JPH0732023B2 - Bipolar plate for redox flow battery - Google Patents

Bipolar plate for redox flow battery

Info

Publication number
JPH0732023B2
JPH0732023B2 JP61182280A JP18228086A JPH0732023B2 JP H0732023 B2 JPH0732023 B2 JP H0732023B2 JP 61182280 A JP61182280 A JP 61182280A JP 18228086 A JP18228086 A JP 18228086A JP H0732023 B2 JPH0732023 B2 JP H0732023B2
Authority
JP
Japan
Prior art keywords
bipolar plate
redox flow
battery
manifold
flow battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61182280A
Other languages
Japanese (ja)
Other versions
JPS6340267A (en
Inventor
博靖 小川
明人 岸
Original Assignee
東邦レーヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦レーヨン株式会社 filed Critical 東邦レーヨン株式会社
Priority to JP61182280A priority Critical patent/JPH0732023B2/en
Publication of JPS6340267A publication Critical patent/JPS6340267A/en
Publication of JPH0732023B2 publication Critical patent/JPH0732023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電池特性、特に電流効率が改善され、工業的生
産の極めて有利なレドックスフロー型電池用バイポーラ
板に関するものである。
TECHNICAL FIELD The present invention relates to a bipolar plate for a redox flow type battery, which has improved battery characteristics, particularly current efficiency, and is extremely advantageous in industrial production.

〔従来技術及び問題点〕 従来より大容量の蓄電池システムにより、オフピーク時
の余剰電力を電気化学的反応によって貯蔵(充電)し、
ピーク時に放出(放電)する、いわゆるロードレベリン
グ機能を持つ電力貯蔵システムが開発されている。貯蔵
を例にとれば、将来、電源構成で大きな比重を占めると
予想される原子力発電では、一定の出力を保って定常発
電することが高い効率を保つ上で必要であり、その電源
機構比率が20%を超え且つ貯蔵システムの総合効率が70
%に達すると貯蔵設備運用上不利がなくなるといわれて
いる。
[Prior Art and Problems] With a storage battery system having a larger capacity than before, surplus power during off-peak is stored (charged) by an electrochemical reaction,
A power storage system having a so-called load leveling function, which discharges (discharges) at a peak, has been developed. Taking storage as an example, in the case of nuclear power generation, which is expected to occupy a large proportion in the power supply composition in the future, it is necessary to maintain constant output and steady power generation in order to maintain high efficiency. Over 20% and 70 total storage system efficiency
It is said that when it reaches%, there is no disadvantage in operating the storage facility.

電力貯蔵の方法には、実用化されているものがあるが、
送電によるロスがあり、また、揚水発電は立地に制約が
加わって来ており、従って、新型2次電池が最も実用性
の高い方式であると考えられている。また、新型2次電
池は、太陽光、風力、波力等の自然エネルギーを利用し
た発電のバックアップ装置、或いは電気自動車用電池と
しても期待が寄せられている。上記目的に適用できる2
次電池としては、鉛蓄電池、ナトリウム−硫黄電池、リ
チウム−硫黄鉄電池、金属−ハロゲン電池、レドックス
フロー型電池等が現在開発されている。
There are some practical methods for power storage,
There is a loss due to power transmission, and pumped storage power generation is subject to restrictions on location. Therefore, the new secondary battery is considered to be the most practical method. Further, the new type secondary battery is also expected as a backup device for power generation using natural energy such as sunlight, wind power, and wave power, or a battery for an electric vehicle. Applicable to the above purpose 2
As a secondary battery, a lead storage battery, a sodium-sulfur battery, a lithium-sulfur iron battery, a metal-halogen battery, a redox flow battery, etc. are currently being developed.

なかでもレドックスフロー型2次電池は、充放電時の電
気化学的エネルギー変化を行なわせる流動型電解槽と活
物質であるレドクックス電解液を貯蔵するタンクとが完
全に分離しているため、タンクの容量を変更するだけで
電力貯蔵を変えることができること、従って、長時間、
大容量の電力貯蔵に適していること、液流通型であるた
め電池出力を調整しやすい事、電池停止時の自己放電が
殆んどなく、風力発電、太陽光発電など自然エネルギー
発電のバックアップ電源としても適していること等優れ
た特徴がある。
Among them, the redox flow type secondary battery is completely separated from the fluid type electrolytic cell for changing the electrochemical energy during charging / discharging and the tank for storing the redox electrolyte which is the active material. Being able to change the power storage simply by changing the capacity, and thus for a long time,
Suitable for large-capacity power storage, easy to adjust the battery output because it is a liquid circulation type, almost no self-discharge when the battery is stopped, and a backup power source for natural energy generation such as wind power generation and solar power generation It has excellent features such as being suitable as

貯蔵システムの総合効率が70%以上を達成するには、ポ
ンプ動力等の電力消費を考慮すると電池のエネルギー効
率は80%程度なくてはならない。エネルギー効率は下記
第(1)式より求めることができる。
In order to achieve the total efficiency of the storage system of 70% or more, the energy efficiency of the battery must be about 80% in consideration of power consumption such as pump power. Energy efficiency can be calculated from the following formula (1).

エネルギー効率=電流効率×電圧効率 …(1) (1)式からわかるように、エネルギー効率は電流効
率、電圧効率の両面から改善する必要がある。電流効率
は充放電時の水素発生並びに電解液流通孔から損失する
シャント電流により低下する。また、電圧効率は、セル
を構成する電極材、隔膜、バイポーラ板の導電性及び電
極剤の酸化還元反応速度に依存する。
Energy efficiency = current efficiency × voltage efficiency (1) As can be seen from the equation (1), energy efficiency needs to be improved in terms of both current efficiency and voltage efficiency. The current efficiency decreases due to hydrogen generation during charging / discharging and shunt current lost from the electrolyte flow holes. In addition, the voltage efficiency depends on the conductivity of the electrode material, the diaphragm, and the bipolar plate constituting the cell, and the redox reaction rate of the electrode material.

第1図は、レドックスフロー型電池におけるセルの具体
的構成の一例を示す略図的斜視図である。ここでは、隔
膜1を隔てて正極側及び負極側にそれぞれ反応電極2、
バイポーラ板3が配置されている。実用的には第1図に
示したバイポーラ板/正極電極/隔膜/負極電極/バイ
ポーラ板の繰返し単位で数十枚〜数百枚積層されたれた
形で使用される。
FIG. 1 is a schematic perspective view showing an example of a specific configuration of a cell in a redox flow type battery. Here, the reaction electrode 2 is provided on the positive electrode side and the negative electrode side with the diaphragm 1 interposed therebetween.
A bipolar plate 3 is arranged. Practically, several tens to several hundreds of the bipolar plate / positive electrode / diaphragm / negative electrode / bipolar plate repeating unit shown in FIG. 1 are stacked and used.

第2図は、第1図に示したバイポーラ板の詳細図であ
る。バイポーラ板は電解液流通孔であるマニホールド3
a、スリット3bを持っており、この電解液流通孔がシャ
ント電流による電流効率低下の原因となっている。従来
の方式は、バイポーラ板にプラスチック枠を接着剤で組
込み、そのプラスチック枠にマニホールド及びスリット
を構成する方法であった。しかし、この方式ではプラス
チック枠を新たに作成する必要があり、バイポーラ板と
プラスチック枠を接着して、一体化するには極めて細か
い作業と長時間を要し到底工業化に耐える製造工程とは
いいがたかった。しかも、プラスチック枠とバイポーラ
板の熱膨脹係数の差から、電解液の漏れが発生する場合
もあった。また、導電性のバイポーラ板にマニホールド
及びスリットを構成した場合は、マニホールド及びスリ
ットの作成並びにセルスタックの組立て工程は簡略化さ
れるが、シャント電流による電流効率の低下が大きく電
池性能に問題があった。
FIG. 2 is a detailed view of the bipolar plate shown in FIG. Bipolar plate is the electrolyte flow hole Manifold 3
It has a and slit 3b, and this electrolyte flow hole causes the current efficiency to decrease due to the shunt current. The conventional method is a method of incorporating a plastic frame into a bipolar plate with an adhesive and forming a manifold and slits in the plastic frame. However, with this method, it is necessary to create a new plastic frame, and it takes a very minute work and a long time to bond and integrate the bipolar plate and the plastic frame, which is a manufacturing process that can withstand industrialization at all. I wanted Moreover, due to the difference in thermal expansion coefficient between the plastic frame and the bipolar plate, the electrolyte may leak. Further, when the manifold and the slits are formed on the conductive bipolar plate, the steps of forming the manifold and the slits and assembling the cell stack are simplified, but the current efficiency is greatly reduced due to the shunt current, which causes a problem in the battery performance. It was

〔発明の目的〕[Object of the Invention]

本発明の目的は、上述のセルスタック組立て時の問題点
を解消し、シャント電流による損失を防ぎ電流効率の高
いバイポーラ板を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems at the time of assembling a cell stack, to prevent a loss due to a shunt current, and to provide a bipolar plate having high current efficiency.

〔発明の構成〕[Structure of Invention]

本発明は、炭素繊維とカーボンブラックとの混合物と樹
脂とからなる成形物であり、かつマニホールド部及びス
リット部を有する枠なしレドックスフロー型電池用バイ
ポーラ板であって、マニホールド部及びスリット部の両
部位に電気絶縁材を配してなるレドックスフロー型電池
用バイポーラ板。
The present invention is a frameless redox flow battery bipolar plate having a manifold part and a slit part, which is a molded product composed of a mixture of carbon fiber and carbon black and a resin, and has both the manifold part and the slit part. A bipolar plate for a redox flow battery that has an electrical insulating material on its part.

炭素繊維は、ポリアクリロニトリル(PAN)系、ピッチ
系等その種類に制限がなく、通常その体積抵抗率が5×
10-4〜2×10-3Ω・cmの範囲の織物などの集積体であ
る。
There is no limitation on the type of carbon fiber such as polyacrylonitrile (PAN) type and pitch type, and the volume resistivity is usually 5 ×.
It is an aggregate of woven fabrics in the range of 10 −4 to 2 × 10 −3 Ω · cm.

また、カーボンブラックは、樹脂中での分散性が良好で
あれば、ファーネス系、アセチレン、ケッチン系系等い
ずれでもよい。
Further, carbon black may be any of furnace type, acetylene type, ketchin type and the like as long as it has good dispersibility in the resin.

さらに、樹脂は、レドックスフロー型電池に使用する電
解液に対し耐蝕性を有するもであれば熱硬化性樹脂、熱
可塑性樹脂いずれでもよい。
Further, the resin may be either a thermosetting resin or a thermoplastic resin as long as it has corrosion resistance to the electrolytic solution used in the redox flow battery.

バイポーラ板を構成する成形物は、炭素繊維集積体に、
カーボンブラックを含有せしめた樹脂を含浸・硬化した
炭素繊維強化プラスチック(CFRP)板である。
The molded product that constitutes the bipolar plate is a carbon fiber aggregate,
A carbon fiber reinforced plastic (CFRP) plate impregnated and cured with a resin containing carbon black.

炭素繊維集積体を用いることによって、バイポーラ板は
強度、導電性に優れ好適例である。
By using the carbon fiber aggregate, the bipolar plate is excellent in strength and conductivity and is a preferable example.

また、カーボンブラックを用いることによって、後に示
す実施例1に示すごとく、電流効率が高く、セル抵抗値
が低く、バイポーラ板として好適である。
Further, by using carbon black, as shown in Example 1 described later, the current efficiency is high and the cell resistance value is low, which is suitable for a bipolar plate.

バイポーラ板のマニホールド部又はスリット部又はこれ
らの両部位に電気絶縁を施す方法としては、例えば絶縁
性を有するガラス繊維強化プラスチック(GFRP)板やポ
リエチレン等を用いてマニホールド部又はスリット部又
は両者を構成する方法がある。また、レドックスフロー
型電池に使用する電解液に対する耐蝕性を有する電気絶
縁性塗料をマニホールド部又はスリット部又は両者にコ
ーティングするか、又は電気絶縁性フィルムをラミネー
トする絶縁方法もある。
As a method of electrically insulating the manifold part or the slit part of the bipolar plate or both parts thereof, for example, a glass fiber reinforced plastic (GFRP) plate or polyethylene having an insulating property is used to form the manifold part or the slit part or both. There is a way to do it. In addition, there is also an insulation method in which an electrically insulating paint having corrosion resistance to an electrolytic solution used for a redox flow battery is coated on the manifold portion or the slit portion or both, or an electrically insulating film is laminated.

〔実施例及び比較例〕[Examples and Comparative Examples]

以下、図面を参照しつつ、比較例を前示したうえで、実
施例を挙示することにより、本発明の特徴を明らかにす
る。
Hereinafter, with reference to the drawings, the characteristics of the present invention will be clarified by showing the comparative example and the examples.

比較例1 厚さ0.2mmの炭素繊維布にエポキシ樹脂及び硬化剤100重
量部と導電性カーボン粉3重量部を混練した後、含浸し
プリプレグを作製した。このプリプレグを3枚積層し、
ホットプレスで加熱硬化し、厚さ0.6mmのバイポーラ板
を作製した。第3図(a)に示す直径30mmのマニホール
ド及びスリットを有するプラスチック枠にシリコン樹脂
でバイポーラ板を固定したが、接着剤は煩雑で固定には
一夜を要した。
Comparative Example 1 A 0.2 mm thick carbon fiber cloth was kneaded with 100 parts by weight of an epoxy resin and a curing agent and 3 parts by weight of conductive carbon powder, and then impregnated to prepare a prepreg. Three layers of this prepreg are laminated,
It was heat-cured with a hot press to prepare a bipolar plate having a thickness of 0.6 mm. A bipolar plate was fixed with a silicone resin to a plastic frame having a 30 mm diameter manifold and slits shown in FIG. 3 (a), but the adhesive was complicated and it took overnight to fix.

このようにして得られたバイポーラ板組込みプラスチッ
ク枠複合体を、第1図のごとき構成で6セルスタックと
し充放電試験を行なった。電池特性は、電流効率95%、
セル抵抗値2.1Ω・cm2であり、電流効率は優れていた。
The bipolar plate-incorporated plastic frame composite thus obtained was subjected to a charge / discharge test using a 6-cell stack having the structure shown in FIG. Battery characteristics are current efficiency 95%,
The cell resistance was 2.1 Ω · cm 2 , and the current efficiency was excellent.

比較例2 比較例1と同一のバイポーラ板を比較例1のプラスチッ
ク枠と同一の寸法で作製した(第3図(d))。このバ
イポーラ板に直径30mmの穴を開けマニホールドとした。
スリットを有するスペーサーを用い、第1図の構成によ
り6セルスタックとして充放電試験を行った。ここでい
うスペーサーとは、電極の厚みを確保するための絶縁性
シートまたは板で、枠と同じ形をしたものである。電流
効率69.5%、セル抵抗値2.1Ω・cm2であり電流効率は極
めて悪かった。
Comparative Example 2 The same bipolar plate as Comparative Example 1 was produced with the same dimensions as the plastic frame of Comparative Example 1 (Fig. 3 (d)). A 30 mm diameter hole was made in this bipolar plate to form a manifold.
Using a spacer having slits, a charge and discharge test was conducted as a 6-cell stack with the configuration shown in FIG. The spacer here is an insulating sheet or plate for ensuring the thickness of the electrode and has the same shape as the frame. The current efficiency was 69.5% and the cell resistance value was 2.1 Ω · cm 2 , so the current efficiency was extremely poor.

比較例3 導電性カーボンブラック35重量%、粉末ポリエチレン65
重量%を均一に混合し、金型内に敷きホットプレス法で
カーボンプラスチックを作製し、直径30mmの穴を開けマ
ニホールドを構成した。このバイポーラ板のマニホール
ド部、スリット部にポリエチレン系塗料を塗布して電気
絶縁したバイポーラ板を作製した(第3図(b))。
Comparative Example 3 35% by weight of conductive carbon black, powdered polyethylene 65
The weight% was mixed uniformly and spread in a mold to produce carbon plastic by hot pressing, and a hole having a diameter of 30 mm was punched to form a manifold. A polyethylene-based paint was applied to the manifold portion and the slit portion of this bipolar plate to produce an electrically insulated bipolar plate (Fig. 3 (b)).

このものを用いて、スリットを有するスペーサー枠と電
極、隔膜を第1図の構成により6セルスタックとし、充
放電試験を行なった。電流効率94.2%、セル抵抗値2.3
Ω・cm2であった。
Using this one, a spacer frame having slits, electrodes, and a diaphragm were made into a 6-cell stack with the configuration of FIG. 1 and a charge / discharge test was conducted. Current efficiency 94.2%, cell resistance 2.3
It was Ω · cm 2 .

比較例4 厚さ0.2mmの炭素繊維布にエポキシ樹脂及び硬化剤を含
浸しプリプレグを作製した。このプリプレグを3枚積層
し、ホットプレスで加熱硬化し、厚さ0.6mmのバイポー
ラ板を作製し、直径50mmの穴を4箇所開けた。エポキシ
樹脂を用い、厚さ0.6mm、外径50mm、内径30mmのドーナ
ツ状GFRP板を作製した。
Comparative Example 4 A carbon fiber cloth having a thickness of 0.2 mm was impregnated with an epoxy resin and a curing agent to prepare a prepreg. Three sheets of this prepreg were laminated and cured by heating with a hot press to prepare a bipolar plate having a thickness of 0.6 mm, and four holes having a diameter of 50 mm were drilled. Using epoxy resin, a doughnut-shaped GFRP plate having a thickness of 0.6 mm, an outer diameter of 50 mm and an inner diameter of 30 mm was produced.

このドーナツ状GFRP板をバイポーラ板の穴に埋込み接着
剤で固定し、直径30mmのマニホールドを作製した(第3
図(c))。
This donut-shaped GFRP plate was embedded in the hole of the bipolar plate and fixed with an adhesive to produce a manifold with a diameter of 30 mm (3rd part).
Figure (c)).

このようにして得られたバイポーラ板をフェルト組織の
炭素繊維電極と隔膜とともに第1図のごとき構成で小型
単電池に組込み充放電試験を行なった。電池特性はセル
抵抗値3.4Ω・cm2、エネルギー効率73.1%であり悪かっ
た。また、長期充放電試験においては、電解液が漏洩し
た。
The bipolar plate thus obtained, together with a carbon fiber electrode having a felt structure and a diaphragm, was assembled in a small unit cell with the structure shown in FIG. 1 and a charge / discharge test was conducted. The battery characteristics were poor, with a cell resistance of 3.4 Ω · cm 2 and an energy efficiency of 73.1%. Also, in the long-term charge / discharge test, the electrolyte leaked.

実施例1 比較例2と同一のバイポーラ板を作成し、直径50mmの穴
を4箇所開けた。比較例1と同一のエポキシ樹脂を用
い、厚さ0.6mm、外径50mm、内径30mmのドーナツ状のGFR
P板を作製した。
Example 1 The same bipolar plate as in Comparative Example 2 was prepared, and four holes having a diameter of 50 mm were made. Donut-shaped GFR with the same epoxy resin as in Comparative Example 1 with a thickness of 0.6 mm, an outer diameter of 50 mm and an inner diameter of 30 mm
A P plate was produced.

このドーナツ状GFRP板をバイポーラ板の穴に埋込み接着
剤で固定し、直径30mmのマニホールドを作製した(第3
図(c))。
This donut-shaped GFRP plate was embedded in the hole of the bipolar plate and fixed with an adhesive to produce a manifold with a diameter of 30 mm (3rd part).
Figure (c)).

このようにして作製した電気絶縁材を配したバイポーラ
板を第1図のごとき構成により6セルスタックとし、充
放電試験を行なった。電流効率94.9%、セル抵抗値2.1
Ω・cm2であり、比較例2に比べ電流効率が大幅に改善
された。
The bipolar plate on which the electric insulating material thus produced was arranged was made into a 6-cell stack by the constitution as shown in FIG. 1 and a charge / discharge test was conducted. Current efficiency 94.9%, cell resistance 2.1
It was Ω · cm 2 , and the current efficiency was significantly improved compared to Comparative Example 2.

以上のように、本発明によれば、枠なしバイポーラ板に
マニホールド及びスリットを構成し、マニホールド部及
びスリット部の両者に電気的絶縁を施したため、セルス
タック組立て時の工程が大幅に簡略化され、工業的生産
が極めて有利であり、また、シャフト電流による損失が
低減され電流効率を改善することが可能になる。
As described above, according to the present invention, the manifold and the slits are formed in the frameless bipolar plate, and both the manifold portion and the slit portion are electrically insulated. Therefore, the process of assembling the cell stack is greatly simplified. The industrial production is extremely advantageous, and the loss due to the shaft current is reduced, so that the current efficiency can be improved.

又、炭素繊維とカーボンブラックとの混合物と樹脂とか
らなるバイポーラ板のため、薄くてしかも強度が高く、
導電性にも優れたものとなる。
Also, because it is a bipolar plate made of a mixture of carbon fiber and carbon black and a resin, it is thin and has high strength,
It also has excellent conductivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は、レドックスフロー型電池におけるセルの具体
的構成の一例を示す略図的斜視図である。第2図は、バ
イポーラ板の詳細図である。第3図は、比較例、実施例
で使用したバイポーラ板の概略図である。第1′図、第
2′図、第3′図は、それぞれ第1図、第2図、第3図
の断面図である。 1:隔膜 2:電極 3:バイポーラ板 3a:マニホールド 3b:スリット 4:プラスチック枠 5:電気絶縁材
FIG. 1 is a schematic perspective view showing an example of a specific configuration of a cell in a redox flow type battery. FIG. 2 is a detailed view of the bipolar plate. FIG. 3 is a schematic view of bipolar plates used in Comparative Examples and Examples. 1 ', 2', and 3'are cross-sectional views of FIGS. 1, 2, and 3, respectively. 1: diaphragm 2: electrode 3: bipolar plate 3a: manifold 3b: slit 4: plastic frame 5: electrical insulation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維とカーボンブラックとの混合物及
び樹脂とからなる成形物で、かつマニホールド部及びス
リット部を有する枠なしレドックスフロー型電池用バイ
ポーラ板であって、マニホールド部及びスリット部の両
部位に電気絶縁材を配してなるレドックスフロー型電池
用バイポーラ板。
1. A bipolar plate for a frameless redox flow battery, which is a molded product made of a mixture of carbon fiber and carbon black and a resin, and has a manifold part and a slit part, wherein both the manifold part and the slit part are provided. A bipolar plate for a redox flow battery that has an electrical insulating material on its part.
【請求項2】炭素繊維が織物状であると特許請求の範囲
(1)のレドックスフロー型電池用バイポーラ板。
2. A bipolar plate for a redox flow battery according to claim 1, wherein the carbon fiber is woven.
JP61182280A 1986-08-02 1986-08-02 Bipolar plate for redox flow battery Expired - Fee Related JPH0732023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182280A JPH0732023B2 (en) 1986-08-02 1986-08-02 Bipolar plate for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182280A JPH0732023B2 (en) 1986-08-02 1986-08-02 Bipolar plate for redox flow battery

Publications (2)

Publication Number Publication Date
JPS6340267A JPS6340267A (en) 1988-02-20
JPH0732023B2 true JPH0732023B2 (en) 1995-04-10

Family

ID=16115509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182280A Expired - Fee Related JPH0732023B2 (en) 1986-08-02 1986-08-02 Bipolar plate for redox flow battery

Country Status (1)

Country Link
JP (1) JPH0732023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136593A (en) * 2011-02-22 2011-07-27 上海林洋储能科技有限公司 Fluid flow battery galvanic pile structure for feeding liquid by using insulating plate and fluid flow battery comprising same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848491B2 (en) * 1988-11-16 1999-01-20 株式会社日立製作所 Fuel injection control device
DE69716483T2 (en) * 1997-03-12 2003-06-26 Tno METHOD FOR PRODUCING A BIPOLAR PLATE
NL1014405C1 (en) * 2000-02-17 2001-08-20 Nedstack Holding B V Method of Manufacture Polymer Electrolyte Fuel Cells.
EP2529441B1 (en) * 2010-01-25 2016-05-04 Ramot at Tel Aviv University, Ltd. Method of manufacturing proton-conducting membranes
US10177389B2 (en) 2012-11-09 2019-01-08 United Technologies Corporation Electrochemical device and method for controlling corrosion
JP6804332B2 (en) * 2017-02-27 2020-12-23 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Electrochemical devices and methods of controlling corrosion
CN109841839B (en) * 2017-11-27 2021-09-28 中国科学院大连化学物理研究所 Bipolar plate for flow battery and preparation and application thereof
US20210391584A1 (en) * 2018-10-18 2021-12-16 Toyo Engineering Corporation Cell frame and redox flow battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1212303B (en) * 1978-07-10 1989-11-22 Elche Ltd REDOX ACCUMULATOR.
US4371433A (en) * 1980-10-14 1983-02-01 General Electric Company Apparatus for reduction of shunt current in bipolar electrochemical cell assemblies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136593A (en) * 2011-02-22 2011-07-27 上海林洋储能科技有限公司 Fluid flow battery galvanic pile structure for feeding liquid by using insulating plate and fluid flow battery comprising same

Also Published As

Publication number Publication date
JPS6340267A (en) 1988-02-20

Similar Documents

Publication Publication Date Title
KR100874199B1 (en) Power storage device and manufacturing method of power storage device
AU2002244957B2 (en) Organic electrolyte capacitor
CN111952663A (en) Interface-modified solid-state garnet type battery and preparation method thereof
US20130157111A1 (en) Bipolar electrochemical battery with an improved casing
GB2278712A (en) Bipolar plates for lead-acid battery,curing bipolar plates and bipolar lead-acid constructions
CN101894682B (en) High-energy ultracapacitor
CN109755027B (en) Composite graphene film, high-energy supercapacitor and intelligent flexible device
CN104201327A (en) Pole piece of lithium-ion energy storing battery and preparation method thereof
JPH0732023B2 (en) Bipolar plate for redox flow battery
CN113675480A (en) Lithium ion battery cell with sandwich structure, electric pile and preparation method thereof
CN204991877U (en) Multipolar ear lithium ion power batteries
KR20100034291A (en) Hybrid battery using super-capacitor
JPH0630252B2 (en) Electrode member for redox flow battery
CN109244599A (en) A kind of composite negative pole pole piece with rapid heating function and the battery core and battery using it
CN115207280A (en) Bipolar electrode based on metal oxide or composite material cathode thereof and bipolar lithium ion battery
CN110323483A (en) Secondary cell and preparation method thereof with include its power device
CN114497616B (en) Zinc-bromine storage battery
CN112713301B (en) Energy storage device
CN214428670U (en) Lithium ion battery capable of being charged at low temperature
Bullock Progress and Challenges in Bipolar Lead‐Acid Battery Development
KR101153610B1 (en) Electrode for secondary power and secondary power electrode for secondary power and secondary power comprising thereof comprising thereof
CN112713002A (en) Lithium ion capacitor and preparation method thereof
CN106129458A (en) A kind of high-energy-density long circulating ferric phosphate lithium cell and preparation method thereof
CN106299492A (en) Water system lithium ion battery with laminated structure
CN219658939U (en) Full-lug lamination structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees