JPS62261102A - Bonded magnet for starter motor - Google Patents

Bonded magnet for starter motor

Info

Publication number
JPS62261102A
JPS62261102A JP61104357A JP10435786A JPS62261102A JP S62261102 A JPS62261102 A JP S62261102A JP 61104357 A JP61104357 A JP 61104357A JP 10435786 A JP10435786 A JP 10435786A JP S62261102 A JPS62261102 A JP S62261102A
Authority
JP
Japan
Prior art keywords
bonded magnet
alloy
starter motor
magnet
motor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61104357A
Other languages
Japanese (ja)
Inventor
Katsunori Iwasaki
克典 岩崎
Masaaki Tokunaga
徳永 雅亮
Yasuto Nozawa
野沢 康人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61104357A priority Critical patent/JPS62261102A/en
Publication of JPS62261102A publication Critical patent/JPS62261102A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To resist the strong demagnetizing force generated when a motor is started as well as to contrive accomplishment of miniaturization, lightweightedness and high efficiency by a method wherein an anisotropic bonded magnet, which is formed by bonding alloy magnet powder of rareearth-iron- boron-iron magnet, is used. CONSTITUTION:The R-Fe-B alloy powder, having the average crystal grain diameter of 0.01-0.5mum, is kneaded with the binder of 15-40cu. %, and they are used for a compression-molding in a magnetic field, an injection-molding in a magnetic field and other machine works. Said alloy, consisting of R containing Y and one or two or more kinds of rare-earth elements, R-Fe-B alloy wherein a part of Fe is replaced with Co, R-Fe-B-M alloy and R-Fe-Co-B- M alloy wherein one or two or more kinds of combination of Si, Al, Nb, Zr, Hf, Mo, Ga, P and c are used as an additive element, is desirably formed into the composition of R:11-18at%, B:4-11at% and Co:30at% or less, and the remainder consisting of Fe and inevitable impurities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR−Fe −B系合金(RはYを含む1種又は
2種以上の希土類元素又Feの1部をCoで置換したR
 −Fe −Co −B系合金を含みさらに添加元素(
M)としてSi +Az+Nb、Zr、Hf、Mo+G
a+P+C9の1種又は2fi[以上の組み合せを用い
たR −Fe−B −M 、 R−Fe−Co−B−M
合金を含む)のスタータモータ用ボンド磁石に関するも
のである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an R-Fe-B alloy (R is one or more rare earth elements including Y or R in which a part of Fe is replaced with Co).
-Fe -Co -B alloy including additional elements (
M) as Si +Az+Nb, Zr, Hf, Mo+G
a+P+C9 or 2fi [R-Fe-B-M using the above combination, R-Fe-Co-B-M
This relates to bonded magnets for starter motors (including alloys).

〔従来の技術〕[Conventional technology]

従来からエンジン起動用のスタータモータとしてアーク
セグメント状の7工ライト磁石が一般に使用されている
。特に起動時の負荷が非常に大きいモータにおいては、
電機子反作用による減磁界が大きくなるので減磁耐力の
大きいフェライト磁石が使用されている。
BACKGROUND ART Conventionally, an arc segment-shaped seven-piece light magnet has been generally used as a starter motor for starting an engine. Especially for motors that have a very large load at startup,
Since the demagnetizing field due to armature reaction becomes large, ferrite magnets with high demagnetization resistance are used.

しかるに、出力向上のためには残留磁束密度の高いこと
が必要で、しかも高出力になると電機子反作用による減
磁界が増加し、保磁力の高いことも必要となる。
However, in order to improve the output, it is necessary to have a high residual magnetic flux density, and moreover, as the output increases, the demagnetizing field due to armature reaction increases, so it is also necessary to have a high coercive force.

更に製造面からも焼結によるため、高出力化に際しダブ
ルコンポーネント法、シングル法等の高性能磁石が提案
、実用に供せられているものの最終的には大型化1重量
化に頼らざるをえない傾向にある。
Furthermore, since sintering is used in manufacturing, high-performance magnets such as the double-component method and single method have been proposed and put into practical use in order to increase output, but in the end, we have no choice but to rely on larger and heavier magnets. There tends to be no.

しかしてフェライト磁石ではこの様な要求を全て満すこ
とは困難であシ、出力の向上および磁気特性の点で一定
の限度が存在している。
However, it is difficult for ferrite magnets to satisfy all of these requirements, and there are certain limits in terms of output improvement and magnetic properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したフェライト磁石は、保磁力(iHc)は、45
00〜50000eと、減磁耐力の点では一応満足でき
るものの、残留磁束密度(Br)は3700〜1400
0e程度であυ、出力の点では必ずしも十分ではなかり
た。
The above-mentioned ferrite magnet has a coercive force (iHc) of 45
00 to 50,000e, which is satisfactory in terms of demagnetization resistance, but the residual magnetic flux density (Br) is 3,700 to 1,400.
It was about 0e, which was not necessarily sufficient in terms of output.

更に焼結により製造されるので薄物ができないうえ、一
般的な半径方向磁束磁気回路に使用する場合、空@面の
精度を出すのが難かしく高度の内面研磨技術を要する。
Furthermore, since it is manufactured by sintering, it cannot be made thin, and when used in a general radial flux magnetic circuit, it is difficult to achieve the precision of the empty @ surface and requires advanced internal polishing technology.

したがって、本発明の目的は、上述した従来技術の問題
点を異方性ボンド磁石を応用することによりて解消し、
高い減磁耐力と高出力が得られ、さらにニアネットシェ
ープ形状で製造することによって加工性を大幅に向上さ
せたスタータモータ用磁石を提供することを目的とする
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art by applying an anisotropic bonded magnet,
The object of the present invention is to provide a magnet for a starter motor, which can obtain high demagnetization resistance and high output, and has greatly improved workability by manufacturing it in a near net shape shape.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

現在、スタータモータ用の磁石としてはフェライト磁石
のほかに、アルニコ磁石、 Fe −Cr−C。
Currently, magnets for starter motors include ferrite magnets, alnico magnets, and Fe-Cr-C.

磁石、希土類磁石等が知られているが、アルニコ磁石と
Fe −Cr −Co磁石は保磁力が約20000e以
下とフェライト磁石よりもかなり低いため、実用に供し
得ない。これに対し、希土類磁石は残留磁束密度および
保磁力が大きいため、性能の点では十分である。しかし
て希土類磁石でも、希土類コバルト磁石は高価であり、
コストパフォーマンスの点で必ずしも有利であるとは言
えない。
Magnets, rare earth magnets, etc. are known, but alnico magnets and Fe-Cr-Co magnets have a coercive force of about 20,000 e or less, which is considerably lower than that of ferrite magnets, so they cannot be put to practical use. On the other hand, rare earth magnets have a large residual magnetic flux density and a large coercive force, so they are sufficient in terms of performance. However, even among rare earth magnets, rare earth cobalt magnets are expensive,
It cannot be said that it is necessarily advantageous in terms of cost performance.

そこで本発明者は、磁気特性が大であシかつ磁気モーメ
ントも大きく、価格的に有利な希土類−鉄一ポロンー鉄
系磁石に注目し、この合金磁石粉末をバインダーで結合
した異方性ボンド磁石をスタータモータ用磁石として用
いることにより、前記目的を達成できることを見出した
0すなわち、平均結晶粒径が0.01〜0.5μmに制
御したR−Fe−B系合金粉(RはYを含む1種又は2
a以上の希土類元素、又Feの一部をCoで置換したR
−Fe−B系合金を含み、爽に添加元素(M)として、
Si、A2 r Nb * Zr 、 Hf + Mo
 * Ga + P * Cの1種又は2種以上の組み
合せを用いたR−Fe−B −M 、 R−Fe−Co
 −B−M合金を含む)を15〜40体積チのバインダ
ーと混練し、磁場中圧縮成形、5B場中射出成形その他
の機械加工に製造されたものである。
Therefore, the present inventors focused on rare earth-iron-iron-iron magnets, which have excellent magnetic properties and a large magnetic moment, and are advantageous in price, and created an anisotropic bonded magnet by combining this alloy magnet powder with a binder. It has been found that the above objective can be achieved by using as a magnet for a starter motor. Type 1 or 2
Rare earth elements of a or more, or R in which a part of Fe is replaced with Co
-Including Fe-B alloy, as an additional element (M),
Si, A2 r Nb * Zr, Hf + Mo
*Ga+P*R-Fe-B-M, R-Fe-Co using one type or a combination of two or more types
-B-M alloy) is kneaded with 15 to 40 volumes of binder, and manufactured by compression molding in a magnetic field, injection molding in a 5B field, and other machining processes.

上記合金は、好ましくはR:11〜18at%。The above alloy preferably has R: 11 to 18 at%.

B:4〜1.1at%+ Co : 30 a t %
以下、残部Feおよび不可避不純物からなる組成とした
ものであり、好ましくはR:11〜18at%、B:4
〜11at% 、 Co : 30%以下、添加物: 
0.001〜3at%(添加物MはSt 、At+Nb
 、Zr +Hf +Mo tGa、P+Cの1a又は
2種以上の組み合せ)残部Feおよび不可避不純物から
なる組成としたものである。
B: 4 to 1.1 at% + Co: 30 at%
The following composition is composed of the balance Fe and unavoidable impurities, preferably R: 11 to 18 at%, B: 4
~11at%, Co: 30% or less, additives:
0.001 to 3 at% (Additive M is St, At+Nb
, Zr + Hf + Mo tGa, P + C (1a or a combination of two or more), the balance being Fe and unavoidable impurities.

本発明において、R−Fe−B系合金の平均粒径が0.
5μmを越えると、iHcが低下し160℃における不
可逆減磁率が10%以上となって著しく熱費定住を低下
させるので不都合である0又、平均粒径が0.01μm
未満であると、成形後のボンド磁石のiHcが低く所定
の永久磁石を得ることができない。よりて、平均粒径を
0.01〜0.5μm、!:la定した。
In the present invention, the average grain size of the R-Fe-B alloy is 0.
If it exceeds 5 μm, the iHc decreases and the irreversible demagnetization rate at 160° C. becomes 10% or more, which significantly reduces heating costs, which is disadvantageous.
If it is less than that, the iHc of the bonded magnet after molding will be low and a desired permanent magnet cannot be obtained. Therefore, the average particle size is 0.01 to 0.5 μm! :la has been decided.

本発明における磁粉の作成は以下のように行う。The magnetic powder in the present invention is produced as follows.

まず、所定の組成の合金を高周波溶解、アーク溶解等で
作成し、本合金を超急冷法によりフレーク化する。超急
冷は単ロール法、双ロール法いずれでもよく、ロール材
質はFe 、 Cu等を用いる。
First, an alloy with a predetermined composition is created by high-frequency melting, arc melting, etc., and the alloy is turned into flakes by an ultra-quenching method. The ultra-quenching may be carried out by either a single roll method or a twin roll method, and the roll material used is Fe, Cu, or the like.

Cuを用いた場合は、Crメッキを施す方が好ましい0
超急冷は酸化を防ぐため、Ar s He等の不活性雰
囲気中で行う。本フレークを100〜200μ調程度の
大きさに粗粉砕する。粗粉砕粉を常温で成形し、成形体
を得る。本成形体を600〜750℃でHIP又はホッ
トプレスし、比較的結晶粒径の小さい緻密化したブロッ
クを作ることができる。
When using Cu, it is preferable to apply Cr plating.
The ultra-quenching is performed in an inert atmosphere such as Ar s He to prevent oxidation. The flakes are coarsely ground to a size of about 100 to 200 μm. The coarsely ground powder is molded at room temperature to obtain a molded body. By HIPing or hot pressing this molded body at 600 to 750°C, a densified block with relatively small crystal grain size can be produced.

本ブロックを再度600〜750℃ですえ込み加工する
ことにより異方性の偏平板をうることかできる。加工率
が大きいほど異方性化度は向上する。
By processing this block again at 600 to 750°C, an anisotropic flat plate can be obtained. The degree of anisotropy improves as the processing rate increases.

必要があれば得られた偏平板に600〜800℃で熱処
理を加えることにより得られるiHcけ向上する。本偏
平板を粗粉砕することにより、異方性ボンド磁石用粗粉
をうるととができる。
If necessary, the resulting flat plate is heat treated at 600 to 800°C to improve the iHc. By coarsely pulverizing this flat plate, coarse powder for an anisotropic bonded magnet can be obtained.

本粗粉に熱硬化性バインダーを加えて磁場中で圧縮成形
後熱硬化させれば、圧縮成形タイプの異方性ボンド磁石
を得ることができる。又、本粗粉に熱可塑性バインダー
を加えて磁場中射出成形すれば射出成形タイプの異方性
ボンド磁石を得ることができる。
By adding a thermosetting binder to this coarse powder, compression molding it in a magnetic field, and then thermosetting it, a compression molding type anisotropic bonded magnet can be obtained. Further, by adding a thermoplastic binder to the coarse powder and injection molding it in a magnetic field, an injection molding type anisotropic bonded magnet can be obtained.

バインダー量については、40vol%を越えるとバイ
ンダーによる非磁性部の増加により成形後の永久磁石体
が所定の磁気特性を発揮するととができず、15vol
%未満では成形体の機械的性質が充分でなく、割れ、破
損等の欠陥を生じやすいため、15〜40vol%とし
た。
Regarding the amount of binder, if it exceeds 40 vol%, the permanent magnet after molding will not be able to exhibit the desired magnetic properties due to an increase in the non-magnetic part due to the binder, and if the amount exceeds 15 vol.
If the amount is less than 15% by volume, the mechanical properties of the molded product will not be sufficient and defects such as cracks and breakage will easily occur.

R−Fe−B系合金の好ましい成分範囲は、以下の通り
である。
The preferred range of components of the R-Fe-B alloy is as follows.

R(Yを含む希土類元素の1種又は2種以上の組み合せ
)が11a1%未満の場合は充分なiHcが得られず、
18atチを越えるとBrの低下が生ずる。。
If R (one type or combination of two or more rare earth elements including Y) is less than 11a1%, sufficient iHc cannot be obtained,
When the temperature exceeds 18at, a decrease in Br occurs. .

よって、R量は11〜18&t%とした。Therefore, the R amount was set to 11 to 18&t%.

Btが4 at %未満の場合は水系磁石の主相である
RvFet4B相の形成が充分でなく、Br l IH
(!ともに低い。又、B量が18at%を越える場合は
、磁気特性的に好ましくない相の出現によ、9Brが低
下する。よって、Btは4〜11at%としたOCo量
が30 at%を越えるとキエーリ一点は向上するが主
相の異方性定数が低下し、高fHcが得られない。よっ
て、Co景は30 at %以下とした0添加物量が0
.001at%未満の場合は、添加物の効果が不充分で
あシ、3at%を越えるとBrの低下が大きく好ましく
ない。従って、添加物量は0.001〜3 at’チと
した〇 なお、本発明の合金中にはフェロボロンに含まれる不純
物Ndや他の希土類元素の還元の際に混入する還元材、
不純物が存在してもよい。
When Bt is less than 4 at %, the formation of the RvFet4B phase, which is the main phase of the water-based magnet, is not sufficient, and Br l IH
(!Both are low. Also, when the amount of B exceeds 18 at%, 9Br decreases due to the appearance of a phase that is unfavorable in terms of magnetic properties. Therefore, the amount of OCo is 30 at% while Bt is 4 to 11 at%. If it exceeds 30 at %, the Chieri point will improve, but the anisotropy constant of the main phase will decrease and high fHc will not be obtained.
.. If it is less than 0.001 at%, the effect of the additive will be insufficient, and if it exceeds 3 at%, the Br will drop significantly, which is not preferred. Therefore, the amount of additives was set at 0.001 to 3 at'. Note that the alloy of the present invention contains reducing agents that are mixed in when reducing the impurity Nd contained in ferroboron and other rare earth elements.
Impurities may be present.

前記バインダーとして使用しうる材料としては圧縮成形
の場合は熱硬化性樹脂が最も使いやすい。
As for the material that can be used as the binder, thermosetting resin is most easily used in the case of compression molding.

熱的に安定なポリアミド、ポリイミド、ポリエステル、
フェノール、フッ素、ケイ素、エポキシ等が利用できる
。又、At、 Sn 、 Pbおよび各種低融点ハンダ
合金を使用することができる。射出成形の場合は、EV
A、ナイロン等の熱硬化性樹脂が用途に応じ利用できる
Thermally stable polyamide, polyimide, polyester,
Phenol, fluorine, silicon, epoxy, etc. can be used. Also, At, Sn, Pb and various low melting point solder alloys can be used. For injection molding, EV
A. Thermosetting resins such as nylon can be used depending on the purpose.

〔実施例〕〔Example〕

以下実施例により本発明を更に詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例1 Ndl、 Fe、5 B、合金をアーク溶解により作成
し、本合金をAr′#囲気中で単ロールによりフレーク
状薄片を作製した。ロール周速は30 m/secで得
られた薄片は約30μmの厚さをもった不定形でありX
線の結果、非晶質と結晶質の混合物であることが解った
。この薄片を32メツシユ以下となるように粗粉砕し、
金型成形により成形体を作製した。成形圧は6 ton
y佃であシ、磁場印加は行っていない。
Example 1 An alloy of Ndl, Fe, 5B was prepared by arc melting, and flakes of this alloy were prepared by a single roll in an Ar'# atmosphere. The peripheral speed of the roll was 30 m/sec, and the flakes obtained were irregularly shaped with a thickness of about 30 μm.
The line results showed that it was a mixture of amorphous and crystalline materials. Coarsely crush this flake to 32 meshes or less,
A molded body was produced by molding. Molding pressure is 6 tons
At Tsukuda, no magnetic field was applied.

成形体の密度は5 、8 P/ccである。得られた成
形体を700℃でホットプレスした。ホットプレスの温
度は700℃で圧力は2 ton/iであるOホットプ
レスによって得られた密度は7 、50 F/ccでホ
ットプレスによって高密度化が充分はかられた0高密度
化されたバルク体を更に700℃ですえ込み加工した。
The density of the molded body is 5.8 P/cc. The obtained molded body was hot pressed at 700°C. The temperature of the hot press was 700°C and the pressure was 2 ton/i.The density obtained by the hot press was 7. The density obtained by the hot press was 7. The bulk body was further processed at 700°C.

試料の高さはすえ込み加工の前後で圧縮比率が3になる
ように調整した。(す見込み前の高さをhOとし、すえ
込み後の高さをhとするとho/h = 3 ) すえ込み加工された試料を粗粉砕し、250〜500μ
mの粒度範囲になるように調整し、磁粉を得た。本磁粉
に16vol%のエポキシ樹脂を乾式で混合し、この粉
末を内径38mX20mmの金型内にIEM充てんし、
6ton/CIAの加圧力、10KOeの磁場中で横磁
場成形した。次に120℃X 3 hrsの熱硬化処理
を施して異方性ボンド磁石とした。得られた異方性ボン
ド磁石は、25KOeO着磁磁場強度で測定するとBr
 〜6.8KG 、 BHc 〜6.3KOe *iH
c 〜12.3KOe 、 (BH)max 〜10.
6MGOeの磁気特性が得られた。
The height of the sample was adjusted so that the compression ratio was 3 before and after swaging. (If the height before swaging is hO and the height after swaging is h, then ho/h = 3) The swaging processed sample is coarsely ground to a size of 250 to 500μ.
Magnetic powder was obtained by adjusting the particle size to be within the particle size range of m. This magnetic powder is mixed with 16 vol% epoxy resin in a dry method, and this powder is filled into a mold with an inner diameter of 38 m x 20 mm using an IEM.
Transverse magnetic field molding was carried out under a pressure of 6 tons/CIA and a magnetic field of 10 KOe. Next, a thermosetting treatment was performed at 120° C. for 3 hrs to obtain an anisotropic bonded magnet. The obtained anisotropic bonded magnet has Br when measured at a magnetic field strength of 25KOeO.
~6.8KG, BHc ~6.3KOe *iH
c ~12.3KOe, (BH)max ~10.
Magnetic properties of 6MGOe were obtained.

比較のために、Nd17 Fe76 Beなる組成の超
急冷した薄片を真空中で600℃X1hrの熱処理し、
250〜500μmに粗粉砕し本実施例と同様の方法で
ボンド磁石とした。ただし、本ボンド磁石は等方性であ
るため圧縮成形の際、磁場印加を行っていない025K
Oeの着磁磁場強度によって得られる磁気特性はBr 
〜5.9K Oe 、 BHc 〜4.9KOe t 
iHc〜12 、8KOe * (BH)max 〜6
 、6MGOeであった。
For comparison, an ultra-quenched thin piece of Nd17Fe76Be was heat-treated at 600°C for 1 hr in vacuum.
It was coarsely pulverized to 250 to 500 μm and made into a bonded magnet in the same manner as in this example. However, since this bonded magnet is isotropic, no magnetic field is applied during compression molding at 025K.
The magnetic properties obtained by the magnetizing magnetic field strength of Oe are Br
〜5.9KOe, BHc 〜4.9KOet
iHc~12, 8KOe*(BH)max~6
, 6MGOe.

異方性ボンド磁石は等方性ボンド磁石と比較して、着磁
性が良好で高い磁気特性が得られることが分かる。又比
較のために粉末冶金法で製造した焼結フェライト磁石を
用いた。製法は最も一般的な原料混合、仮焼、粉砕およ
び造粒の後粉末プレス成形、焼成の工程で行なった等方
性フェライト磁石を選んだ。25KOeO着磁磁場強度
によりて得られる磁気特性はBr 〜4.2 KG r
 BHc−3,2KOe e量Hc 〜4 、0KOa
 m (BH)max 〜3 、9MGOeであった。
It can be seen that anisotropic bonded magnets have better magnetization and higher magnetic properties than isotropic bonded magnets. For comparison, a sintered ferrite magnet manufactured by powder metallurgy was used. We selected an isotropic ferrite magnet that was manufactured using the most common process of mixing raw materials, calcination, pulverization, and granulation, followed by powder press molding and firing. The magnetic properties obtained by the 25KOeO magnetizing magnetic field strength are Br ~ 4.2 KG r
BHc-3,2KOe e amount Hc ~4, 0KOa
m (BH)max ~3, 9MGOe.

このようにNd −Fe −B異方性ボンド磁石と比較
し、かなシ低い値であることが分かる。
In this way, it can be seen that the kana value is lower than that of the Nd-Fe-B anisotropic bonded magnet.

以上、実施例1で得られた結果を比較例とあわせて第1
表に示す。
Above, the results obtained in Example 1 are combined with the comparative example.
Shown in the table.

第   1   表 実施例2゜ 次に実施例1に示した製法で異方性ボンド磁石を成形す
る際、加圧力が磁気特性にどのような影響を与えるかを
示す0組成、超急冷、ホットプレス、模磁場成形、熱硬
化等条件は実施例1と同様である。
Table 1 Example 2 Next, when forming an anisotropic bonded magnet using the manufacturing method shown in Example 1, how the pressing force affects the magnetic properties is shown. Conditions such as magnetic field molding, thermosetting, etc. are the same as in Example 1.

結果を第2表に示す。第2表に示した磁気特性は、着磁
強度25KOeにて得られた値である。第2表に示した
通り、加圧力を増加することにより、密度が上が)磁気
特性は向上する。なお加圧力2ton/iでも実施例1
中に記したフェライト磁石よりもかなり高い特性を示す
ことが分かる。
The results are shown in Table 2. The magnetic properties shown in Table 2 are values obtained at a magnetization strength of 25 KOe. As shown in Table 2, by increasing the pressing force, the density increases and the magnetic properties improve. In addition, even if the pressing force is 2 ton/i, Example 1
It can be seen that the characteristics are considerably higher than those of the ferrite magnets mentioned above.

第   2   表 実施例3 本磁粉に16vol%のエポキシ樹脂を乾式で混合した
粉末で実際にrl”= 46.8m 、 r2= 46
68m 。
Table 2 Example 3 This magnetic powder was mixed with 16 vol% epoxy resin in a dry process, and the actual results were as follows: rl" = 46.8 m, r2 = 46
68m.

θ=75になる様設計した金型に充てんし、アークセグ
メント形の異方性ボンドスタータセータ用磁石を試作し
た。任意の箇所の磁気特性および寸法、精度1表面鞘状
についてv!4食した。
A mold designed so that θ=75 was filled with the material, and an arc segment type anisotropic bonded starter magnet was prototyped. Magnetic properties and dimensions at any location, accuracy 1 v! for surface sheath shape! I ate 4 meals.

なお組成、超急冷、ホットプレス、横磁場成形。Composition, ultra-quenching, hot pressing, transverse magnetic field forming.

熱硬化等条件は実施例1と同様である。Conditions such as heat curing are the same as in Example 1.

磁気特性は、前記磁石を端部から中央部まで10カ所3
×3×3III+の寸法に切り出し、25KOe。
The magnetic properties are determined by placing the magnet in 10 locations from the end to the center.
Cut to size x3 x 3III+, 25KOe.

着磁強度で測定した結果Br:6−5〜6.8 KG 
Results measured by magnetization strength Br: 6-5 to 6.8 KG
.

BHc  6.1〜6.3 KOe  、  iHc 
 12.3 KOe、(BH)maxl 0 、6 M
GOeであり、密度との相対関係も一致してお9かなり
均一化した磁石であることが分かる。
BHc 6.1-6.3 KOe, iHc
12.3 KOe, (BH)maxl 0, 6 M
It can be seen that the magnet is GOe and the relative relationship with the density is also consistent, making it a fairly uniform magnet.

寸法精度は金型寸法と熱処理硬化後の寸法を測定した結
果、金型θに対し、±0.2°の精度でありた。また厚
さ方向では、目標値31allに対し、充てん量を段階
的に変化させ、最終的には±0.05mの精度で正確に
圧縮成形することができ、ニアネットシェープのスター
タモータ磁石が製作可能である。
As for the dimensional accuracy, as a result of measuring the mold dimensions and the dimensions after heat treatment and hardening, the accuracy was ±0.2° with respect to the mold θ. In addition, in the thickness direction, the filling amount can be changed in stages with respect to the target value of 31all, and the final compression molding can be performed accurately with an accuracy of ±0.05m, producing a near net shape starter motor magnet. It is possible.

表面鞘状は、ポンドと粉末が均一に充てんするため、7
エ2イトの焼結直後の状態よシもかなシ良く、1.6S
程度と内面研磨を施す必要はないものと判断できる。
The surface sheath shape allows the pound and powder to be filled uniformly, so
The state of E2ite immediately after sintering is good, 1.6S
It can be judged that there is no need to perform internal polishing.

上記の異方性ボンド磁石を自動車用スタータモータに組
み込み、通常の条件でテストしたところ、同形状のSr
フェライト磁石と比ベモータ出力は、1.05〜1.4
0倍に向上することが確認できた。
When the above anisotropic bonded magnet was incorporated into an automobile starter motor and tested under normal conditions, it was found that Sr.
The motor output compared to the ferrite magnet is 1.05 to 1.4.
It was confirmed that the improvement was 0 times.

〔発明の効果〕〔Effect of the invention〕

Claims (7)

【特許請求の範囲】[Claims] (1)平均結晶粒径が0.01〜0.5μmであるR−
Fe−B系合金粉(RはYを含む1種又は2種以上の希
土類元素、又Feの1部をCoで置換したR−FeCo
−B系合金を含み、更に添加元素(M)として、Si、
At、Nb、Zr、Hf、Mo、Ga、P、C、の1種
又は2種以上の組み合せを用いたR−Fe−B−M系、
R−Fe−Co−B−M系合金を含む)を15〜40v
ol%のバインダーと混練し、磁場中圧縮成形、磁場中
射出成形その他の機械加工により製造されたことを特徴
とするスタータモータ用ボンド磁石。
(1) R- with an average crystal grain size of 0.01 to 0.5 μm
Fe-B alloy powder (R is one or more rare earth elements including Y, or R-FeCo in which a part of Fe is replaced with Co)
- Contains a B-based alloy, and further contains Si, as an additional element (M),
R-Fe-B-M system using one or a combination of two or more of At, Nb, Zr, Hf, Mo, Ga, P, C,
R-Fe-Co-B-M alloy) from 15 to 40v
1. A bonded magnet for a starter motor, characterized in that the bonded magnet is kneaded with a binder of 0.1% and manufactured by compression molding in a magnetic field, injection molding in a magnetic field, and other machining processes.
(2)R−Fe−B系合金粉が、R:11〜18at%
、B:4〜11at%、Co:30at%以下、残部:
Feおよび不可避不純物からなる特許請求の範囲第1項
記載のスタータモータ用ボンド磁石。
(2) R-Fe-B alloy powder has R: 11 to 18 at%
, B: 4 to 11 at%, Co: 30 at% or less, remainder:
A bonded magnet for a starter motor according to claim 1, comprising Fe and unavoidable impurities.
(3)R−Fe−B系合金粉が超急冷法により得られた
フレークをHIP、ホットプレスにより高密度化後、塑
性変形により異方性化した素材を粗粉砕して得られる磁
粉を用いることを特徴とする特許請求の範囲第1項記載
のスタータモータ用ボンド磁石。
(3) Use magnetic powder obtained by coarsely pulverizing the flakes of R-Fe-B alloy powder obtained by ultra-quenching, densifying them by HIP and hot pressing, and making the material anisotropic by plastic deformation. A bonded magnet for a starter motor according to claim 1, characterized in that:
(4)前記塑性変形を与える手段として温間すえ込み加
工としたことを特徴とする特許請求の範囲第1項記載の
スタータモータ用ボンド磁石。
(4) The bonded magnet for a starter motor according to claim 1, characterized in that warm swaging is used as the means for imparting the plastic deformation.
(5)前記添加元素の添加量が0.001〜3at%で
あることを特徴とする特許請求の範囲第1項記載のスタ
ータモータ用ボンド磁石。
(5) The bonded magnet for a starter motor according to claim 1, wherein the amount of the additional element added is 0.001 to 3 at%.
(6)内径10〜15mm、外径13〜18mm、高さ
25mm以下の形状を有する射出成形により成形された
特許請求の範囲第1項記載のスタータモータ用ボンド磁
石。
(6) The bonded magnet for a starter motor according to claim 1, which is molded by injection molding and has a shape with an inner diameter of 10 to 15 mm, an outer diameter of 13 to 18 mm, and a height of 25 mm or less.
(7)圧縮成形によりニアネットシェープ形状で成形さ
れた特許請求の範囲第1項記載のスタータモータ用ボン
ド磁石。
(7) The bonded magnet for a starter motor according to claim 1, which is formed into a near-net shape by compression molding.
JP61104357A 1986-05-07 1986-05-07 Bonded magnet for starter motor Pending JPS62261102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104357A JPS62261102A (en) 1986-05-07 1986-05-07 Bonded magnet for starter motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104357A JPS62261102A (en) 1986-05-07 1986-05-07 Bonded magnet for starter motor

Publications (1)

Publication Number Publication Date
JPS62261102A true JPS62261102A (en) 1987-11-13

Family

ID=14378604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104357A Pending JPS62261102A (en) 1986-05-07 1986-05-07 Bonded magnet for starter motor

Country Status (1)

Country Link
JP (1) JPS62261102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227502A (en) * 1988-10-04 1991-10-08 Hitachi Metals Ltd Heat-resisting bond magnet and its manufacture and pm motor
EP0772211A1 (en) * 1995-11-06 1997-05-07 Seiko Epson Corporation Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet
FR2822903A1 (en) * 2001-03-30 2002-10-04 Mitsubishi Electric Corp Starter for internal combustion engine, comprises wound rotor and rare earth permanent field magnets also switch which energises rotor and directly engages rotor pinion to engine using electromagnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227502A (en) * 1988-10-04 1991-10-08 Hitachi Metals Ltd Heat-resisting bond magnet and its manufacture and pm motor
EP0772211A1 (en) * 1995-11-06 1997-05-07 Seiko Epson Corporation Rare earth bonded magnet, rare earth magnetic composition, and method for manufacturing rare earth bonded magnet
KR100238371B1 (en) * 1995-11-06 2000-01-15 야스카와 히데아키 Rare-earth bonded magnet, rare-earth bonded magnetic composition and method for manufacturing rare-earth bonded magnet
FR2822903A1 (en) * 2001-03-30 2002-10-04 Mitsubishi Electric Corp Starter for internal combustion engine, comprises wound rotor and rare earth permanent field magnets also switch which energises rotor and directly engages rotor pinion to engine using electromagnet

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP3288043B1 (en) Pressureless sintering method for anisotropic complex sintered magnet containing manganese bismuth
EP0657899B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JPH02288305A (en) Rare earth magnet and manufacture thereof
JPH0348645B2 (en)
JPS62261102A (en) Bonded magnet for starter motor
JP3229435B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP3652751B2 (en) Anisotropic bonded magnet
JP3670424B2 (en) Method for manufacturing anisotropic bonded magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH10135020A (en) Radial anisotropic bond magnet
JPH0279404A (en) Polymer composite type rare magnet and manufacture thereof
KR930000140B1 (en) Resin bonded magnets
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH01239901A (en) Rare-earth magnet and its manufacture
JP3623583B2 (en) Anisotropic bonded magnet
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JP3032385B2 (en) Fe-BR bonded magnet
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy
JPH10163015A (en) Magnet alloy powder, its manufacture and magnet using the same
JPH08203714A (en) Iron-based permanent magnet, manufacture thereof and iron-based permanent magnet alloy powder for bonded magnet and iron-based bonded magnet