JPH07320918A - Parmanent magnet and manufacturing method thereof - Google Patents

Parmanent magnet and manufacturing method thereof

Info

Publication number
JPH07320918A
JPH07320918A JP6111086A JP11108694A JPH07320918A JP H07320918 A JPH07320918 A JP H07320918A JP 6111086 A JP6111086 A JP 6111086A JP 11108694 A JP11108694 A JP 11108694A JP H07320918 A JPH07320918 A JP H07320918A
Authority
JP
Japan
Prior art keywords
permanent magnet
particles
magnet
magnetic
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6111086A
Other languages
Japanese (ja)
Inventor
Wakahiro Kawai
若浩 川井
Masao Nakamura
雅勇 中村
Seijiro Maki
清二郎 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP6111086A priority Critical patent/JPH07320918A/en
Publication of JPH07320918A publication Critical patent/JPH07320918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/093Compacting only using vibrations or friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

PURPOSE:To improve the magnetic characteristics and high temperature strength by using a low melting point metal as a binder for avoiding the volumic contraction during heat molding step. CONSTITUTION:As for the magnetic material, samarium cobalt (Sm-Co) and as for a rare earth magnet, zinc as a low melting point metal is used. Next, weighed Sm-Co particles, Zn particles are agitated in a ball mill so as to be mixed while being crushed. Next, these materials are pressure-molded by a pressure-molding machine to manufacture a large aniso-tropical magnet in a magnetic field. At this time, these materials are heated through the electric heating wire by actuating a vibrator for giving microvibration. Through these procedures, the title permanent magnet having excellent dimensional precision, magnetic characteristics and high temperature strength can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、永久磁石及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet and its manufacturing method.

【0002】[0002]

【従来の技術】電子機器に使用される永久磁石は、アル
ニコ等の鋳造磁石から焼結晶のフェライト磁石へ移行、
その後機器の軽薄短小化に伴って小型で強力な磁石が要
求されるようになり、Sm−Co、Nd−Fe磁石とい
った希土類磁石が登場した。
2. Description of the Related Art Permanent magnets used in electronic equipment are changed from cast magnets such as Alnico to ferrite magnets of sintered crystals.
After that, small and powerful magnets were required as the equipment became lighter, thinner and smaller, and rare earth magnets such as Sm-Co and Nd-Fe magnets appeared.

【0003】この内、フェライト磁石は酸化物、希土類
磁石は金属間化合物であって、融点が非常に高いために
その製造は粉末冶金法で行っており、硬く、脆いという
性質から成形加工時に樹脂材等のバインダを必要として
いる。
Of these, ferrite magnets are oxides, and rare earth magnets are intermetallic compounds, and their melting points are so high that they are manufactured by powder metallurgy. Due to their hardness and brittleness, they are made of resin during molding. I need a binder such as wood.

【0004】通常、焼結磁石といわれているものは、こ
のバインダを高温により気化消滅させ、1000℃以上
の高温で長時間加熱することにより、粉末粒子間を焼
結、結合させたもので、ボンド磁石とは、このバインダ
を粒子間の接着剤として利用、残存させたものである。
What is commonly called a sintered magnet is one in which powder particles are sintered and bonded by evaporating and extinguishing the binder at a high temperature and heating at a high temperature of 1000 ° C. or higher for a long time. The bonded magnet is a material in which this binder is used and left as an adhesive between particles.

【0005】[0005]

【発明が解決しようとする課題】従って、前者焼結磁石
では、成形の後に高温による焼結工程を行うので製造に
手間がかかるとともに、気化消滅したバインダ体積当量
及び焼結による体積縮小により寸法精度が悪化して後加
工を必要とするという問題があり、ボンド磁石では残存
させた樹脂が原因で磁気特性が悪化する、また、高温強
度が小さい等の問題があった。
Therefore, in the former sintered magnet, since the sintering step at a high temperature is performed after the forming, it takes time to manufacture, and the binder volume equivalent which has been vaporized and disappeared and the volume reduction due to the sintering reduces the dimensional accuracy. However, there is a problem in that the magnetic properties are deteriorated due to the resin left in the bonded magnet, and the high temperature strength is small.

【0006】本発明は、上記の事情に鑑みて行ったもの
で、上記焼結磁石、ボンド磁石のそれぞれの問題点がと
もに解消される永久磁石を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a permanent magnet that solves both the problems of the sintered magnet and the bonded magnet.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次のような構成を採る。
In order to achieve the above object, the present invention has the following constitution.

【0008】請求項1記載の発明では、磁性素材とバイ
ンダとが一体に焼結されて構成される永久磁石におい
て、前記バインダとして低融点金属を用いてなる構成と
した。
According to the first aspect of the present invention, in the permanent magnet constituted by integrally sintering the magnetic material and the binder, a low melting point metal is used as the binder.

【0009】請求項2記載の発明では、永久磁石の製造
方法を、所定量の磁性素材粒子粉と低融点金属粒子粉と
を混合する第1の工程と、前記第1の工程で得られた混
合材料を加熱成形する第2の工程とを備えてなる構成と
した。
According to the second aspect of the invention, the method for producing a permanent magnet is obtained by the first step of mixing a predetermined amount of magnetic material particle powder and the low melting point metal particle powder, and the first step. The second step of heat-forming the mixed material was adopted.

【0010】請求項3記載の発明では、請求項2記載の
発明において、前記第1の工程を、粉砕を伴って行う構
成とした。請求項4記載の発明では、請求項2記載の発
明において、前記第1の工程を、こすり合わせを伴って
行う構成とした。
According to a third aspect of the present invention, in the second aspect of the invention, the first step is configured to be accompanied by pulverization. According to a fourth aspect of the invention, in the second aspect of the invention, the first step is performed with rubbing.

【0011】請求項5記載の発明では、請求項2記載の
発明において、前記第2の工程を、微振動を伴って行う
構成とした。
According to a fifth aspect of the invention, in the second aspect of the invention, the second step is configured to be accompanied by slight vibration.

【0012】請求項6記載の発明では、請求項2記載の
発明において、前記第2の工程を、磁場中において行う
構成とした。
According to a sixth aspect of the invention, in the second aspect of the invention, the second step is performed in a magnetic field.

【0013】請求項7記載の発明では、請求項2記載の
発明において、前記第1の工程を粉砕もしくはこすり合
わせを伴って行い、前記第2の工程を磁場中において微
振動を伴って行う構成とした。
According to a seventh aspect of the present invention, in the second aspect of the invention, the first step is performed with grinding or rubbing, and the second step is performed with slight vibration in a magnetic field. And

【0014】[0014]

【作用】請求項1記載の発明によれば、バインダとして
低融点金属を用いているので、永久磁石は、加熱成形時
における体積収縮がなく、磁気特性も良好に維持されも
のとなる。
According to the first aspect of the present invention, since the low melting point metal is used as the binder, the permanent magnet has no volume shrinkage at the time of heat molding and maintains good magnetic characteristics.

【0015】請求項2記載の発明によれば、バインダと
して低融点金属粒子粉を用いて永久磁石を製造するの
で、低温で加熱成形できることで体積収縮がなく、磁気
特性も良好に維持される永久磁石が得られる。
According to the second aspect of the present invention, since the permanent magnet is manufactured by using the low melting point metal particle powder as the binder, it is possible to perform hot molding at a low temperature, so that there is no volume shrinkage and the magnetic characteristics are maintained good. A magnet is obtained.

【0016】請求項3記載の発明によれば、請求項2記
載の発明において、粉砕により磁性素材粒子が粒子臨界
寸法にされるとともに、磁性素材粒子に活性な新生面が
形成されることで、その新生面へ低融点金属が付着しや
すくなり、これにより混合が促進される。
According to the invention of claim 3, in the invention of claim 2, the magnetic material particles are made to have a critical particle size by pulverization, and an active new surface is formed on the magnetic material particles. The low melting point metal is likely to adhere to the nascent surface, which promotes mixing.

【0017】請求項4記載の発明によれば、請求項2記
載の発明において、こすり合わせの摩擦により磁性素材
粒子に活性な新生面が形成されることで、その新生面へ
低融点金属が付着しやすくなり、これにより混合が促進
される。
According to the invention described in claim 4, in the invention described in claim 2, the active new surface is formed on the magnetic material particles by friction of rubbing, so that the low melting point metal is easily attached to the new surface. Which promotes mixing.

【0018】請求項5記載の発明によれば、請求項2記
載の発明において、加熱されて液状となった低融点金属
が微振動によって磁性素材粒子の粒子界面にくまなく浸
透し、さらに、粒子間の空間を縮小し密度を向上させ
る。
According to the invention described in claim 5, in the invention described in claim 2, the low-melting-point metal, which is heated and becomes liquid, permeates all over the particle interface of the magnetic material particles by microvibration, and further, the particles The space between them is reduced to improve the density.

【0019】請求項6記載の発明によれば、請求項2記
載の発明において、加熱成形が磁場中において行われる
ことで、磁性素材粒子の配向が行われる。
According to a sixth aspect of the invention, in the second aspect of the invention, the magnetic material particles are oriented by performing the heat molding in a magnetic field.

【0020】請求項7の記載の発明によれば、請求項2
記載の発明において、請求項3もしくは請求項4、請求
項5、請求項6記載の発明の作用がともに発揮される。
According to the invention of claim 7, claim 2
In the described invention, the effects of the inventions of claim 3 or claim 4, claim 5, claim 6 are exhibited together.

【0021】[0021]

【実施例】図1は本発明における製造工程の概略を示す
図であり、この図に沿って以下本発明の永久磁石の製造
工程の説明を行う。この実施例では、磁性素材として希
土類磁石であるサマリュウム・コバルト(以下Sm−C
o)を、低融点金属として亜鉛(以下Zn)を用いた場
合の例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the outline of the manufacturing process of the present invention. The manufacturing process of the permanent magnet of the present invention will be described below with reference to this drawing. In this embodiment, rare earth magnet samarium cobalt (hereinafter Sm-C) is used as the magnetic material.
An example in which zinc (hereinafter Zn) is used as the low melting point metal will be described.

【0022】(1)[秤量工程] まず、Sm−Co粒子粉、Zn粒子粉それぞれを適量秤
量する。
(1) [Weighing Step] First, an appropriate amount of each of Sm-Co particle powder and Zn particle powder is weighed.

【0023】(2)[粉砕、混合工程] この工程が本発明の第1の工程を構成する。(2) [Crushing and Mixing Step] This step constitutes the first step of the present invention.

【0024】秤量したSm−Co粒子粉、Zn粒子粉を
ボールミルにより長時間撹拌する。図2はこのボールミ
ル1の概略を示した図で、大きさの異なるステンレスボ
ール2を適当数入れた、例えば容積410cm3のステ
ンレス容器4にそれぞれの粒子粉を入れ、容器4を2本
の平行な回転軸5の上で長時間回転させて撹拌を行う。
この撹拌によりSm−Co粒子粉、Zn粒子粉は粉砕さ
れながら混合される。
The weighed Sm-Co particle powder and Zn particle powder are stirred for a long time by a ball mill. FIG. 2 is a diagram showing the outline of the ball mill 1. For example, each particle powder is put in a stainless steel container 4 having an appropriate number of stainless balls 2 having different sizes, for example, a volume of 410 cm 3 and two containers 4 are arranged in parallel. The mixture is rotated on the rotary shaft 5 for a long time to perform stirring.
By this stirring, the Sm-Co particle powder and the Zn particle powder are pulverized and mixed.

【0025】一般的に強磁性体は粒子サイズにより磁気
特性が変化することが知られているが、粒子形状、粒子
間距離、結晶粒の配向度等から得られる粒子臨界寸法
に、Sm−Co粒子径をこの工程で粉砕して調整する。
It is generally known that the magnetic properties of a ferromagnetic material change depending on the particle size. However, the critical dimension of the particle obtained from the particle shape, the distance between particles, the degree of crystal grain orientation, etc. The particle size is adjusted by grinding in this step.

【0026】また、ここにおけるSm−Co粒子の粉砕
は、混合が良好になされるように行われる。すなわち、
Sm−Co粒子が粉砕されてそれらに活性な新生面が形
成されることで、その新生面へZn粒子が付着しやすく
なり、図3に示すように、全てのSm−Co粒子31の
活性面にZn粒子32が付着するようになることで、S
m−Co粒子31間にZn粒子32を均一に分散させる
ことができるようになる。
The Sm-Co particles are pulverized here so that they can be mixed well. That is,
By crushing the Sm-Co particles and forming active new surfaces on them, Zn particles are easily attached to the new surfaces, and as shown in FIG. 3, Zn particles are formed on the active surfaces of all the Sm-Co particles 31. As the particles 32 become attached, S
The Zn particles 32 can be uniformly dispersed between the m-Co particles 31.

【0027】図4は上記のようにボールミルを使用した
場合の、得られる永久磁石のせん断強度の処理時間に沿
った推移を示すグラフ図であり、5時間のボールミル処
理で十分な大きさのせん断強度が得られている。なお、
後に説明する加熱成形時に超音波を付加しない場合を比
較例として示している。
FIG. 4 is a graph showing the transition of the shear strength of the obtained permanent magnets along the processing time when the ball mill is used as described above. Strength is obtained. In addition,
As a comparative example, a case where ultrasonic waves are not applied during the heat molding described later is shown.

【0028】なお、この実施例では上記のようにボール
ミル1のみを用いて粉砕を行いながら混合を行ったが、
粒子の過度な粉砕を懸念する場合は、ボールミルにより
必要な粉砕を実施した後、乳鉢等粉同士がこすれ合う工
法を採ることでその問題は解消される。この場合、こす
り合わせによる摩擦によってもSm−Co粒子31に活
性な新生面を形成され、両粒子の混合が促進される。
In this embodiment, as described above, the ball mill 1 alone was used for pulverization and mixing.
When there is concern about excessive pulverization of particles, the problem is solved by performing a necessary pulverization with a ball mill and then adopting a method of rubbing powders such as mortar with each other. In this case, an active new surface is formed on the Sm-Co particles 31 by friction due to rubbing, and the mixing of both particles is promoted.

【0029】また、上記の実施例では、Sm−Co粒子
31とZn粒子32との混合を基本的にボールミル1に
おいて粉砕することで行うようにしたが、乳鉢において
それぞれの粒子をこすり合わせ、このこすり合わせによ
る摩擦のみによってSm−Co粒子31に活性な新生面
を形成するようにして両粒子の混合を行うこともでき
る。この場合は、こすり合わせに先立ってSm−Co粒
子31のみをボールミルにおいて適正な大きさに粉砕し
ておく。
In the above embodiment, the Sm-Co particles 31 and the Zn particles 32 are basically mixed by crushing in the ball mill 1. However, the respective particles are rubbed together in a mortar, It is also possible to mix both particles so that an active new surface is formed on the Sm-Co particles 31 only by friction by rubbing. In this case, only the Sm—Co particles 31 are crushed to an appropriate size in a ball mill before rubbing.

【0030】(3)[加熱、成形工程] この工程が本発明の第2の工程を構成する。(3) [Heating and molding step] This step constitutes the second step of the present invention.

【0031】この工程の説明に先立ち、図5を参照して
この工程において用いる加熱成形機10の構成を説明す
る。
Prior to the description of this step, the structure of the heat molding machine 10 used in this step will be described with reference to FIG.

【0032】筒状の金型11内の上部ポンチ12下端と
下部ホーン13上端との間に成形品の装填部14が形成
され、この装填部14は金型11外周表面に巻装された
電熱線15によって加熱され、さらに上部ポンチ12を
通して圧力が負荷されるようになっている。また、この
装填部14には、上部ポンチ12及び下部ホーン13を
鉄芯とした電磁石によって発生される磁場が与えられる
とともに、振動子16にブースターホーン17を取り付
け、ブースターホーン17の先端に下部ホーン13を接
続することによって超音波振動が与えられるようになっ
ている。19は上部ポンチ12及び下部ホーン13を磁
化させる磁化コイルである。
A loading part 14 for the molded product is formed between the lower end of the upper punch 12 and the upper end of the lower horn 13 in the cylindrical mold 11, and this loading part 14 is wound around the outer peripheral surface of the mold 11. It is heated by the heating wire 15 and further pressure is applied through the upper punch 12. A magnetic field generated by an electromagnet having the upper punch 12 and the lower horn 13 as an iron core is applied to the loading section 14, a booster horn 17 is attached to the vibrator 16, and the lower horn is attached to the tip of the booster horn 17. Ultrasonic vibration is applied by connecting 13 together. Reference numeral 19 is a magnetizing coil that magnetizes the upper punch 12 and the lower horn 13.

【0033】なお、ブースターホーン17のプレス台1
8での支持具20それぞれを介しての支持によって振動
が阻害されることが懸念されるが、ブースターホーン1
7の密度をρ、ヤング率をEとすれば、軸方向に伸縮す
る縦振動の音速度cは、 c=√E/ρ で表され、縦波の波長λは、共振周波数fとすれば、 λ=c/f となり、振動子16とブースターホーン17の接続部か
ら支持部までの距離をλ/4として、支持部での振動を
Oとすることによって、上記阻害を防止することができ
るようになっている。
The press table 1 for the booster horn 17
Although there is a concern that the vibrations may be hindered by the support via the support members 20 in FIG.
If the density of 7 is ρ and the Young's modulus is E, the sound velocity c of longitudinal vibration that expands and contracts in the axial direction is expressed by c = √E / ρ, and the wavelength λ of the longitudinal wave is the resonance frequency f. , Λ = c / f, and by setting the distance from the connecting portion between the vibrator 16 and the booster horn 17 to the support portion to λ / 4 and setting the vibration at the support portion to O, the above inhibition can be prevented. It is like this.

【0034】上記のような構成の加熱成形機10におい
て、加圧による成形は粒子の方向をC軸方向にそろえB
r(残留磁束密度)の大きい異方性磁石を得るように磁
場中で行う。この時、電熱線15により加熱するととも
に、振動子16を作動することで微振動を与えるもの
で、図6はそれぞれの作動のタイミングを示している。
In the thermoforming machine 10 having the above-described structure, in the molding by pressurization, the particles are aligned in the C-axis direction B
This is performed in a magnetic field so as to obtain an anisotropic magnet having a large r (residual magnetic flux density). At this time, a minute vibration is given by heating the heating wire 15 and operating the vibrator 16, and FIG. 6 shows the timing of each operation.

【0035】すなわち、加熱は2分経過後ぐらいに開始
され、17分経過後ぐらいに停止され、これにより、金
型温度は5分経過後あたりから17分経過後ぐらいまで
約500℃に維持される。加圧は加熱前に低圧(10K
g/mm2)において、加熱の停止前において高圧(6
0Kg/mm2)において行われる。磁場形成は初めか
ら15分経過後ぐらいまで継続して行われる。超音波の
付加は、加熱前と500℃なった初期の段階で行われ
る。
That is, heating is started after about 2 minutes and stopped after about 17 minutes, whereby the mold temperature is maintained at about 500 ° C. from about 5 minutes to about 17 minutes. It Pressurize low pressure (10K
g / mm 2 ) at high pressure (6
At 0 Kg / mm 2 ). The magnetic field is continuously formed until about 15 minutes have passed from the beginning. The application of ultrasonic waves is performed before heating and at an initial stage of 500 ° C.

【0036】上記の加熱によってSm−Co粒子表面の
Zn粒子が液状化し、さらに超音波による微振動によっ
て液状のZnがSm−Co粒子界面にくまなく浸透し、
また、磁場の付加によりSm−Co粒子の配向がなされ
る。この配向は超音波の微振動により促進される。
By the above heating, the Zn particles on the surface of the Sm-Co particles are liquefied, and the liquid Zn penetrates all over the interface of the Sm-Co particles by microvibration by ultrasonic waves.
In addition, the Sm-Co particles are oriented by applying a magnetic field. This orientation is promoted by microvibration of ultrasonic waves.

【0037】図7は磁束密度に及ぼす超音波振動付加の
効果を表すグラフ図であり、超音波振動が付加された場
合の方が磁束密度が高くなることを表している。
FIG. 7 is a graph showing the effect of applying ultrasonic vibration on the magnetic flux density, and shows that the magnetic flux density becomes higher when ultrasonic vibration is applied.

【0038】この実施例では圧縮圧力として10〜60
Kg/mm2を、磁場は最大で17kOe、加熱はZn
の融点上500℃、振動は周波数18kHz、振幅10
μmを設定して実施した。
In this embodiment, the compression pressure is 10 to 60.
Kg / mm 2 , magnetic field is maximum 17 kOe, heating is Zn
Above the melting point of 500 ℃, vibration is frequency 18kHz, amplitude 10
.mu.m was set and carried out.

【0039】(4)[冷却工程] 図6において、17分経過後に加熱が終了することで金
型14温度は下降し、それにより成形品の冷却がなさ
れ、製品の取り出しが行われる。
(4) [Cooling Step] In FIG. 6, the temperature of the mold 14 is lowered by the completion of heating after 17 minutes, whereby the molded product is cooled and the product is taken out.

【0040】(5)[熱処理工程] 上記成形品を、200℃で1時間ぐらい加熱する。これ
により、永久磁石の保持力を高める。
(5) [Heat Treatment Step] The above molded product is heated at 200 ° C. for about 1 hour. This enhances the holding force of the permanent magnet.

【0041】図8は成形品である永久磁石30の断面構
成を示し、Sm−Co粒子31間にZn32が充填され
た状態となっている。
FIG. 8 shows a cross-sectional structure of a permanent magnet 30 which is a molded product, in which Zn 32 is filled between Sm-Co particles 31.

【0042】図9は本発明の製造によって得られた永久
磁石の性能を従来の焼結磁石とボンド磁石と比較するも
ので、本発明の永久磁石は、せん断強度、残留磁束密度
とも焼結磁石と同等の十分な値が得られている。
FIG. 9 compares the performance of the permanent magnet obtained by the production of the present invention with that of a conventional sintered magnet and a bonded magnet. The permanent magnet of the present invention has a shear strength, a residual magnetic flux density and a sintered magnet. A sufficient value equivalent to is obtained.

【0043】なお、上記実施例では、磁性素材としてS
m−Coを、バインダ金属としてZnを用いた例を説明
したが、Nd−Fe等の磁性素材を用いてもよく、バイ
ンダ金属としてAl,Su,Feあるいはその合金等を
用いてもよい。
In the above embodiment, S is used as the magnetic material.
Although an example in which m-Co is used and Zn is used as the binder metal has been described, a magnetic material such as Nd-Fe may be used, and Al, Su, Fe or an alloy thereof may be used as the binder metal.

【0044】図10(A)は、本発明によって得られる
永久磁石60の他の実施例を示すものであり、一方面側
でバインダ61の割合を多方面側で磁性材62の割合を
Richとした、いわゆる傾斜機能を持った構成として
いる。この永久磁石60は磁性素材粒子粉と低融点金属
粒子粉との混合比が異なる複数の混合粉を多層に積層し
て成形加熱することで得られる。
FIG. 10A shows another embodiment of the permanent magnet 60 obtained by the present invention, in which the ratio of the binder 61 on one side is Rich and the ratio of the magnetic material 62 on the multifaceted side is Rich. It has a so-called tilt function. The permanent magnet 60 is obtained by stacking a plurality of mixed powders having different mixing ratios of the magnetic material particle powder and the low-melting point metal particle powder in multiple layers and molding and heating.

【0045】図10(B)は、本発明によって得られる
永久磁石71と異種材料72との複合材料70を示すも
のであり、本発明では低融点金属を用いることで成形温
度を低くできることにより、永久磁石71と適宜の異種
材料72との複合材料を容易に得ることができるように
なる。
FIG. 10 (B) shows a composite material 70 of a permanent magnet 71 and a dissimilar material 72 obtained by the present invention. In the present invention, the molding temperature can be lowered by using a low melting point metal. A composite material of the permanent magnet 71 and an appropriate dissimilar material 72 can be easily obtained.

【0046】[0046]

【発明の効果】請求項1記載の発明によれば、バインダ
として低融点金属を用いているので、加熱成形時におけ
る体積収縮がないとともに、磁気特性、高温強度も良好
に維持されるようになり、これにより、寸法精度、磁気
特性、高温強度がともに優れる永久磁石が得られるよう
になった。
According to the invention described in claim 1, since the low melting point metal is used as the binder, there is no volume shrinkage at the time of heat molding, and the magnetic characteristics and the high temperature strength are maintained well. As a result, a permanent magnet having excellent dimensional accuracy, magnetic properties, and high temperature strength can be obtained.

【0047】請求項2記載の発明によれば、バインダと
して低融点金属粒子粉を用いて永久磁石を製造するの
で、低温で加熱成形できることで体積収縮がないととも
に、磁気特性、高温強度も良好に維持され、これによ
り、寸法精度、磁気特性、高温強度がともに優れる永久
磁石が得られるようになった。
According to the second aspect of the present invention, since the permanent magnet is manufactured by using the low melting point metal particle powder as the binder, it is possible to perform heat molding at a low temperature, so that there is no volume shrinkage, and the magnetic characteristics and the high temperature strength are excellent. As a result, a permanent magnet having excellent dimensional accuracy, magnetic properties, and high temperature strength can be obtained.

【0048】とくに、本発明では、加熱成形が同時に行
われて永久磁石が得られる構成としていて、従来の焼結
磁石に比べて製造が短時間において簡単に行われるもの
で、言い換えるならば、従来におけるボンド磁石と同様
の簡単な製造工程において、焼結磁石と同等の優れた性
能を持つ永久磁石が得られるようになった。
In particular, in the present invention, the permanent magnet is obtained by performing the heat molding simultaneously, and the manufacturing is easily performed in a short time as compared with the conventional sintered magnet. In other words, the conventional magnet is used. In the same simple manufacturing process as that of the bonded magnet, the permanent magnet having excellent performance equivalent to that of the sintered magnet can be obtained.

【0049】請求項3記載の発明によれば、請求項2記
載の発明において、さらに、粉砕により磁性素材粒子が
粒子臨界寸法にされるとともに、より混合が促進される
ようになるので、これにより、さらに磁気特性に優れ、
かつ、せん断強度が大きい永久磁石が得られるようにな
った。
According to the invention described in claim 3, in the invention described in claim 2, the magnetic material particles are further made to have a critical particle size by pulverization, and the mixing is further promoted. , Further excellent magnetic properties,
Moreover, it has become possible to obtain a permanent magnet having high shear strength.

【0050】請求項4記載の発明によれば、請求項2記
載の発明において、さらに、こすり合わせにより混合が
促進されるようになるので、これにより、さらに磁気特
性に優れ、かつ、せん断強度が大きい永久磁石が得られ
るようになった。
[0050] According to the invention described in claim 4, in the invention described in claim 2, mixing is further promoted by rubbing, whereby the magnetic properties are further excellent and the shear strength is further improved. Large permanent magnets are now available.

【0051】請求項5記載の発明によれば、請求項2記
載の発明において、さらに、成形に際し液状の低融点金
属が磁性素材粒子の粒子界面にくまなく浸透するととも
に、粒子間の空間を縮小し密度をも向上させるので、こ
れにより、さらにせん断強度が大きく、磁気特性に優れ
る永久磁石が得られるようになった。
According to the invention described in claim 5, in the invention described in claim 2, the liquid low-melting-point metal further penetrates into the grain boundaries of the magnetic material grains during molding, and the space between grains is reduced. Since it also improves the density, this has made it possible to obtain a permanent magnet having higher shear strength and excellent magnetic properties.

【0052】請求項6記載の発明によれば、請求項2記
載の発明において、成形に際し磁性素材粒子の配向が行
われ、磁気特性に優れる永久磁石が得られるようになっ
た。
According to the invention of claim 6, in the invention of claim 2, the magnetic material particles are oriented during molding, and a permanent magnet having excellent magnetic properties can be obtained.

【0053】請求項7記載の発明によれば、請求項2記
載の発明において、請求項3または請求項4、請求項
5、請求項6記載の発明の作用がともに発揮される、製
造が容易で、寸法精度、磁気特性、強度がともに優れる
永久磁石が得られるようになった。
According to the invention of claim 7, in the invention of claim 2, the effects of the inventions of claim 3 or claim 4, claim 5 and claim 6 are exhibited together, which is easy to manufacture. Thus, it has become possible to obtain a permanent magnet having excellent dimensional accuracy, magnetic characteristics, and strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造工程を示す簡略図FIG. 1 is a simplified diagram showing a manufacturing process of the present invention.

【図2】ボールミルを示す簡略図FIG. 2 is a simplified diagram showing a ball mill.

【図3】Sm−Co粒子とZn粒子との混合を示す図FIG. 3 is a diagram showing mixing of Sm—Co particles and Zn particles.

【図4】ボールミル処理の時間経過にによるせん断強度
の推移を示すグラフ図
FIG. 4 is a graph showing changes in shear strength over time in ball mill processing.

【図5】圧縮整形機の構成図。FIG. 5 is a block diagram of a compression shaping machine.

【図6】加熱成形時のそれぞれの動作タイミングを説明
する図
FIG. 6 is a diagram for explaining respective operation timings during heat molding.

【図7】本発明によって得られる永久磁石の実施例断面
FIG. 7 is a sectional view of an embodiment of a permanent magnet obtained according to the present invention.

【図8】磁束密度におよぼす超音波振動付加の効果を示
すグラフ図
FIG. 8 is a graph showing the effect of applying ultrasonic vibration to the magnetic flux density.

【図9】本発明によって得られる永久磁石の特性の説明
FIG. 9 is an explanatory diagram of characteristics of a permanent magnet obtained by the present invention.

【図10】本発明によって得られる永久磁石の他の実施
例の断面図
FIG. 10 is a sectional view of another embodiment of a permanent magnet obtained according to the present invention.

【符号の説明】[Explanation of symbols]

30 永久磁石 31 Sm−Co粒子(磁性材) 32 Zn(低融点金属) 30 Permanent Magnet 31 Sm-Co Particle (Magnetic Material) 32 Zn (Low Melting Point Metal)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22F 3/093 C22C 38/00 303 D // C22C 19/07 E B22F 3/02 J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B22F 3/093 C22C 38/00 303 D // C22C 19/07 E B22F 3/02 J

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 磁性素材とバインダとが一体に成形され
て構成される永久磁石において、 前記バインダとして低融点金属を用いてなることを特徴
とする永久磁石。
1. A permanent magnet formed by integrally molding a magnetic material and a binder, wherein a low melting point metal is used as the binder.
【請求項2】 所定量の磁性素材粒子粉と低融点金属粒
子粉とを混合する第1の工程と、 前記第1の工程で得られた混合材料を加熱成形する第2
の工程と、 を備えることを特徴とする永久磁石の製造方法。
2. A first step of mixing a predetermined amount of magnetic material particle powder and a low melting point metal particle powder, and a second step of heat-molding the mixed material obtained in the first step.
The method of manufacturing a permanent magnet, comprising:
【請求項3】 前記第1の工程を、粉砕を伴って行うこ
とを特徴とする請求項2記載の永久磁石の製造方法。
3. The method for manufacturing a permanent magnet according to claim 2, wherein the first step is performed with pulverization.
【請求項4】 前記第1の工程を、こすり合わせを伴っ
て行うことを特徴とする請求項2記載の永久磁石の製造
方法。
4. The method for producing a permanent magnet according to claim 2, wherein the first step is performed with rubbing.
【請求項5】 前記第2の工程を、微振動を伴って行う
ことを特徴とする請求項2記載の永久磁石の製造方法。
5. The method for producing a permanent magnet according to claim 2, wherein the second step is performed with slight vibration.
【請求項6】 前記第2の工程を、磁場中において行う
ことを特徴とする請求項2記載の永久磁石の製造方法。
6. The method of manufacturing a permanent magnet according to claim 2, wherein the second step is performed in a magnetic field.
【請求項7】 前記第1の工程を粉砕もしくはこすり合
わせを伴って行い、前記第2の工程を磁場中において微
振動を伴って行うことを特徴とする請求項2記載の永久
磁石の製造方法。
7. The method for producing a permanent magnet according to claim 2, wherein the first step is performed with grinding or rubbing, and the second step is performed with slight vibration in a magnetic field. .
JP6111086A 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof Pending JPH07320918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6111086A JPH07320918A (en) 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6111086A JPH07320918A (en) 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH07320918A true JPH07320918A (en) 1995-12-08

Family

ID=14552035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6111086A Pending JPH07320918A (en) 1994-05-25 1994-05-25 Parmanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07320918A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000014040A (en) * 1998-08-17 2000-03-06 밍 루 method FOR MANUFACTURING RARE-EARTH PERMANENT MAGNET
JP2003100509A (en) * 2001-09-27 2003-04-04 Nec Tokin Corp Magnetic core and inductance part using the same
KR100446453B1 (en) * 2001-08-30 2004-09-01 대한민국(충남대학교) FABRICATION METHOD OF ANISOTROPIC NdFeB PERMANENT MAGNET
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
US9175885B2 (en) 2007-02-12 2015-11-03 Vacuumschmelze Gmbh & Co. Kg Article made of a granular magnetocalorically active material for heat exchange
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange
JP2017523586A (en) * 2015-04-29 2017-08-17 エルジー エレクトロニクス インコーポレイティド Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
CN110895984A (en) * 2018-09-12 2020-03-20 河南科技大学 Strong texture SmCo5Base nano composite permanent magnetic material and its preparation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000014040A (en) * 1998-08-17 2000-03-06 밍 루 method FOR MANUFACTURING RARE-EARTH PERMANENT MAGNET
KR100446453B1 (en) * 2001-08-30 2004-09-01 대한민국(충남대학교) FABRICATION METHOD OF ANISOTROPIC NdFeB PERMANENT MAGNET
JP2003100509A (en) * 2001-09-27 2003-04-04 Nec Tokin Corp Magnetic core and inductance part using the same
US9175885B2 (en) 2007-02-12 2015-11-03 Vacuumschmelze Gmbh & Co. Kg Article made of a granular magnetocalorically active material for heat exchange
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US9666340B2 (en) 2007-12-27 2017-05-30 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange
JP2017523586A (en) * 2015-04-29 2017-08-17 エルジー エレクトロニクス インコーポレイティド Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
US10695840B2 (en) 2015-04-29 2020-06-30 Lg Electronics Inc. Sintered magnet based on MnBi having improved heat stability and method of preparing the same
CN110895984A (en) * 2018-09-12 2020-03-20 河南科技大学 Strong texture SmCo5Base nano composite permanent magnetic material and its preparation method

Similar Documents

Publication Publication Date Title
JPH07320918A (en) Parmanent magnet and manufacturing method thereof
WO2014061466A1 (en) Manufacturing method for rare-earth magnet
US5002727A (en) composite magnetic compacts and their forming methods
JPS59103309A (en) Manufacture of permanent magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPH0411703A (en) Manufacture of rare earth magnet
US4952331A (en) Composite magnetic compacts and their forming methods
JPS6220845A (en) Composite magnetic material consisting of zn-22al superplastic alloy powder and magnetic powder and compacting method thereof
JP2952914B2 (en) Manufacturing method of anisotropic bonded magnet
JPH0831677A (en) Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JPS62261102A (en) Bonded magnet for starter motor
JPH104023A (en) Manufacture of bond type permanent magnet
JPH09186012A (en) Magnetically isotropic resin bond magnet
JP2002237406A (en) Method of manufacturing magnetically anisotropic resin- bonded magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPH06330102A (en) Method for compacting magnet powder in magnetic field and manufacture of magnet
JPS59103308A (en) Manufacture of permanent magnet
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
JP2004285365A (en) Method for manufacturing green compact for sintered magnet and apparatus therefor
JPH0483307A (en) Manufacture of rare-earth element magnet
JPS63209107A (en) Manufacture of magnetic powder for bonded magnet
JP2000348921A (en) Isotropic bonded magnet
JPH03114206A (en) Manufacture of permanent magnet
JPH11176656A (en) Manufacture of dust core
JP2001210506A (en) Rare earth anisotropic sheet magnet and its manufacturing method