事が必要である。さらに、実用
化に必要な数十V以上の出力電圧を得る為には、上記大
面積基板上に設番プた太l@電池をレーザスクライブ法
等で分割しその後隣接し合う金属電極層と透明電極層と
を直列接続することが必要である。かかる場合、通常最
下層の金属電極層を露出させて、しかる後隣接する上部
電極層あるいはリード取り出し用電極と接続する方法が
とられている。この金属電極層を露出させる方法として ■ 非晶質シリコン層堆積時に金属マスクを用いる方法
、 ■ 非晶質シリコン層堆積後、湿式あるいは乾式のエツ
チング法を用いシリコン層を除去する方法、 ■ 非晶質シリコン層堆積後、レーザ照射によってシリ
コン層のみを選択的に溶融、蒸発させて除去する方法 などが用いられてきた。
Further, it is also easy to provide the transparent electrode layer of the other current extraction electrode over a large area. However, in order for the above-mentioned laminate to function as a solar cell, it is necessary to attach lead terminals to the metal electrode layer and the transparent electrode layer. Furthermore, in order to obtain an output voltage of several tens of volts or more, which is necessary for practical use, it is necessary to divide the large-sized battery formed on the large-area substrate using a laser scribing method, etc., and then connect adjacent metal electrode layers. It is necessary to connect the transparent electrode layer in series. In such a case, a method is usually used in which the lowest metal electrode layer is exposed and then connected to the adjacent upper electrode layer or lead extraction electrode. Methods for exposing this metal electrode layer include: ■ using a metal mask during deposition of the amorphous silicon layer; ■ removing the silicon layer using wet or dry etching after depositing the amorphous silicon layer; and ■ removing the silicon layer using a wet or dry etching method after depositing the amorphous silicon layer. A method has been used in which after depositing a silicon layer, only the silicon layer is selectively melted and evaporated by laser irradiation to remove it.

これらの方法の中で、■の方式は長尺、大面積のロール
ツーロール方式に適さないばかりか3室分離形成法にお
いても、非晶質シリコン堆積時の加熱過程において、基
板とマスクの熱膨張率の違いによる密着性の悪化の為、
非晶質シリコン成分の回り込みが生じ良好なパターンが
得られず且つ、電気的に良好な金属層表面を露出させる
ことがむつかしい。
Among these methods, method (2) is not only unsuitable for long, large-area roll-to-roll methods, but also in the three-chamber separation method, the heating process during amorphous silicon deposition causes heat loss between the substrate and mask. Due to poor adhesion due to the difference in expansion rate,
The amorphous silicon component wraps around, making it impossible to obtain a good pattern, and it is difficult to expose the electrically good surface of the metal layer.

■の方式はレジスト塗付とエツチングの組み合わせによ
って可能であるが、レジスト塗付、B光。
Method (2) is possible by combining resist coating and etching, but resist coating and B light.

洗浄、エツチング等の多数の工程が必要であり、安価に
大量に太陽電池を製造するには適さない。
It requires many steps such as cleaning and etching, and is not suitable for producing large quantities of solar cells at low cost.

又■の方式においてはシリコン層溶融に必要な高温発生
の為、高融点金属を用いた金属電極層においても損傷が
生じ電気的に良好な金属層表面を露出させる事が出来な
いばかりか、Anのごとき低融点金属ではシリコン層の
みを選択的に除去する事も出来ないのが実状である。
In addition, in method (2), the high temperature required to melt the silicon layer damages the metal electrode layer using a high-melting point metal, making it impossible to expose the electrically good surface of the metal layer. The reality is that it is not possible to selectively remove only the silicon layer with low melting point metals such as.

1発明の目的] 本発明は、上記欠点をなくした、大面積基板上でのリー
ド端子取り出し用あるいは、分割された太陽電池セルの
直列接続をする為の接続用電極を金8電極面に接合させ
る簡便な集積型太陽電池の製造方法を提供することを目
的とするものである。
1. Purpose of the Invention] The present invention solves the above-mentioned drawbacks by bonding connection electrodes to the gold 8 electrode surface for taking out lead terminals on a large-area substrate or connecting divided solar cells in series. The purpose of this invention is to provide a simple method for manufacturing an integrated solar cell.

[発明の構成及び作用〕 上述の目的は以下の本発明により達成される。[Structure and operation of the invention] The above objects are achieved by the invention as follows.

すなわち、本発明は、同一基板上に積層され、複数個の
区画された金属電極層、光起電力層となる非晶質シリン
コ半導体層及び透明電極層よりなるセルを接続した集積
型太陽電池の製造方法において、各ヒル上に所定のパタ
ーンで良導電性材の接続用電極を形成した後、該電極部
にレーザ光を照射して全層を溶融し、金属電極層と接続
用電極とをオーミック接合させることを特徴とする薄膜
太陽電池の接続方法である。
That is, the present invention provides an integrated solar cell in which cells are laminated on the same substrate and are composed of a plurality of partitioned metal electrode layers, an amorphous silinco semiconductor layer serving as a photovoltaic layer, and a transparent electrode layer. In the manufacturing method, after forming a connection electrode made of a highly conductive material in a predetermined pattern on each hill, the electrode portion is irradiated with laser light to melt the entire layer, thereby bonding the metal electrode layer and the connection electrode. This is a method for connecting thin film solar cells, which is characterized by ohmic contact.

上述の本発明は、従来法の前述の欠点を解消するため種
々検討の結果、非晶質シリコン半導体層を挾んで設けた
2つの金属層上にレーザ光を照射し、非晶質シリコン半
導体層を含めて、金属層を溶融すると、照射中心部は若
干蒸発するも両金属層間に良好なオーミック接合が形成
されることを見出し、なされたものである。本発明は、
上述の通り単に接続個所に接続用電極を形成しておき、
レーザー光を照射するのみで良いので、従来法の如き金
属電極面を露出させるためのステップは不要となり、非
常に簡単に且つドライプロセスにより金属電極面との電
気接続が形成できる。
As a result of various studies in order to eliminate the above-mentioned drawbacks of the conventional method, the present invention described above was developed by irradiating a laser beam onto two metal layers sandwiching an amorphous silicon semiconductor layer, thereby forming an amorphous silicon semiconductor layer. This was done based on the discovery that when the metal layers are melted, a good ohmic bond is formed between the two metal layers, although the irradiated center portion evaporates slightly. The present invention
As mentioned above, simply form the connection electrodes at the connection points,
Since it is only necessary to irradiate the laser beam, there is no need for the step of exposing the metal electrode surface as in the conventional method, and electrical connection with the metal electrode surface can be formed very easily and by a dry process.

なお、レーザ光により非晶質シリコン層更には透明電極
層を中に挾んだ金属層間を電気接続できる理由は定かで
ないが、溶融により非晶質シリコンが結晶化すると共に
金属層を形成する金属が全層に混合し、レーザ光照射断
面部の電気抵抗が低下し良好なオーミック接合が形成さ
れたものと思われる。
It is unclear why laser light can electrically connect an amorphous silicon layer and a metal layer with a transparent electrode layer sandwiched therein, but as the amorphous silicon crystallizes by melting, the metal forming the metal layer It is believed that this was mixed in the entire layer, the electrical resistance of the laser beam irradiated cross section was reduced, and a good ohmic junction was formed.

以下本発明の詳細を具体的に説明する。The details of the present invention will be specifically explained below.

本発明の電気絶縁性の基板としては電気絶縁材からなる
全ての基板が適用でき、具体的には高分子フィルム、セ
ラミック板、ガラス板あるいは絶縁性層を表面に設けた
金属フォイル等が使用出来るが、好ましくはロールツー
ロール法によって構成層を順次長尺の送行する基板上に
堆積出来、大量生産に適した高分子フィルムが使用され
る。高分子フィルムとしては、非晶質シリコン堆積に必
要な耐熱性を有する高分子フィルムならどれでも良いが
、好ましくは機械的特性面の優れたポリエチレンテレフ
タレート(PET)フィルム、ポリ、エチレンナフタレ
ートフィルム、ポリイミドフィルムなどが用いられる。
As the electrically insulating substrate of the present invention, any substrate made of an electrically insulating material can be used, and specifically, a polymer film, a ceramic plate, a glass plate, a metal foil with an insulating layer on the surface, etc. can be used. Preferably, however, a polymeric film is used which allows the constituent layers to be deposited one after another on a long, moving substrate by a roll-to-roll method and is suitable for mass production. The polymer film may be any polymer film that has the heat resistance necessary for amorphous silicon deposition, but preferably polyethylene terephthalate (PET) film, poly, ethylene naphthalate film, etc., which have excellent mechanical properties. A polyimide film or the like is used.

基板上に設けられる金属電極層としては、AU、A(1
などの電気導電性の良好な、1000℃以下の融点をも
つ金属を主成分とし、−ri、w、pt、co、crt
ニクロム、ステンレスなどの単体金属5合金金属薄膜と
の積層構′a層が用いられる。
The metal electrode layer provided on the substrate is AU, A(1
The main component is a metal with good electrical conductivity and a melting point of 1000°C or less, such as -ri, w, pt, co, crt.
A laminated layer consisting of a single metal such as nichrome or stainless steel and a five-alloy metal thin film is used.

又、これらの金属電極層は、その電気抵抗の低下及び機
械的強度の観点から0.3μm以上の厚みが望ましい。
Further, it is desirable that these metal electrode layers have a thickness of 0.3 μm or more from the viewpoint of reducing electrical resistance and mechanical strength.

非晶質シリコン層は、光起電力層として公知のものが全
て適用でき、特に限定されないが、具体的には既に公知
のシランガス、ジシランガス等のグロー放電分解を用い
たプラズマCVD法を用いて形成されたpin形の積層
光起電力層等がある。
The amorphous silicon layer can be formed using any known photovoltaic layer, and is not particularly limited. Specifically, it can be formed using a plasma CVD method using glow discharge decomposition of a known silane gas, disilane gas, etc. There are pin-shaped laminated photovoltaic layers, etc.

なお、かかる非晶質シリコン光起電力層としては、pi
n /pin 、 pin /pin /pin等の多
層タンデム構造はもちろんのこと非晶質シリコンゲルマ
ニウム、非晶質シリコンカーバイトなどのナローバンド
ギャップあるいはワイドバンドギャップ半導体層を適時
用いる事も出来る。
In addition, as such an amorphous silicon photovoltaic layer, pi
Not only multilayer tandem structures such as n/pin and pin/pin/pin, but also narrow bandgap or wide bandgap semiconductor layers such as amorphous silicon germanium and amorphous silicon carbide can be used as appropriate.

又透明電極層も、特に限定されず、公知のものがそのま
ま適用でき、各種金RI!l!化物が好ましく適用され
る。具体的には酸化インジウム、酸化スズ、スズ酸カド
ニウム、酸化インジウム・スズ等の金属酸化物層あるい
は金属i膜と酸化物誘電体の積層体等が適用される。
Further, the transparent electrode layer is not particularly limited, and known ones can be used as they are, and various gold RI! l! compounds are preferably applied. Specifically, a metal oxide layer such as indium oxide, tin oxide, cadmium stannate, indium tin oxide, or a laminate of a metal i film and an oxide dielectric material is used.

収集電極あるいは電池面接続用電極層となる良導電性の
接続用電極としては金、銀、銅、An。
Gold, silver, copper, and An are used as the connection electrode with good conductivity, which becomes the collecting electrode or the electrode layer for connecting the battery surface.

ニッケルのいずれか又はこれらの合金を主体とする層が
適用される。この接続用電極は、真空蒸着法、スパッタ
リング法などの物理的方法を用いパターン化して透明電
橋層上に形成される。なお、この際の薄膜は、0.5μ
而以上が好ましい。又メッキ法などの化学的方法によっ
て接続用電極を設けることも出来、この場合の膜厚は前
述と同様である。さらに金、銀、銅、AN、ニッケル微
粉末を用いた導電性樹脂をスクリーン印刷法等で設ける
方法が適用できる。このスクリーン印刷法は連続生産性
の点から望ましい。印刷された良導電性層の厚みとして
は5μ以上が電気抵抗のために必要である。
A layer based on any of nickel or alloys thereof is applied. This connection electrode is formed on the transparent bridge layer by patterning using a physical method such as a vacuum evaporation method or a sputtering method. Note that the thin film at this time has a thickness of 0.5μ
The above is preferable. Further, the connecting electrode can also be provided by a chemical method such as plating, and the film thickness in this case is the same as described above. Furthermore, a method of providing a conductive resin using fine powder of gold, silver, copper, AN, or nickel by screen printing or the like can be applied. This screen printing method is desirable from the viewpoint of continuous productivity. The printed conductive layer needs to have a thickness of 5 μm or more for electrical resistance.

レーザ光としては各構成層が吸収し得る波長域の光なら
良り0.2〜2μの波長光が用いられるが、好ましくは
現在工業的にも広く利用されているYAGレーザーが使
用される。
As the laser beam, a wavelength of 0.2 to 2 μm is preferably used as long as it is in a wavelength range that can be absorbed by each constituent layer, but YAG laser, which is currently widely used industrially, is preferably used.

レーザ光は接続のパターンに従って形成された前述の接
続用電極上から照射されるが、基板がレーザ光に対して
透明な時には基板裏面から基板ごしに前記パターンに従
って照射することも出来る。
The laser beam is irradiated from above the above-mentioned connection electrode formed according to the connection pattern, but when the substrate is transparent to the laser beam, it can also be irradiated from the back surface of the substrate through the substrate according to the pattern.

レーザパワーは照射方向にも依存し、又良S電性電極層
厚み等によっても異なり、実験的に定める必要があるが
、基板を除き、金属型Ij層、非晶質シリコン層、透明
電極層、接続用電極層の全層を溶融する範囲に選択する
必要がある。なお、金属ff144層あるいは接続用電
極層は、層全部を溶融する必要がなく、非晶シリコン層
側の少なくとも一部が溶融すれば十分である。
The laser power depends on the irradiation direction and also depends on the thickness of the S conductive electrode layer, etc., and must be determined experimentally. , it is necessary to select a range in which all layers of the connection electrode layer are melted. Note that it is not necessary to melt the entire layer of the metal ff144 layer or the connection electrode layer, and it is sufficient to melt at least a portion of the amorphous silicon layer side.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

[実施例] 高分子フィルム基板1として100μm厚のポリエチレ
ンテレフタレートフィルム(PET)を用いた。まず該
フィルム基板1をDCマグネトロンスパッタ装置に装着
し、1O−3torr台のAr雰囲気中でアルミニウム
1lif(All)0.4μ乳、及びステンレス層(S
S)  100人を連続して順次堆積し、金属電極層2
を長尺フィルム基板1上に設けた(第3図参照)。さら
にこのPET//l/SS堆積体上に非晶質シリコンの
pin型の光起電力層3を特開昭59−34668号公
報に開示されているロールツーロール方式によって長尺
で大面積に連続的にホウ素(B)ドープのp1g130
0^、 r m o、sμm、燐(P)ドープの0層2
00八となるようにとなるように堆積した。同一基板上
で3個のセルCを直列接続した太陽電池を形成する為に
l0CIIX10αの大面積のPET/All/88/
非晶質シリコン層の積層体上にセル分割パターンに従っ
てスクリーン印刷法で黒色絶縁ペーストを印刷し、第1
図に示した分割パターンに従って分割加工の際の分割溝
周辺での電極間絶縁不良防止のための電気絶縁WI4を
形成した。その後、その上に電子ビーム蒸着法により酸
化インジュームからなる透明電極層5を厚さ600八に
均一に堆積した。
[Example] A 100 μm thick polyethylene terephthalate film (PET) was used as the polymer film substrate 1. First, the film substrate 1 is mounted on a DC magnetron sputtering device, and aluminum 1lif (All) 0.4μ milk and stainless steel layer (S
S) Continuously deposit 100 metal electrode layers 2
was provided on the long film substrate 1 (see FIG. 3). Furthermore, a pin-type photovoltaic layer 3 of amorphous silicon is formed on the PET//l/SS deposited body in a long and large area by the roll-to-roll method disclosed in Japanese Patent Application Laid-Open No. 59-34668. Continuously boron (B) doped p1g130
0^, r m o, s μm, phosphorus (P) doped 0 layer 2
008. In order to form a solar cell in which three cells C are connected in series on the same substrate, a large-area PET/All/88/
A black insulating paste is printed on the laminate of amorphous silicon layers using a screen printing method according to the cell division pattern.
Electrical insulation WI4 was formed in accordance with the division pattern shown in the figure to prevent poor insulation between electrodes around the division grooves during division processing. Thereafter, a transparent electrode layer 5 made of indium oxide was uniformly deposited to a thickness of 600 mm by electron beam evaporation.

次いで、YAGレーザを用いたレーザスクライブ法によ
り、第1図に示す3.3cIRX10αの3個のセルC
に以下のようにして分割した。ずなわち、YAGレーザ
をQスイッチ周波数2KH2、パワー(尖頭値出力)I
KW、ビーム径100μm 、走査速度3.2α/ 5
e(iに調節して、電気絶縁層4に沿ってセルCの分割
のため基板1を除いた全層を蒸発させたセル分割溝6を
形成し、電気絶縁層4aに沿ってYAGレーザをパワー
のみ150Wとし、その他は前記と同条件で透明電極層
5のみを蒸発させて接続用電極部5aを分離する電極分
割iR7を形成して、セル分割した。
Next, by a laser scribing method using a YAG laser, three cells C of 3.3c IRX10α shown in FIG.
It was divided as follows. That is, the YAG laser has a Q-switch frequency of 2KH2 and a power (peak value output) of I.
KW, beam diameter 100μm, scanning speed 3.2α/5
e (i) to form a cell dividing groove 6 along the electrical insulating layer 4 in which all layers except the substrate 1 are evaporated for dividing the cell C, and a YAG laser is emitted along the electrical insulating layer 4a. Only the power was set to 150 W, and other conditions were the same as above, and only the transparent electrode layer 5 was evaporated to form an electrode division iR7 that separates the connection electrode part 5a, and the cells were divided.

分割後、スクリーン印刷法で銀導電性樹脂を第2図に示
す以下のパターンに厚さ13μmに堆積し、収集電極8
及びリード取り出し電極9を形成した。
After the division, silver conductive resin was deposited to a thickness of 13 μm in the following pattern shown in FIG. 2 using a screen printing method, and the collecting electrode 8 was
And a lead extraction electrode 9 was formed.

すなわち、収集電極8のバスバー部8aが接続用電極と
なるように接続用電極部5a上に位置し、バスバー部8
aからその直角方向に所定間隔でフィンガ一部8bを配
設したパターンに設けである。
That is, the busbar part 8a of the collecting electrode 8 is located on the connection electrode part 5a so as to serve as a connection electrode, and the busbar part 8a is located on the connection electrode part 5a.
The finger portions 8b are arranged in a pattern starting from a at predetermined intervals in a direction perpendicular thereto.

なお図で右側のセルCのバスバー部8aはリード取り出
し用の電極となる。
Note that the bus bar portion 8a of the cell C on the right side in the figure serves as an electrode for lead extraction.

次いで、3つのセルCを直列接続する為、収集電極8の
バスパー8a上に第3図に示す通りパワーが2KWでそ
の他は前記と同条件のYAGレーデ光しを照射しつつそ
の全長に亘り走査した。レーザ光の照射によって第3図
に示す通り基板を除く全層が溶融混合し金属電極層2と
バスバー部8a及びリード取り出し電極9との間で良好
なオーミック接続が形成された。これは、以上で得られ
た3個のセルCを直列接続した太陽電池モジュールを1
00mW/cd、 AM 1のソーラシュミレータ−の
下で測定した表1の結果から明らかである。
Next, in order to connect the three cells C in series, a YAG radar beam with a power of 2 KW and the same conditions as above was irradiated onto the buspar 8a of the collecting electrode 8 as shown in FIG. 3, and scanned over its entire length. did. By irradiating the laser beam, all the layers except the substrate were melted and mixed as shown in FIG. 3, and a good ohmic connection was formed between the metal electrode layer 2, the bus bar portion 8a, and the lead extraction electrode 9. This is a solar cell module in which the three cells C obtained above are connected in series.
This is clear from the results in Table 1, which were measured under a solar simulator of 00 mW/cd and AM 1.

比較の為に全ての工程をマスク法を用いて作成した同じ
構成の太陽電池モジュールを作り測定した結果も表1に
示す。
For comparison, a solar cell module with the same configuration was made using the mask method in all steps, and the measurement results are also shown in Table 1.

(以下余白) 表1 (以下奈白) 表1から明らかなように本発明の製造方法を用いたモジ
ュールはマスク法に対して同等の効率、曲線因子を示し
ており、これは本発明の製造方法により良好なオーミッ
ク接続が形成されている事を示している。
(Hereinafter blank) Table 1 (Hereafter blank) As is clear from Table 1, the module using the manufacturing method of the present invention shows the same efficiency and fill factor as the mask method. This shows that a good ohmic connection is formed using this method.

なお、本例と同じ構成で、基板のPETフィルム側から
レーザ光を照射して接続した場合にも同様な結果が得ら
れた。この場合は、接続用電極のバスバー部8aの銀層
を全層溶融する必要がないため、レーザ光の゛パワーは
500Wで充分であった。
Note that similar results were obtained when the same configuration as this example was used and the connection was made by irradiating laser light from the PET film side of the substrate. In this case, since it was not necessary to melt the entire silver layer of the bus bar portion 8a of the connection electrode, the power of the laser beam of 500 W was sufficient.

なお、この場合のレーザー光の他の条件は前述と同様で
ある。
Note that other conditions for the laser beam in this case are the same as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の用いた太wAw1池のセル分割パター
ンを示す表面図、第2図は該太陽電池の収集電極パター
ンを示す平面図、第3図は第2図A8線における該太陽
電池の構造を示す部分側断面図である。 1:基板 2:金属電極層 3:非晶質シリコンlil  5:透明電極層8:収集
電極 8a:接続用電極のバスバー部才3(晃 手続補正書 昭和0年832日
FIG. 1 is a surface view showing the cell division pattern of the thick wAw1 cell used in the example, FIG. 2 is a plan view showing the collecting electrode pattern of the solar cell, and FIG. 3 is the solar cell taken along line A8 in FIG. FIG. 2 is a partial side sectional view showing the structure of FIG. 1: Substrate 2: Metal electrode layer 3: Amorphous silicon 5: Transparent electrode layer 8: Collection electrode 8a: Bus bar part of connection electrode

Claims (1)

【特許請求の範囲】 1、同一基板上に積層され、複数個の区画された金属電
極層、光起電力層となる非晶質シリコン層及び透明電極
層よりなるセルを接続した集積型太陽電池の製造方法に
おいて、各セル上に所定のパターンで良導電性材の接続
用電極を形成した後、該電極部にレザー光を照射して全
層を溶融し、金属電極層と接続用電極とをオーミック接
合させることを特徴とする集積型太陽電池の製造方法。 2、前記接続用電極が収集電極のバスバー部である特許
請求の範囲1項記載の集積型太陽電池の製造方法。 3、前記接続用電極が金、銀、銅、アルミニウム、ニッ
ケルのいずれか若しくはこれらの合金からなる特許請求
の範囲第1項若しくは第2項記載の集積型太陽電池の製
造方法。 4、前記金属電極層が1000℃以下の融点を有する良
導電性金属を主とする層若しくは該良導電性金属と10
00℃以上の融点を有する金属薄膜との積層体からなる
特許請求の範囲第1項、第2項、若しくは第3項記載の
集積型太陽電池の製造方法。 5、前記基板が電気絶縁性材料である特許請求の範囲第
1項、第2項、第3項若しくは第4項記載の集積型太陽
電池の製造方法。 6、前記基板が長尺の高分子フィルムである特許請求の
範囲第5項記載の集積型太陽電池の製造方法。
[Claims] 1. An integrated solar cell in which cells are stacked on the same substrate and are made up of a plurality of partitioned metal electrode layers, an amorphous silicon layer serving as a photovoltaic layer, and a transparent electrode layer. In the manufacturing method, a connecting electrode made of a highly conductive material is formed in a predetermined pattern on each cell, and then laser light is irradiated to the electrode part to melt the entire layer, thereby forming a metal electrode layer and a connecting electrode. A method for manufacturing an integrated solar cell, characterized by making an ohmic contact between the two. 2. The method for manufacturing an integrated solar cell according to claim 1, wherein the connection electrode is a busbar portion of a collecting electrode. 3. The method for manufacturing an integrated solar cell according to claim 1 or 2, wherein the connection electrode is made of gold, silver, copper, aluminum, nickel, or an alloy thereof. 4. The metal electrode layer is a layer mainly composed of a highly conductive metal having a melting point of 1000°C or less, or a layer containing the highly conductive metal.
A method for manufacturing an integrated solar cell according to claim 1, 2, or 3, which comprises a laminate with a metal thin film having a melting point of 00° C. or higher. 5. The method for manufacturing an integrated solar cell according to claim 1, 2, 3, or 4, wherein the substrate is an electrically insulating material. 6. The method for manufacturing an integrated solar cell according to claim 5, wherein the substrate is a long polymer film.
JP60053255A 1985-02-15 1985-03-19 Manufacture of integrated type solar cell Granted JPS61214483A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60053255A JPS61214483A (en) 1985-03-19 1985-03-19 Manufacture of integrated type solar cell
US06/828,197 US4697041A (en) 1985-02-15 1986-02-10 Integrated solar cells
FR868602039A FR2577716B1 (en) 1985-02-15 1986-02-14 INTEGRATED SOLAR CELLS AND THEIR MANUFACTURING METHOD
DE19863604894 DE3604894A1 (en) 1985-02-15 1986-02-15 INTEGRATED SOLAR CELLS AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053255A JPS61214483A (en) 1985-03-19 1985-03-19 Manufacture of integrated type solar cell

Publications (2)

Publication Number Publication Date
JPS61214483A true JPS61214483A (en) 1986-09-24
JPH0519990B2 JPH0519990B2 (en) 1993-03-18

Family

ID=12937674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053255A Granted JPS61214483A (en) 1985-02-15 1985-03-19 Manufacture of integrated type solar cell

Country Status (1)

Country Link
JP (1) JPS61214483A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105583A (en) * 1988-10-14 1990-04-18 Fuji Electric Co Ltd Thin film solar cell
JPH06132552A (en) * 1992-10-19 1994-05-13 Canon Inc Photovoltaic element and manufacture thereof
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Manufacture of thin-film solar cell and film-forming state monitoring device of thin film
US7052998B2 (en) 2003-09-26 2006-05-30 Sanyo Electric Co., Ltd. Method of manufacturing photovoltaic device
JP2009021563A (en) * 2007-06-05 2009-01-29 Semiconductor Energy Lab Co Ltd Manufacturing method of photoelectric conversion device
JP2009283982A (en) * 2009-08-31 2009-12-03 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module
JP2010093308A (en) * 2010-01-29 2010-04-22 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module
JP2010093309A (en) * 2010-01-29 2010-04-22 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module
US8207441B2 (en) 2006-02-23 2012-06-26 Sanyo Electric Co., Ltd. Photovoltaic apparatus and method of manufacturing the same
US8362354B2 (en) 2007-07-09 2013-01-29 Sanyo Electric Co., Ltd. Photovoltaic apparatus and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101540A (en) * 1983-11-07 1985-06-05 Nippon Kogaku Kk <Nikon> Projection optical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101540A (en) * 1983-11-07 1985-06-05 Nippon Kogaku Kk <Nikon> Projection optical device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105583A (en) * 1988-10-14 1990-04-18 Fuji Electric Co Ltd Thin film solar cell
JPH06132552A (en) * 1992-10-19 1994-05-13 Canon Inc Photovoltaic element and manufacture thereof
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Manufacture of thin-film solar cell and film-forming state monitoring device of thin film
US7052998B2 (en) 2003-09-26 2006-05-30 Sanyo Electric Co., Ltd. Method of manufacturing photovoltaic device
US8207441B2 (en) 2006-02-23 2012-06-26 Sanyo Electric Co., Ltd. Photovoltaic apparatus and method of manufacturing the same
JP2009021563A (en) * 2007-06-05 2009-01-29 Semiconductor Energy Lab Co Ltd Manufacturing method of photoelectric conversion device
US8362354B2 (en) 2007-07-09 2013-01-29 Sanyo Electric Co., Ltd. Photovoltaic apparatus and method of manufacturing the same
JP2009283982A (en) * 2009-08-31 2009-12-03 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module
JP2010093308A (en) * 2010-01-29 2010-04-22 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module
JP2010093309A (en) * 2010-01-29 2010-04-22 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module

Also Published As

Publication number Publication date
JPH0519990B2 (en) 1993-03-18

Similar Documents

Publication Publication Date Title
US4697041A (en) Integrated solar cells
US5593901A (en) Monolithic series and parallel connected photovoltaic module
US7095090B2 (en) Photoelectric conversion device
US5821597A (en) Photoelectric conversion device
US4892592A (en) Thin film semiconductor solar cell array and method of making
US4724011A (en) Solar cell interconnection by discrete conductive regions
US4400577A (en) Thin solar cells
WO1993023880A1 (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
JP2012505534A (en) Thin film solar cell and method of contacting thin film solar cell module
JPS61214483A (en) Manufacture of integrated type solar cell
JPH0851229A (en) Integrated solar battery and its manufacture
US4936924A (en) Thin-film solar battery and its manufacturing method
JP3393842B2 (en) Method for manufacturing photoelectric conversion device
US5298087A (en) Photovoltaic device useful as a mirror
JPS61187377A (en) Dividing method for processing of amorphous solar battery
JPS61241981A (en) Manufacture of thin film solar battery
JPS61183975A (en) Processing method for thin film solar cell
JP3155459B2 (en) Manufacturing method of integrated amorphous semiconductor solar cell and integrated amorphous semiconductor solar cell
JPS63246878A (en) Manufacture of integrated solar cell
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JPH01134976A (en) Manufacture of solar cell
JPS6150381A (en) Solar cell
JPH0620149B2 (en) Method of manufacturing thin film solar cell
JP4220014B2 (en) Method for forming thin film solar cell
JPS6461963A (en) Manufacture of solar cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees