JPH07320754A - Connecting structure between solid electrolytic film and electrode film, and its manufacture - Google Patents

Connecting structure between solid electrolytic film and electrode film, and its manufacture

Info

Publication number
JPH07320754A
JPH07320754A JP6130809A JP13080994A JPH07320754A JP H07320754 A JPH07320754 A JP H07320754A JP 6130809 A JP6130809 A JP 6130809A JP 13080994 A JP13080994 A JP 13080994A JP H07320754 A JPH07320754 A JP H07320754A
Authority
JP
Japan
Prior art keywords
film
solid electrolyte
electrode
membrane
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6130809A
Other languages
Japanese (ja)
Inventor
Masanobu Aizawa
正信 相沢
Akira Ueno
晃 上野
Masahiro Kuroishi
正宏 黒石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP6130809A priority Critical patent/JPH07320754A/en
Publication of JPH07320754A publication Critical patent/JPH07320754A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a connecting structure between solid electrolytic film and electrode film by slurry method which is excellent in adhesion between solid electrolytic film and electrode film, and minimized in contact resistance, and has high mass producibility. CONSTITUTION:A connecting structure between solid electrolytic film and electrode film is formed of a solid electrolytic base film, an intermediate film formed on its upper surface, and an electrode film formed on the upper surface thereof. The intermediate film is formed of a material having ion conductivity. Further, the intermediate film is applied onto the solid electrolytic base film by slurry method, the electrode film is further applied thereon by slurry method, and both the film are integrally dried and baked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質燃料電池セ
ルや酸素センサー、酸素ポンプ等における固体電解質膜
と電極膜との接続構造、及び、その製造方法に関する。
特には、固体電解質膜と電極膜間の密着性に優れ、接触
抵抗が小さく、量産性の高いスラリー法による固体電解
質膜と電極膜との接続構造及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for connecting a solid electrolyte membrane and an electrode membrane in a solid electrolyte fuel cell, an oxygen sensor, an oxygen pump, etc., and a method for producing the same.
In particular, the present invention relates to a connection structure between a solid electrolyte membrane and an electrode membrane by a slurry method, which has excellent adhesion between the solid electrolyte membrane and the electrode membrane, has low contact resistance, and has high mass productivity, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】円筒型セルタイプSOFCを例にとって
従来技術を説明する。円筒型セルタイプSOFC(以下
CTC−SOFCと言う)は、特公平1−59705等
によって公知である。CTC−SOFCは、電極支持管
−空気電極−固体電解質−燃料電極−インターコネクタ
ーで構成される円筒型セルを有する。空気電極側に酸素
(空気)を流し、燃料電極側にガス燃料(H2 、CO
等)を流してやると、このセル内でO2 -イオンが移動し
て化学的燃焼が起り、空気電極と燃料電極の間に電位が
生じ発電が行われる。
2. Description of the Related Art A conventional technology will be described by taking a cylindrical cell type SOFC as an example. The cylindrical cell type SOFC (hereinafter referred to as CTC-SOFC) is known from Japanese Patent Publication No. 1-59705. The CTC-SOFC has a cylindrical cell composed of an electrode support tube-air electrode-solid electrolyte-fuel electrode-interconnector. Oxygen (air) is caused to flow to the air electrode side, and gas fuel (H 2 , CO
Etc.), O 2 ions move in this cell to cause chemical combustion, and an electric potential is generated between the air electrode and the fuel electrode to generate electricity.

【0003】SOFCの発電効率を高めるためには、セ
ル自身の内部抵抗を下げる必要がある。セルの内部抵抗
には、固体電解質膜の抵抗や電極表面におけるイオン化
反応に伴う抵抗、電極材・インタコネクタ等のオーム抵
抗、及び、各膜間の接触抵抗が含まれる。このうち、各
膜間の接触抵抗を低くするには、各膜間のミクロ的密着
性を上げる必要がある。SOFCセルの各膜は、セラミ
ックスや金属の薄膜(厚さ数μm 〜数百μm )であり、
各種材質の膜を、基体上に順次形成していく方法によっ
てセルが製造される。
In order to increase the power generation efficiency of SOFC, it is necessary to reduce the internal resistance of the cell itself. The internal resistance of the cell includes the resistance of the solid electrolyte membrane, the resistance associated with the ionization reaction on the electrode surface, the ohmic resistance of the electrode material / interconnector, and the contact resistance between the respective membranes. Among these, in order to reduce the contact resistance between the films, it is necessary to increase the microscopic adhesion between the films. Each film of the SOFC cell is a thin film of ceramic or metal (thickness of several μm to several hundreds of μm),
A cell is manufactured by a method of sequentially forming films of various materials on a substrate.

【0004】SOFCセルの膜構造及び形成方法として
は次のようなものが提案されている。 (1)CVD・EVD法(特開昭61−15328
0):この方法においては、酸素源を含む第一反応剤が
基材物質中の小孔部を透過し、基材の他面側のハロゲン
化金属ガスと反応して、基材上に金属酸化物の膜を形成
する。反応生成物である金属酸化物が基材上で成長する
につれて、化学的な蒸着(CVD)により、反応生成物
が基材中の複数の小孔部を密に閉め切る。酸素源から成
長途上の酸化物層を介する酸素の移動が起こるので、塗
膜は電気化学的蒸着(EVD)により成長を続ける。
The following has been proposed as a film structure and a forming method of an SOFC cell. (1) CVD / EVD method (Japanese Patent Laid-Open No. 61-15328)
0): In this method, the first reactant containing an oxygen source permeates through the small holes in the base material and reacts with the metal halide gas on the other side of the base material to form a metal on the base material. Form an oxide film. As the reaction product metal oxide grows on the substrate, chemical vapor deposition (CVD) causes the reaction product to close up a plurality of small pores in the substrate. The coating continues to grow by Electrochemical Vapor Deposition (EVD) as oxygen is transferred from the oxygen source through the growing oxide layer.

【0005】(2)プラズマ溶射による製造方法(特開
昭61−198570):この製造方法は、酸化セリウ
ム又は酸化ジルコニウムとアルカリ土類金属又は希土類
元素等の2価もしくは3価の金属酸化物とからなる固体
電解質原料を固溶化し、ついで固溶化された原料を粉砕
し、この粉砕して得られた粉末の粒度を調整した後、プ
ラズマ溶射により燃料電池の電極上に電解質薄膜として
付着せしめることを特徴とする。
(2) Production method by plasma spraying (Japanese Patent Laid-Open No. 61-198570): This production method comprises the steps of adding cerium oxide or zirconium oxide and a divalent or trivalent metal oxide such as an alkaline earth metal or a rare earth element. The solid electrolyte raw material consisting of is solid-solved, then the solid-solubilized raw material is crushed, the particle size of the powder obtained by this crushing is adjusted, and then it is deposited as an electrolyte thin film on the electrode of the fuel cell by plasma spraying. Is characterized by.

【0006】[0006]

【発明が解決しようとする課題】上述の従来提案されて
いる技術には次のような問題がある。 (1) CVD・EVD法:この方法は、密着性の良い
薄膜を形成するのに適している。しかし、成膜を大気と
遮断された特殊な雰囲気・物理条件下で行う必要がある
ため、高価な装置を必要とする。大型の部材用には、当
然その部材を収容可能な大型の装置を必要とする。その
ため、大形部材への膜付が困難で、かつ生産性も低く、
高コストである。 (2) プラズマ溶射法:同法による膜は、基本的にポ
ーラス(多孔質)である。そのため、固体電解質膜と電
極膜との密着性に劣り、したがって、固体電解質と電極
間の接触抵抗が大きい。
The above-mentioned conventionally proposed techniques have the following problems. (1) CVD / EVD method: This method is suitable for forming a thin film having good adhesion. However, since it is necessary to form the film under a special atmosphere and physical conditions that are shielded from the atmosphere, an expensive apparatus is required. For a large member, a large device capable of accommodating the member is naturally required. Therefore, it is difficult to attach a film to a large member, and productivity is low,
High cost. (2) Plasma spraying method: The film formed by this method is basically porous. Therefore, the adhesion between the solid electrolyte membrane and the electrode membrane is poor, and therefore the contact resistance between the solid electrolyte and the electrode is large.

【0007】本発明は、固体電解質膜と電極膜間の密着
性に優れ、接触抵抗が小さく、量産性の高いスラリー法
による固体電解質膜と電極膜との接続構造及びその製造
方法を提供することを目的とする。
The present invention provides a connection structure between a solid electrolyte membrane and an electrode membrane by a slurry method, which has excellent adhesion between the solid electrolyte membrane and the electrode membrane, a small contact resistance, and high mass productivity, and a method for producing the same. With the goal.

【0008】[0008]

【課題を解決するための手段及び作用】上記課題を解決
するため、本発明の固体電解質膜と電極膜との接続構造
は、固体電解質基膜と、この固体電解質基膜の上面に形
成された中間膜と、この中間膜の上面に形成された電極
膜と、からなり;中間膜がイオン導電性を有する材料か
らなり;中間膜が固体電解質基膜上にスラリー法により
塗膜された上に、電極膜がスラリー法により塗膜され、
両膜が一体に乾燥・焼成されていることを特徴とする。
In order to solve the above problems, the connection structure between the solid electrolyte membrane and the electrode membrane of the present invention is formed on the solid electrolyte base film and the upper surface of the solid electrolyte base film. An intermediate film and an electrode film formed on the upper surface of the intermediate film; the intermediate film made of a material having ion conductivity; the intermediate film coated on the solid electrolyte base film by the slurry method. , The electrode film is coated by the slurry method,
The feature is that both films are integrally dried and baked.

【0009】また、本発明の固体電解質膜と電極膜との
接続構造の製造方法は、固体電解質基膜と、この固体電
解質基膜の上面に形成された中間膜と、この中間膜の上
面に形成された電極膜と、からなる固体電解質膜と電極
膜との接続構造の製造方法であって;イオン導電性を有
する材料の粉末を含む中間膜用スラリーを調整し、固体
電解質基膜上に塗布する中間膜塗膜工程と、この中間膜
塗膜上に、電極膜を構成する物質の粉末を含む電極膜用
スラリーを調整して塗布する電極膜塗膜工程と、上記中
間膜塗膜と電極膜塗膜とを同時に焼成する工程と、を含
む特徴とする。
Further, the method of manufacturing the connection structure between the solid electrolyte membrane and the electrode membrane of the present invention comprises a solid electrolyte base membrane, an intermediate film formed on the upper surface of the solid electrolyte base membrane, and an upper surface of the intermediate membrane. A method for producing a connection structure between a solid electrolyte membrane and an electrode membrane, which comprises the formed electrode membrane; an intermediate membrane slurry containing a powder of a material having ionic conductivity is prepared, and a solid electrolyte base membrane is formed on the solid electrolyte base membrane. An intermediate film coating step of applying, an electrode film coating step of adjusting and applying an electrode film slurry containing a powder of a substance forming an electrode film on the intermediate film coating step, and the intermediate film coating step. And a step of simultaneously firing the electrode film coating film.

【0010】本発明における固体電解質は、特定の物質
に限定されるものではない。例えば、代表的なY23
安定化ZrO2 の他にCeO2 系およびTiO2 系など
他の電解質が用いられても良い。これらの材料は、純粋
なものが望ましく、特にSiO2 、MnOなどの不純物
は、0.5%以下にすることが望ましい。また、固体電
解質基膜の形成方法も特定の方法に限定されるものでは
ない。
The solid electrolyte in the present invention is not limited to a particular substance. For example, typical Y 2 O 3
In addition to the stabilized ZrO 2 , other electrolytes such as CeO 2 type and TiO 2 type may be used. It is desirable that these materials are pure, and in particular, impurities such as SiO 2 and MnO are desirably 0.5% or less. Further, the method for forming the solid electrolyte base membrane is not limited to a particular method.

【0011】本発明における電極膜も、特定の機能・材
料の膜に限定されるものではない。例えば、SOFCに
おける燃料電極、空気極、酸素センサー・ポンプにおけ
る電極等であってよい。ただし、YSZとNiOの混合
物からなるSOFC燃料電極に適用されるのが好適であ
る。なお、YSZ中のY23 含有量は、好ましくは3
〜20mol %、より好ましくは8〜12mol %である。
その理由は、イオン導電性の点で、この範囲が優れてい
るからである。
The electrode film in the present invention is not limited to a film having a specific function and material. For example, it may be a fuel electrode in an SOFC, an air electrode, an electrode in an oxygen sensor / pump, or the like. However, it is preferably applied to an SOFC fuel electrode composed of a mixture of YSZ and NiO. The Y 2 O 3 content in YSZ is preferably 3
-20 mol%, more preferably 8-12 mol%.
The reason is that this range is excellent in terms of ionic conductivity.

【0012】本発明における中間膜は、固体電解質基膜
を構成する固体電解質と実質的に同一材質からなる。そ
の理由は、密着性に優れ、特に高温で使用する場合の熱
応力を緩和するためにも役立つからである。通常固体電
解質基膜を構成する固体電解質は、安定性が良いという
点でYSZであるが、混合導電性を有する中間膜とし
て、CeO2 系、TiO2 系を使用してもよい。また、
イオン導電性が高いZrO2 系(YSZ含む)を中間膜
に用いてもよい。
The intermediate film in the present invention is made of substantially the same material as the solid electrolyte constituting the solid electrolyte base film. The reason is that it has excellent adhesion and is also useful for alleviating thermal stress particularly when used at high temperatures. Usually, the solid electrolyte constituting the solid electrolyte base film is YSZ because of its good stability, but CeO 2 -based or TiO 2 -based may be used as the intermediate film having mixed conductivity. Also,
A ZrO 2 system (including YSZ) having high ionic conductivity may be used for the intermediate film.

【0013】ここで上述のCeO2 系材料とは(CeO
21-x (M23x 、Mは、Sm、Gd、Yb、N
b等の希土類元素である。希土類元素酸化物の役割は、
これらの酸化物を添加することで、CeO2 素材料にイ
オン導電性が生じる。xは好ましくは、0.02〜0.12であ
る。その理由は、この範囲外では、酸素イオンによるイ
オン導電性が低下するからである。TiO2 及びZrO
2 系についても同様である。
Here, the above CeO 2 system material is (CeO 2
2 ) 1-x (M 2 O 3 ) x , M is Sm, Gd, Yb, N
It is a rare earth element such as b. The role of rare earth oxides is
Addition of these oxides causes ionic conductivity in the CeO 2 element material. x is preferably 0.02 to 0.12. The reason is that outside this range, the ionic conductivity due to oxygen ions decreases. TiO 2 and ZrO
The same applies to the 2 system.

【0014】本発明においては、中間膜が固体電解質基
膜上にスラリー法により塗膜された上に、電極膜がスラ
リー法により塗膜され、両膜が一体に乾燥・焼成されて
いる。つまり、中間膜を未焼成の段階で、電極膜スラリ
ーが塗膜されるのである。このようにする理由は、共に
焼成することでより密着性が高まるからである。
In the present invention, the intermediate membrane is coated on the solid electrolyte base membrane by the slurry method, the electrode membrane is coated by the slurry method, and both membranes are integrally dried and baked. That is, the electrode film slurry is coated at a stage where the intermediate film is not fired. The reason for doing this is that the co-firing improves the adhesion.

【0015】中間膜塗膜上に電極膜を塗膜する段階は、
中間膜の乾燥前でも乾燥後でもよい。中間膜塗膜の膜厚
は、0.5〜50μm 、さらには、1〜10μm が好ま
しい。その理由は、この層は主に密着性の向上を図るた
めのものであり、0.5μm未満だとその効果は無い
し、50μm を越えるとこの層が厚すぎて、この層によ
ってガス透過性が低下するからである。
The step of coating the electrode film on the intermediate film coating is
It may be before or after drying the intermediate film. The film thickness of the intermediate film is preferably 0.5 to 50 μm, more preferably 1 to 10 μm. The reason is that this layer is mainly for improving the adhesion, and if it is less than 0.5 μm, it has no effect, and if it exceeds 50 μm, this layer is too thick and gas permeability by this layer is high. Is reduced.

【0016】本発明においては、上記固体電解質膜の厚
さが10〜100μm 、上記中間膜の厚さが0.5〜5
0μm 、上記電極膜の厚さが30〜300μm であるこ
とが好適である。この範囲において、密着性、低抵抗等
の諸性質のバランスが良いからである。
In the present invention, the solid electrolyte membrane has a thickness of 10 to 100 μm, and the intermediate membrane has a thickness of 0.5 to 5 μm.
It is preferable that the thickness of the electrode film is 0 μm and the thickness of the electrode film is 30 to 300 μm. This is because in this range, various properties such as adhesion and low resistance are well balanced.

【0017】本発明の製造方法においては、上記固体電
解質粉末の粒径が0.1〜5μm であることが好適であ
る。その理由はこの範囲の粉末の焼結性が優れているか
らである。
In the production method of the present invention, it is preferable that the solid electrolyte powder has a particle size of 0.1 to 5 μm. The reason is that the sinterability of the powder in this range is excellent.

【0018】本発明の製造方法における1つの特徴は、
固体電解質基膜のスラリーの粘度を1〜500cps 、よ
り好ましくは1〜100cps に調整することである。下
限が1cps に制限される理由は、膜厚が限度以下に低下
するのを防ぐためである。上限が500cps に制限され
る理由は、緻密体である必要があるためである。スラリ
ー粘度は、バインター量を0.1〜10重量部、固体電
解質粉末を5〜40重量部に調整することにより達成で
きる。尚、中間膜は、緻密体でも、多孔質でもよいため
スラリー粘度は、1〜1000cps で管理すればよい。
固体電解質基膜が緻密体である必要がある理由は、酸化
剤あるいは燃料のリークによる電池の起電力低下を防ぐ
ためである。中間膜が緻密体でも多孔質でもよい理由
は、この部分は、イオン導電性と電子導電性の2つの機
能を有しているため、緻密体でも多孔体でも同様な発電
性能を発現できるためである。
One feature of the manufacturing method of the present invention is that
The viscosity of the slurry of the solid electrolyte base membrane is adjusted to 1 to 500 cps, more preferably 1 to 100 cps. The lower limit is limited to 1 cps to prevent the film thickness from falling below the limit. The reason why the upper limit is limited to 500 cps is that it must be a dense body. The slurry viscosity can be achieved by adjusting the binder amount to 0.1 to 10 parts by weight and the solid electrolyte powder to 5 to 40 parts by weight. Since the intermediate film may be dense or porous, the slurry viscosity may be controlled at 1 to 1000 cps.
The reason why the solid electrolyte base membrane needs to be a dense body is to prevent a decrease in electromotive force of the battery due to leakage of an oxidant or fuel. The reason why the intermediate film may be a dense body or a porous body is that this portion has two functions of ionic conductivity and electronic conductivity, and thus a similar power generation performance can be exhibited by the dense body and the porous body. is there.

【0019】燃料電極用粉末は、NiOとYSZ(Y2
3 mol %8〜12)の混合粉末が好ましい。この混合
比は、NiOが全体の40〜90%、さらには60〜8
0%が好ましい。その理由は、導電性を向上させ、ま
た、電解質との熱膨張率をマッチングさせるためであ
る。
The fuel electrode powder is composed of NiO and YSZ (Y 2
A mixed powder of O 3 mol% 8-12) is preferred. The mixing ratio of NiO is 40 to 90% of the whole, and further 60 to 8%.
0% is preferable. The reason is to improve the conductivity and to match the coefficient of thermal expansion with the electrolyte.

【0020】NiOの粒径は、0.1〜10、さらには
0.1〜1.0μm が好ましい。その理由は、YSZ粒
子(0.1〜5μm )との合致性および電解質との密着
性に優れているからである。
The particle size of NiO is preferably 0.1-10, more preferably 0.1-1.0 μm. The reason is that the conformity with YSZ particles (0.1 to 5 μm) and the adhesion with the electrolyte are excellent.

【0021】燃料電極用スラリー粘度は1〜480cps
が好ましい。さらには、10〜300cps が好ましい。
その理由は、適当な膜厚を確保し、また、スラリーコー
ト後の乾燥クラックを防ぐためである。
Slurry viscosity for fuel electrode is 1 to 480 cps
Is preferred. Further, 10 to 300 cps is preferable.
The reason is to ensure an appropriate film thickness and prevent dry cracks after slurry coating.

【0022】[0022]

【実施例】以下、本発明の実施例を説明する。 (1)固体電解質基膜:ZrO2 +8mol%Y23 の粉
末(平均粒径1μm )40重量部を、有機溶剤(αテル
ビネオール、エチルアルコール)100重量部、バイン
ダ(エチルセルロース)2重量部、分散剤(ポリオキシ
エタレンアルキルソン酸エステル)1重量部、消泡剤
(ソルビタンセスキオレート)1重量部とを混合した
後、十分攪拌して固体電解質基膜用スラリーを調整し
た。このスラリー粘度は140cps であった。上記固体
電解質膜基膜用スラリーを、多孔質LaSrMnO3
チューブ上にスラリーコート法により、厚み30μm で
形成されたもの(焼成済)を準備した。
EXAMPLES Examples of the present invention will be described below. (1) Solid electrolyte base membrane: ZrO 2 +8 mol% Y 2 O 3 powder (average particle size 1 μm) 40 parts by weight, organic solvent (α terbineol, ethyl alcohol) 100 parts by weight, binder (ethyl cellulose) 2 parts by weight, After mixing 1 part by weight of a dispersant (polyoxyetalene alkylsonate) and 1 part by weight of a defoaming agent (sorbitan sesquioleate), the mixture was sufficiently stirred to prepare a slurry for a solid electrolyte base membrane. The slurry viscosity was 140 cps. The above-mentioned slurry for solid electrolyte membrane base membrane was prepared on the tube of porous LaSrMnO 3 by the slurry coating method to have a thickness of 30 μm (baked).

【0023】(2)中間膜塗膜用スラリー調整:ZrO
2 +8mol %Y23 の粉末(平均粒径1μm )80重
量部と、有機溶剤(α・テルピネオール、エチルアルコ
ール)94重量部、バインダー(エチルセルロース)4
重量部、分散剤(ポリオキシエタレンアルキルリン酸エ
ステル)1重量部、消泡剤(ソルビタンセスキオレエー
ト)1重量部と、を混合した後、十分攪拌して中間膜塗
膜用スラリーを調整した。このスラリーの粘度は600
cps であった。なお、上記ZrO2 +8mol %Y23
粉末の組成の代わりに、CeO2 系やTiO2 系の電解
質を使用してもよい。
(2) Slurry preparation for intermediate film coating: ZrO
80 parts by weight of 2 + 8 mol% Y 2 O 3 powder (average particle size 1 μm), 94 parts by weight of organic solvent (α / terpineol, ethyl alcohol), binder (ethyl cellulose) 4
After mixing 1 part by weight, 1 part by weight of a dispersant (polyoxyethalene alkyl phosphate) and 1 part by weight of a defoaming agent (sorbitan sesquioleate), the mixture is thoroughly stirred to prepare a slurry for intermediate film coating. did. The viscosity of this slurry is 600
It was cps. The above ZrO 2 +8 mol% Y 2 O 3
A CeO 2 -based or TiO 2 -based electrolyte may be used instead of the powder composition.

【0024】(3)燃料電極用スラリー調整:NiO粉
末(粒径0.8μm )70重量部とZrO2 +8mol %
23 粉末(粒径1μm )30重量部と有機溶剤(α
・テルピネオール、エチルアルコール)94重量部、バ
インダー(エチルセルロース)4重量部、分散剤(ポリ
オキシエタレンアルキルリン酸エステル)1重量部、消
泡剤(ソルビタンセスキオレエーテ)1重量部とを混合
した後、十分攪拌して燃料電極塗膜用スラリーを調整し
た。このスラリーの粘度は400cps であった。
(3) Preparation of slurry for fuel electrode: 70 parts by weight of NiO powder (particle size 0.8 μm) and ZrO 2 +8 mol%
30 parts by weight of Y 2 O 3 powder (particle size 1 μm) and organic solvent (α
-Terpineol, ethyl alcohol) 94 parts by weight, binder (ethyl cellulose) 4 parts by weight, dispersant (polyoxyethalene alkyl phosphate ester) 1 part by weight, and defoaming agent (sorbitan sesquioleate) 1 part by weight were mixed. Then, the slurry for fuel electrode coating film was prepared by sufficiently stirring. The viscosity of this slurry was 400 cps.

【0025】(4)塗膜:上記のように調整した中間膜
塗膜用スラリーを固体電解質基膜表面上にスラリーコー
ト法により塗布した。塗膜厚は10μm であった。この
中間膜塗膜を乾燥した後、さらにその上に、上記のよう
に調整した燃料電極塗膜用スラリーをスラリーコート法
により塗布した。この燃料電極塗膜厚は100μm であ
った。なお、燃料電極(電極)用塗膜の厚さは、用途に
よって任意の厚さとできる。SOFC用の燃料電極とし
ては、厚50〜200μm が一般的である。
(4) Coating film: The intermediate film coating slurry prepared as described above was applied onto the surface of the solid electrolyte base film by the slurry coating method. The coating thickness was 10 μm. After drying this intermediate film coating, the fuel electrode coating slurry prepared as described above was further applied thereon by the slurry coating method. The fuel electrode coating film thickness was 100 μm. The thickness of the fuel electrode (electrode) coating film may be any thickness depending on the application. A fuel electrode for SOFC generally has a thickness of 50 to 200 μm.

【0026】(5)乾燥、焼成:上記のように塗膜した
基板を乾燥(室温で1hr、100℃で1hr保持)し、焼
成(1450℃×1hr)した。
(5) Drying and firing: The substrate coated as described above was dried (1 hour at room temperature and 1 hour at 100 ° C.) and fired (1450 ° C. × 1 hour).

【0027】(6)性能試験:得られた基板を用いて発
電試験を行った。中間層膜をしないサンプルに比べ、
1.5倍の性能があることを確認した。
(6) Performance test: A power generation test was conducted using the obtained substrate. Compared to the sample without the intermediate layer film,
It was confirmed that the performance was 1.5 times.

【0028】[0028]

【発明の効果】以上の説明から明らかなように本発明は
以下の効果を発揮する。 密着性が良く接触抵抗が小さい、固体電解質膜と電
極膜との接続構造が得られる。 使用する設備が安価であり、作業も簡易なため、量
産性が高く、製品のコストが安い。 製品寸法が特に製造設備寸法によって制限を受けな
いため、大型の製品を製造しやすい。 〜の結果、性能のよいSOFCセルや酸素ポン
プ用素子を低コストで提供できる。
As is apparent from the above description, the present invention exhibits the following effects. A connection structure between the solid electrolyte membrane and the electrode membrane, which has good adhesion and low contact resistance, can be obtained. Because the equipment used is inexpensive and the work is simple, mass productivity is high and the product cost is low. Since the product size is not particularly limited by the manufacturing equipment size, it is easy to manufacture a large product. As a result, it is possible to provide a high-performance SOFC cell or oxygen pump element at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/12 9444−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01M 8/12 9444-4K

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質基膜と、この固体電解質基膜
の上面に形成された中間膜と、この中間膜の上面に形成
された電極膜と、からなり;中間膜がイオン導電性を有
する材料からなり;中間膜が固体電解質基膜上にスラリ
ー法により塗膜された上に、電極膜がスラリー法により
塗膜され、両膜が一体に乾燥・焼成されていることを特
徴とする固体電解質膜と電極膜との接続構造。
1. A solid electrolyte base film, an intermediate film formed on the upper surface of the solid electrolyte base film, and an electrode film formed on the upper surface of the intermediate film; the intermediate film having ionic conductivity. Made of a material; a solid characterized in that an intermediate film is coated on a solid electrolyte base film by a slurry method, an electrode film is coated by a slurry method, and both films are integrally dried and baked. Connection structure between electrolyte membrane and electrode membrane.
【請求項2】 固体電解質基膜と、この固体電解質基膜
の上面に形成された中間膜と、この中間膜の上面に形成
された電極膜と、からなる固体電解質膜と電極膜との接
続構造の製造方法であって;イオン導電性を有する材料
の粉末を含む中間膜用スラリーを調整し、固体電解質基
膜上に塗布する中間膜塗膜工程と、 この中間膜塗膜上に、電極膜を構成する物質の粉末を含
む電極膜用スラリーを調整して塗布する電極膜塗膜工程
と、 上記中間膜塗膜と電極膜塗膜とを同時に焼成する工程
と、 を含むことを特徴とする固体電解質膜と電極膜との接続
構造の製造方法。
2. A solid electrolyte base membrane, a solid electrolyte base membrane, an intermediate film formed on the upper surface of the solid electrolyte base membrane, and an electrode film formed on the upper surface of the intermediate membrane. A method for manufacturing a structure; an intermediate film coating step of preparing a slurry for an intermediate film containing a powder of a material having ionic conductivity, and applying the slurry onto a solid electrolyte base film; and an electrode on the intermediate film coating. An electrode film coating step of adjusting and applying a slurry for an electrode film containing a powder of a substance forming a film, and a step of simultaneously firing the intermediate film coating and the electrode film coating, Of manufacturing a connection structure between a solid electrolyte membrane and an electrode membrane.
【請求項3】 上記固体電解質がY23 安定化ZrO
2 (YSZ)であり、電極膜を構成する物質が、NiO
とYSZの混合物である、請求項1又は2記載の固体電
解質膜と電極膜との接続構造又はその製造方法。
3. The solid electrolyte is Y 2 O 3 -stabilized ZrO.
2 (YSZ), and the substance forming the electrode film is NiO
3. The connection structure between the solid electrolyte membrane and the electrode membrane according to claim 1 or 2, which is a mixture of YSZ and YSZ, or a manufacturing method thereof.
【請求項4】 上記固体電解質基膜を構成する材料がY
SZであり、中間膜を形成する材料が、CeO2 系の材
料、TiO2 の材料、若しくはZrO2 の材料、又は、
これらの混合物である請求項1又は2記載の固体電解質
と電極膜との接続構造又はその製造方法。
4. The material constituting the solid electrolyte base membrane is Y
SZ and the material forming the intermediate film is a CeO 2 -based material, a TiO 2 material, or a ZrO 2 material, or
The connection structure between the solid electrolyte and the electrode film according to claim 1 or 2, which is a mixture thereof, or a method for producing the same.
【請求項5】 上記固体電解質膜の厚さが10〜100
μm であり、上記中間膜の厚さが0.5〜50μm 、上
記電極膜の厚さが30〜300μm である請求項1〜4
いずれか1項記載の固体電解質膜と電極膜との接続構造
又はその製造方法。
5. The solid electrolyte membrane has a thickness of 10 to 100.
5. The thickness of the intermediate film is 0.5 to 50 .mu.m, and the thickness of the electrode film is 30 to 300 .mu.m.
A connection structure between the solid electrolyte membrane and the electrode membrane according to any one of claims 1 to 3, or a method for producing the same.
【請求項6】 上記固体電解質基膜材料粉末の粒径が
0.1〜5μm であり、スラリーの粘度が1〜500cp
s である請求項2〜5いずれか1項記載の固体電解質膜
と電極膜との接続構造の製造方法。
6. The particle size of the solid electrolyte base membrane material powder is 0.1 to 5 μm, and the viscosity of the slurry is 1 to 500 cp.
The method for producing a connection structure between a solid electrolyte membrane and an electrode membrane according to any one of claims 2 to 5, which is s.
【請求項7】 上記NiO粉末の粒径が0.1〜10μ
m である請求項3記載の固体電解質膜と電極膜との接続
構造又はその製造方法。
7. The particle size of the NiO powder is 0.1-10 μm.
The connection structure between the solid electrolyte membrane and the electrode membrane according to claim 3, or a method for producing the same.
【請求項8】 上記電極膜用スラリーの粘度が1〜48
0cps である請求項2〜7いずれか1項記載の固体電解
質膜と電極膜との接続構造の製造方法。
8. The viscosity of the electrode film slurry is 1 to 48.
It is 0 cps, The manufacturing method of the connection structure of the solid electrolyte membrane and electrode membrane of any one of Claims 2-7.
JP6130809A 1994-05-23 1994-05-23 Connecting structure between solid electrolytic film and electrode film, and its manufacture Pending JPH07320754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6130809A JPH07320754A (en) 1994-05-23 1994-05-23 Connecting structure between solid electrolytic film and electrode film, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6130809A JPH07320754A (en) 1994-05-23 1994-05-23 Connecting structure between solid electrolytic film and electrode film, and its manufacture

Publications (1)

Publication Number Publication Date
JPH07320754A true JPH07320754A (en) 1995-12-08

Family

ID=15043220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6130809A Pending JPH07320754A (en) 1994-05-23 1994-05-23 Connecting structure between solid electrolytic film and electrode film, and its manufacture

Country Status (1)

Country Link
JP (1) JPH07320754A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
JP2003263996A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid oxide fuel cell
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell
JP2005216761A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2007073336A (en) * 2005-09-07 2007-03-22 Toto Ltd Solid oxide fuel cell
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
JP2009087829A (en) * 2007-10-01 2009-04-23 Inst Nuclear Energy Research Rocaec Manufacturing method for membrane electrode assembly for solid oxide type fuel cell with high integrity
US7782244B2 (en) 2005-07-25 2010-08-24 About Face Technologies, Llc Intuitive based control elements, and interfaces and devices using said intuitive based control elements
JP2014135135A (en) * 2013-01-08 2014-07-24 Noritake Co Ltd Green sheet for solid oxide fuel cell and method of producing the same
JP2016129158A (en) * 2016-04-15 2016-07-14 株式会社ノリタケカンパニーリミテド Green sheet for solid oxide fuel cell and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351646A (en) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3 SOLID ELECTROLYTE FUEL CELL
JP2003263996A (en) * 2002-03-11 2003-09-19 Mitsubishi Materials Corp Solid oxide fuel cell
JP2005100816A (en) * 2003-09-25 2005-04-14 Kyocera Corp Manufacturing method of cell of fuel cell
JP2005216761A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
US7782244B2 (en) 2005-07-25 2010-08-24 About Face Technologies, Llc Intuitive based control elements, and interfaces and devices using said intuitive based control elements
US8125368B2 (en) 2005-07-25 2012-02-28 About Face Technologies, Llc Intuitive based touch-screen control elements, and devices using said intuitive based touch-screen control elements
JP4596158B2 (en) * 2005-09-07 2010-12-08 Toto株式会社 Solid oxide fuel cell
JP2007073336A (en) * 2005-09-07 2007-03-22 Toto Ltd Solid oxide fuel cell
JP2007141492A (en) * 2005-11-15 2007-06-07 Kyocera Corp Fuel battery cell
JP2009087829A (en) * 2007-10-01 2009-04-23 Inst Nuclear Energy Research Rocaec Manufacturing method for membrane electrode assembly for solid oxide type fuel cell with high integrity
JP2014135135A (en) * 2013-01-08 2014-07-24 Noritake Co Ltd Green sheet for solid oxide fuel cell and method of producing the same
JP2016129158A (en) * 2016-04-15 2016-07-14 株式会社ノリタケカンパニーリミテド Green sheet for solid oxide fuel cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6099985A (en) SOFC anode for enhanced performance stability and method for manufacturing same
US5035962A (en) Layered method of electrode for solid oxide electrochemical cells
EP2748884B1 (en) Solid oxide fuel cell with composite anode with improved mechanical integrity and increased efficiency
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
US5281490A (en) Process for producing solid oxide fuel cells
JP3245865B2 (en) Solid electrolyte thin film and method for producing the same
JPH07320754A (en) Connecting structure between solid electrolytic film and electrode film, and its manufacture
US5227258A (en) Fuel electrodes for solid oxide fuel cells and production thereof
US5672437A (en) Solid electrolyte for a fuel cell
JPH1021935A (en) Solid electrolyte fuel cell
JP2003208902A (en) Solid electrolyte-type fuel cell
KR101146349B1 (en) Fabrication Method of Metal Supported Solid Oxide Fuel Cell
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JPH1173982A (en) Solid electrolyte fuel cell and its manufacture
JP3319136B2 (en) Solid electrolyte fuel cell
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP2000044245A (en) Production of lscm/ysz composite powder and production of solid electrolyte type fuel cell using the powder
JP3339299B2 (en) Method for forming dense lanthanum chromite thin film
JP2848551B2 (en) Method for producing electrolyte membrane for solid oxide fuel cell
JP2001118590A (en) High conductivity solid electrolyte film and method for manufacturing the same
JPH07320757A (en) Solid electrolytic fuel cell interconnector, and its manufacture
JP3525601B2 (en) Method for forming dense ceramic thin film
JP2001023653A (en) Compact solid electrolyte film, solid electrolyte type fuel cell containing the same and manufacture thereof