JPH07319551A - Method and device for controlling flow rate - Google Patents

Method and device for controlling flow rate

Info

Publication number
JPH07319551A
JPH07319551A JP10810494A JP10810494A JPH07319551A JP H07319551 A JPH07319551 A JP H07319551A JP 10810494 A JP10810494 A JP 10810494A JP 10810494 A JP10810494 A JP 10810494A JP H07319551 A JPH07319551 A JP H07319551A
Authority
JP
Japan
Prior art keywords
control
flow rate
controller
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10810494A
Other languages
Japanese (ja)
Inventor
Makoto Nagase
誠 長瀬
Junichi Tanji
順一 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10810494A priority Critical patent/JPH07319551A/en
Publication of JPH07319551A publication Critical patent/JPH07319551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PURPOSE:To control flow rate with high control accuracy while reducing the number of control rules, improving the design efficiency of a control system and suppressing hunching by adopting an interference controller by using double stage fuzzy control. CONSTITUTION:In systems 1 and 2, fluid is passed through a testing part 2 and passed through a flow rate control valve 3 and a flow meter 5 and flows while being joined with the fluid of the other system. In the system 3, the fluid is passed through the testing part 2 and passed through a differential pressure control valve 4 and the flow meter 5 and flows while being joined with the fluid of the other system. Then, output signals F of the flow meters 5 at the systems 1 and 2 are transmitted to a single controller 6, a control change amount DELTAu is outputted, the control change amount DELTAu of two systems becomes the input of an interference controller 7 and is converted into a final control change amount DELTAU corrected in interference effect then outputted to control the opening degree of flow rate control valves 3 installed in the systems 1 and 2 based on this signal. Thus, a second controller uses the interference control algorithm for which fuzzy logic is applied with the outputs of plural first controllers as inputs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体を複数の系統に分配
する流量制御に係り、特に、流量のハンチングを抑制し
て制御精度の高い流量制御方法およびその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate control for distributing a fluid to a plurality of systems, and more particularly to a flow rate control method and apparatus for suppressing flow rate hunting with high control accuracy.

【0002】[0002]

【従来の技術】一つの主系統を流れる流体を複数の系統
に流量配分を行う場合、各系統に流量制御用の弁を設け
て弁の開閉度を制御するか、各系統に定量ポンプを設置
して所定の流量を得るようにすることが一般的に行われ
ている。流量制御弁の開閉度を制御する場合、制御方法
としてPID制御が広く用いられている。
2. Description of the Related Art When the flow rate of a fluid flowing through one main system is distributed to a plurality of systems, a valve for controlling the flow rate is provided in each system to control the opening / closing degree of the valve, or a metering pump is installed in each system. It is generally practiced to obtain a predetermined flow rate. When controlling the opening / closing degree of a flow control valve, PID control is widely used as a control method.

【0003】[0003]

【発明が解決しようとする課題】一つの主系統を流れる
流体を複数の系統に流量制御用の弁を用いて流量配分を
行う場合、各系統をそれぞれPID制御するだけでは全
体流量が一定に保たれているので一つの系統を制御した
影響が他の系統に波及する、いわゆる、干渉の問題が生
じてハンチングにより流量の安定度が悪化する。また、
各系統に定量ポンプを設置する場合にはコストが大きく
なる問題がある。
When the flow rate of a fluid flowing through one main system is distributed to a plurality of systems by using flow rate control valves, the total flow rate can be kept constant only by PID control of each system. Since it is sloping, the influence of controlling one system spreads to the other system, so-called interference problem occurs and hunting deteriorates the stability of the flow rate. Also,
If a metering pump is installed in each system, there is a problem that the cost will increase.

【0004】[0004]

【課題を解決するための手段】各系統の流量を測定し、
流量設定目標値と測定値の偏差と偏差の時間変化を入力
として各系統の流量制御を単独とみなして制御量を決定
する第1制御器と前記第1制御器の出力を入力として干
渉効果を抑制するための補正を行う第2制御器を用いる
ことにより、ハンチングを抑制した流量配分を行うこと
ができる。特に、前記第1,第2制御器の制御アルゴリ
ズムにファジー制御理論を応用することにより制御特性
を良好にすることができる。
[Means for solving the problem] Measuring the flow rate of each system,
The interference effect is obtained by inputting the deviation of the flow rate setting target value and the measured value and the time change of the deviation as input, and determining the control amount by considering the flow rate control of each system as independent and the output of the first controller. By using the second controller that performs the correction for suppressing the flow rate, it is possible to perform the flow rate distribution in which the hunting is suppressed. Particularly, by applying the fuzzy control theory to the control algorithms of the first and second controllers, the control characteristics can be improved.

【0005】[0005]

【作用】各系統の流量を測定することは各系統の流量制
御目標値との偏差と偏差の時間変化を算出するための入
力を得ることに相当し、測定値を入力としてファジー制
御理論を適用して各系統を単独の系統とみなして制御量
を算出する第1の制御器により基本的な制御弁の開閉度
の制御量を決定する。第2の制御器は複数存在する第1
制御器の出力を入力としてファジー理論を応用した干渉
制御アルゴリズムを用いることによりハンチングを抑制
して安定した流量制御を実現する作用がある。また、フ
ァジー理論を応用することにより互いの干渉効果を抑制
するアルゴリズムが容易に作成でき、第1,第2制御器
に分割して制御量を算出させることは、ファジールール
数の増大を抑制し全体の制御構造がわかりやすくする作
用がある。
[Operation] Measuring the flow rate of each system is equivalent to obtaining the input for calculating the deviation from the flow control target value of each system and the time change of the deviation, and applying the fuzzy control theory with the measured value as the input. Then, the basic control amount of the opening / closing degree of the control valve is determined by the first controller which regards each system as a single system and calculates the control amount. The second controller has a plurality of first
By using an interference control algorithm that applies fuzzy theory with the output of the controller as an input, it has the effect of suppressing hunting and realizing stable flow control. Moreover, an algorithm that suppresses the mutual interference effect can be easily created by applying the fuzzy theory, and dividing the control quantity into the first and second controllers suppresses the increase in the number of fuzzy rules. This has the effect of making the overall control structure easier to understand.

【0006】[0006]

【実施例】【Example】

(実施例1)以下、本発明の一実施例を図1により説明
する。図1は3系統の試験部の流量制御を行う流量制御
系の構成を示している。3系統存在する試験部に供給さ
れる流体の全流量は定量ポンプ1により一定値に保たれ
る。流体は三つの試験部の各系統差圧の大きさに応じて
分配されて各系統を流れる。系統1,系統2では流体は
試験部2を通過して流量調節弁3,流量計5を通過して
他系統の流体と合流して流れる。系統3では流体は試験
部2を通過して差圧調整弁4,流量計5を通過して他系
統の流体と合流して流れる。系統1,系統2の流量計5
の出力信号Fはシングルコントローラ6に伝えられ、制
御変化量Δuが出力される。2系統の制御変化量Δu
は、干渉コントローラ7の入力となり干渉効果を補正し
た最終制御変化量ΔUに変換されて出力され、この信号
に基づき系統1,系統2に設置されている流量制御弁3
の開閉度が制御される。系統3には初期の圧力損失を調
整するための差圧調整弁4を設置している。試験部に供
給される全流量は定量ポンプにより一定であるので2系
統の流量を制御することにより系統3の流量も制御して
いることになる。図に示したような複数の並列流路の流
量を制御しようとする場合、ある系統の流量を下げると
他の流路の流量が増大する。すなわち、互いに干渉し合
う系であり、通常のPID制御を2系統に適用しようと
すると干渉の影響を受けてハンチングが生じることが予
測される。そこで、ファジー理論を用いた制御系を適用
する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows the configuration of a flow rate control system that controls the flow rates of three test sections. The total flow rate of the fluid supplied to the test section having three systems is kept constant by the metering pump 1. The fluid is distributed according to the magnitude of each system differential pressure of the three test sections and flows through each system. In the system 1 and the system 2, the fluid flows through the test unit 2, the flow rate control valve 3 and the flow meter 5, and merges with the fluid of the other system to flow. In the system 3, the fluid passes through the test unit 2, the differential pressure regulating valve 4, the flow meter 5, and joins with the fluid of the other system to flow. Flowmeter 5 for system 1 and system 2
Is transmitted to the single controller 6, and the control change amount Δu is output. Control change of two systems Δu
Becomes an input of the interference controller 7, is converted into a final control change amount ΔU in which the interference effect is corrected, and is output. Based on this signal, the flow control valve 3 installed in the system 1 and the system 2
The degree of opening and closing of is controlled. A differential pressure adjusting valve 4 for adjusting the initial pressure loss is installed in the system 3. Since the total flow rate supplied to the test section is constant by the metering pump, the flow rate of the system 3 is also controlled by controlling the flow rates of the two systems. When trying to control the flow rates of a plurality of parallel flow paths as shown in the figure, if the flow rate of a certain system is lowered, the flow rates of other flow paths will increase. That is, it is a system in which they interfere with each other, and it is expected that hunting will occur under the influence of interference if the normal PID control is applied to the two systems. Therefore, a control system using fuzzy theory is applied.

【0007】系統1,系統2の流量設定値をそれぞれR
1,R2、測定値をY1,Y2、流量調節弁の開度をU1
2、流量の偏差をE1,E2、偏差の変化量をΔE1,Δ
2、流量調節弁の開度調節量をΔU1,ΔU2とする
と、E1=R1−Y1,E2 =R2−Y2である。ΔE1,Δ
2はE1,E2の時間変化量として与えられる。従っ
て、制御系としてはE1,E2、ΔE1,ΔE2の四つの変
数を入力としてΔU1,ΔU2を出力とするものが必要で
ある。
The flow rate set values of system 1 and system 2 are respectively R
1 , R 2 , measured values Y 1 , Y 2 , flow control valve opening U 1 ,
U 2 , the deviation of the flow rate is E 1 , E 2 , the variation of the deviation is ΔE 1 , Δ
E 2 = E 1 = R 1 −Y 1 and E 2 = R 2 −Y 2, where E 2 is the opening adjustment amount of the flow rate control valve and ΔU 1 is ΔU 2 . ΔE 1 , Δ
E 2 is given as the time change amount of E 1 and E 2 . Therefore, the control system is required to have four variables E 1 , E 2 , ΔE 1 and ΔE 2 as inputs and ΔU 1 and ΔU 2 as outputs.

【0008】ファジー制御器としては四つの変数を一度
に入力として弁の調節量二つを出力する一括型の制御器
を考えることもできるが、四つの入力の組合せの全てに
ルールを定義しようとするとファジー集合のラベルを七
つとして74 =2041通りとなる。全ての組合せのル
ールが必要ないとしても数百のルールを定義する必要が
生じると共に全体の制御の様子を把握することが困難と
なる問題がある。そこで、図1に示したように各系統ご
とにシングルコントローラを用いて流量調節弁の開度調
節量の中間値Δu1,Δu2を求め、これらの二つの出力
を入力としてΔU1,ΔU2を求める干渉コントローラの
2段構成の制御系を適用することができる。
As a fuzzy controller, it is possible to think of a batch type controller which outputs four valve adjustment amounts by inputting four variables at a time, but it is necessary to define rules for all combinations of four inputs. Then, there are 7 labels = 7 4 = 2041 in the fuzzy set. Even if not all combinations of rules are required, it is necessary to define hundreds of rules, and it is difficult to grasp the state of overall control. Therefore, as shown in FIG. 1, a single controller is used for each system to obtain the intermediate values Δu 1 and Δu 2 of the opening control amount of the flow control valve, and these two outputs are used as inputs for ΔU 1 and ΔU 2 A two-stage control system of an interference controller that seeks

【0009】ファジー集合のラベルはNB,NM,N
S,ZO,PS,PM,PBの七つとし、ファジー変数
は表1に示した離散型の変数を採用する。
Labels of fuzzy sets are NB, NM, N
There are seven variables S, ZO, PS, PM, and PB, and the fuzzy variables are discrete variables shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】シングルコントローラの制御規則を表2に
示す。
Table 2 shows the control rules of the single controller.

【0012】[0012]

【表2】 [Table 2]

【0013】2入力7ラベルの組合せは49通り存在す
るが、ここでは13のルールで制御を行っている。これ
は、一つの規則がカバーできる領域が広いことと現実に
はあり得ない領域では規則が必要ないこと及び速度型の
制御構造を採用しているためである。干渉コントローラ
では、全ての組合せが実現するので、表3に示したよう
に49のルールを定義している。
There are 49 combinations of 2 inputs and 7 labels, but 13 rules are used for control here. This is because one rule can cover a wide area, no rule is required in an area that cannot exist in reality, and a speed type control structure is adopted. Since all combinations are realized in the interference controller, 49 rules are defined as shown in Table 3.

【0014】[0014]

【表3】 [Table 3]

【0015】ファジー制御器を複数試験部の流量制御に
適用した結果得られた流量の応答を図2,図3に示す。
流量のサンプリング周期を1秒とし、系統1,2の流量
設定値を同じ20l/hとした場合の応答である。図2
には干渉コントローラを適用せずに各系統をシングルコ
ントローラで制御したときの結果を示している。制御開
始後流量がほぼ設定値の20l/hとなった後は各系統
が単独に制御しているため干渉の影響を受けてハンチン
グを起こしていることがわかり、流量変動の幅は設定値
の4%となっている。これに対して、図3に示したよう
に干渉コントローラを適用すると流量が設定値に近づい
た後もハンチングが抑制されて流量変動の幅も設定値の
2%以下と未使用時の半分以下と小さくなる良好な制御
特性を実現している。
The response of the flow rate obtained as a result of applying the fuzzy controller to the flow rate control of a plurality of test sections is shown in FIGS.
This is a response when the flow rate sampling period is 1 second and the flow rate set values of the systems 1 and 2 are the same 20 l / h. Figure 2
Shows the result when each system is controlled by a single controller without applying the interference controller. After the start of control, after the flow rate has reached the set value of 20 l / h, it can be seen that hunting is occurring due to the influence of interference because each system is controlling independently. It is 4%. On the other hand, when the interference controller is applied as shown in FIG. 3, hunting is suppressed even after the flow rate approaches the set value, and the range of flow rate fluctuation is 2% or less of the set value and half or less of the unused value. Good control characteristics are realized.

【0016】(実施例2)実施例1では3系統の試験部
を有する系統への分配を示したが、4系統存在する場合
は、図4に示すように全流量をまず2系統に分割し、更
にそれぞれの系統を2分割にすることにより流量配分を
行うことができる。図1の単純拡張で制御系を構成する
ことも可能であるが、シングルコントローラの三つの出
力を入力として干渉コントローラを考えるとルール数は
3 すなわち343必要となるので手間がかかる。図4
のように構成すると最初に主系統を2分割にするための
流量調節弁3の制御はシングルコントローラ6だけで行
うことができ、2段目の分割で1段目と2段目のシング
ルコントローラ6の出力を入力として干渉コントローラ
7により干渉効果を補正してΔU1,ΔU3を求めて制御
することができる。
(Embodiment 2) In Embodiment 1, distribution to a system having three test sections was shown. However, when there are four systems, the total flow rate is first divided into two systems as shown in FIG. Further, the flow rate can be distributed by dividing each system into two. Although it is possible to configure the control system by the simple extension of FIG. 1, considering the interference controller with three outputs of the single controller as the input, the number of rules is 7 3 or 343, which is troublesome. Figure 4
With such a configuration, first, the flow control valve 3 for dividing the main system into two parts can be controlled only by the single controller 6, and by dividing the second stage, the single controller 6 of the first stage and the second stage. The interference effect can be corrected by the interference controller 7 by using the output of 1 as the input, and ΔU 1 and ΔU 3 can be obtained and controlled.

【0017】系統構成を図4のようにすることにより流
量調節弁3の数に変化はなく、干渉コントローラ7への
入力が2信号となりその組合せ数が49通りとなるので
ルールの定義が容易となり制御系の設計が単純化され
る。
By making the system configuration as shown in FIG. 4, there is no change in the number of flow rate control valves 3 and the input to the interference controller 7 becomes two signals, and the number of combinations thereof is 49. Therefore, the rule definition becomes easy. The control system design is simplified.

【0018】図5,図6,図7には試験部の系統が5,
6,7と増加した場合の系統構成を示してある。図では
制御系の構成を省略しているが、図1,図4に示した制
御系の組合せにより一つの干渉コントローラへの入力信
号の数を抑制したまま制御系を構成することができる。
系統の数が7を越える場合も図1,図4の基本構成をも
とに図5,図6,図7の拡張として定義することが可能
である。
The system of the test section is shown in FIGS.
6 and 7 show the system configuration when the number is increased. Although the configuration of the control system is omitted in the figure, the control system can be configured by suppressing the number of input signals to one interference controller by combining the control systems shown in FIGS. 1 and 4.
Even when the number of systems exceeds 7, it can be defined as an extension of FIGS. 5, 6 and 7 based on the basic configuration of FIGS.

【0019】[0019]

【発明の効果】ファジー2段制御を用いることにより制
御ルール数を低減でき、制御系の設計効率が良くなると
共に、干渉コントローラの採用によりハンチングを抑制
した制御精度の高い流量コントロールが実現できる。
By using the fuzzy two-step control, the number of control rules can be reduced, the design efficiency of the control system can be improved, and the adoption of the interference controller can realize hunting-suppressed flow rate control with high control accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】3系統の試験部を有する系統の流量制御系の系
統図。
FIG. 1 is a system diagram of a flow control system of a system having three test units.

【図2】シングルコントローラのみで流量制御を実施し
たときの系統1,系統2の流量の経時変化を示した説明
図。
FIG. 2 is an explanatory diagram showing changes over time in the flow rates of system 1 and system 2 when the flow rate control is performed only by a single controller.

【図3】干渉コントローラを併用して流量制御を実施し
たときの系統1、系統2の流量の経時変化を示した説明
図。
FIG. 3 is an explanatory diagram showing changes over time in the flow rates of system 1 and system 2 when performing flow rate control using an interference controller together.

【図4】4系統の試験部を有する流量制御系の系統図。FIG. 4 is a system diagram of a flow rate control system having four test units.

【図5】5系統の試験部を有する系統図。FIG. 5 is a system diagram having five test units.

【図6】6系統の試験部を有する系統図。FIG. 6 is a system diagram having six test units.

【図7】7系統の試験部を有する系統図。FIG. 7 is a system diagram including seven test units.

【符号の説明】[Explanation of symbols]

1…定量ポンプ、2…試験部、3…流量調節弁、4…差
圧調整弁、5…流量計、6…シングルコントローラ、7
…干渉コントローラ。
DESCRIPTION OF SYMBOLS 1 ... Metering pump, 2 ... Test part, 3 ... Flow control valve, 4 ... Differential pressure control valve, 5 ... Flow meter, 6 ... Single controller, 7
… Interference controller.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一定流量の流体が流れる主系統から下流側
に位置する複数nの系統に流体の流量を分配して各系統
流量を制御する制御方法において、(n−1)の系統に
設置した流量制御弁の開閉度を各制御弁の設置してある
系統を独立系統と見做して目標値と測定値の偏差と偏差
の時間変化量を入力として第1制御器により各弁の開閉
度の変化量を出力し、前記第1制御器(n−1)個の出
力を入力として第2制御器により干渉効果を補正して最
終的な各弁の開閉度の変化量を求めて制御することを特
徴とする流量制御方法。
1. A control method for controlling the flow rate of each system by distributing the flow rate of the fluid to a plurality of n systems located on the downstream side from a main system in which a constant flow rate of the fluid flows, and installing the system in (n-1). The degree of opening and closing of the flow control valve is regarded as an independent system, and the deviation between the target value and the measured value and the time variation of the deviation are input, and the opening and closing of each valve is performed by the first controller. The output of the first controller (n-1) and the second controller corrects the interference effect to obtain the final change of the opening / closing degree of each valve for control. A flow rate control method comprising:
【請求項2】請求項1において、前記第1制御器及び前
記第2制御器の制御アルゴリズムにファジー制御を適用
する流量制御方法。
2. The flow rate control method according to claim 1, wherein fuzzy control is applied to the control algorithms of the first controller and the second controller.
【請求項3】一定流量の流体が流れる主系統から下流側
に位置する複数nの系統に流体の流量を分配して各系統
流量を制御する制御系において、(n−1)の系統に設
置した流量計測装置と、流量信号をデジタル化するA/
D変換器,第1制御器,第2制御器としての制御プログ
ラムを動作させる計算機,弁開閉度信号をアナログ化す
るD/A変換器、弁開閉度信号に基づいて流量を変化さ
せる電動弁から構成されることを特徴とする流量制御装
置。
3. A control system for controlling the flow rate of each system by distributing the flow rate of the fluid to a plurality of n systems located on the downstream side from a main system in which a constant flow rate of the fluid flows and installed in the (n-1) system. Flow rate measuring device and A / which digitizes flow rate signal
From the D converter, the computer that operates the control program as the first controller, the second controller, the D / A converter that analogizes the valve opening / closing signal, and the motorized valve that changes the flow rate based on the valve opening / closing signal. A flow control device characterized by being configured.
【請求項4】請求項3において、前記制御プログラムに
ファジー制御理論を応用している流量制御装置。
4. The flow control device according to claim 3, wherein fuzzy control theory is applied to the control program.
JP10810494A 1994-05-23 1994-05-23 Method and device for controlling flow rate Pending JPH07319551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10810494A JPH07319551A (en) 1994-05-23 1994-05-23 Method and device for controlling flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10810494A JPH07319551A (en) 1994-05-23 1994-05-23 Method and device for controlling flow rate

Publications (1)

Publication Number Publication Date
JPH07319551A true JPH07319551A (en) 1995-12-08

Family

ID=14475984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10810494A Pending JPH07319551A (en) 1994-05-23 1994-05-23 Method and device for controlling flow rate

Country Status (1)

Country Link
JP (1) JPH07319551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537464A (en) * 2002-07-19 2005-12-08 マイクロリス コーポレイション Fluid flow measurement and proportional fluid flow control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537464A (en) * 2002-07-19 2005-12-08 マイクロリス コーポレイション Fluid flow measurement and proportional fluid flow control device
US7885773B2 (en) 2002-07-19 2011-02-08 Entegris, Inc. Fluid flow measuring and proportional fluid flow control device
JP2011138496A (en) * 2002-07-19 2011-07-14 Entegris Inc Fluid flow measuring and proportional fluid flow control device
US8155896B2 (en) 2002-07-19 2012-04-10 Entegris, Inc. Fluid flow measuring and proportional fluid flow control device

Similar Documents

Publication Publication Date Title
JP4585035B2 (en) Flow rate ratio controller
TWI420568B (en) Flow ratio controller
JP3856730B2 (en) A gas diversion supply method to a chamber from a gas supply facility provided with a flow rate control device.
JP5613752B2 (en) Gas delivery method and system including flow ratio controller using multi antisymmetric optimal control performance configuration
JP3904368B2 (en) Gas supply apparatus and gas supply method for semiconductor manufacturing apparatus
EP2901227B1 (en) Method and apparatus for self verification of pressure based mass flow controllers
KR101632602B1 (en) Gas separation and supply device for semiconductor manufacturing apparatus
KR20070056092A (en) System and method for calibration of a flow device
TW201336007A (en) Gas split-flow supply device for semiconductor production device
KR20100032910A (en) Gas feeding device for semiconductor manufacturing facilities
KR20170135708A (en) Flow rate control device and storage medium on which is stored a program for a flow rate control device
US10386864B2 (en) Mass flow controller and a method for controlling a mass flow rate
JPH07210253A (en) System for control of actuator of flow-rate control valve
JPH09155180A (en) Liquid mixing device
CN107992105B (en) Flow control system and control method thereof
JP2004220237A (en) Method for stably supplying gas
JPH07319551A (en) Method and device for controlling flow rate
JP4351495B2 (en) Flow rate ratio controller
CN211015169U (en) Control system for temperature of pipeline confluence liquid
JP3893115B2 (en) Mass flow controller
CN110908414A (en) System and method for controlling temperature of pipeline confluence liquid
JPH04228808A (en) Control method for steam turbine device
JP3736723B2 (en) Flow rate adjustment method for fluid flowing through multiple lines
JP6543228B2 (en) Gas diversion control system
JP3604060B2 (en) Gas flow controller for dilution