JPH07318420A - Infrared ray sensor and manufacture thereof - Google Patents

Infrared ray sensor and manufacture thereof

Info

Publication number
JPH07318420A
JPH07318420A JP6110763A JP11076394A JPH07318420A JP H07318420 A JPH07318420 A JP H07318420A JP 6110763 A JP6110763 A JP 6110763A JP 11076394 A JP11076394 A JP 11076394A JP H07318420 A JPH07318420 A JP H07318420A
Authority
JP
Japan
Prior art keywords
thin film
temperature
infrared
substrate
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6110763A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tonami
与之 戸波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6110763A priority Critical patent/JPH07318420A/en
Publication of JPH07318420A publication Critical patent/JPH07318420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To provide a highly sensitive infrared ray sensor which can efficiently absorb infrared rays incident from the periphery of a light receiving part further infrared rays incident on the light receiving part, and a manufacturing method therefor. CONSTITUTION:A temperature sensing thin film 2 is formed on a surface of a substrate 1, and a part of the substrate on the reverse side of the temperature sensing thin film is removed, and is formed as a cavity 6, and infrared ray absorbing thin films 4 and 12 are formed on both obverse and reverse sides of the temperature sensing thin film 2. Thereby, infrared rays incident from a surface of a light receiving part are absorbed by both infrared ray absorbing thin films 4 and 12 on the obverse and the reverse of the temperature sensing thin film 2, and infrared rays incident on the periphery of the light receiving part are reflected by a substrate wall surface 10 and a substrate bottom surface 11 of the temperature sensing thin film 2, and are absorbed by the infrared ray absorbing thin film 12 on the reverse side of the temperature sensing thin film 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外線センサおよびその
作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared sensor and its manufacturing method.

【0002】[0002]

【従来の技術】従来、物体からその温度に応じて放射さ
れる赤外線を利用して物体の存在や通過を検知する赤外
線センサが知られており、赤外線の検出原理となる物理
現象の違いにより量子型と熱型とがある。
2. Description of the Related Art Conventionally, there is known an infrared sensor that detects the presence or passage of an object by utilizing infrared rays emitted from the object according to its temperature. There are mold and thermal mold.

【0003】HgCdTe等を用いた量子型赤外線セン
サに対して、焦電センサ、サーモパイル、サーミスタボ
ロメータ等は熱型赤外線センサと呼ばれており、これら
熱型赤外線センサは量子型赤外線センサと比較して安価
であり、且つ常温作動可能である等の利点を有するの
で、エアコンや防犯装置等における人体検知手段として
広く用いられている。
In contrast to the quantum infrared sensor using HgCdTe, a pyroelectric sensor, a thermopile, a thermistor bolometer, etc. are called thermal infrared sensors, and these thermal infrared sensors are compared with the quantum infrared sensor. Since it is inexpensive and can operate at room temperature, it is widely used as a human body detection means in air conditioners, crime prevention devices, and the like.

【0004】熱型赤外線センサは量子型赤外線センサと
比較して感度が小さいことから、素子(赤外線センサの
略称)の熱抵抗を大きくし、感度を向上させるために、
素子構造に様々な工夫がなされている。例えば、ダイヤ
フラム上に素子を形成したり、素子を細い梁で支持する
などの方法が取られている。
Since the thermal infrared sensor has a smaller sensitivity than the quantum infrared sensor, in order to increase the thermal resistance of the element (abbreviation of infrared sensor) and improve the sensitivity,
Various innovations have been made in the element structure. For example, methods such as forming an element on a diaphragm and supporting the element with a thin beam have been adopted.

【0005】図6は従来の赤外線センサ(サーミスタボ
ロメータ)の概略構成を示す斜視図である。図7は図6
に示す従来の赤外線センサ(サーミスタボロメータ)の
作製方法を説明する図である。
FIG. 6 is a perspective view showing a schematic structure of a conventional infrared sensor (thermistor bolometer). FIG. 7 shows FIG.
FIG. 6 is a diagram illustrating a method for manufacturing the conventional infrared sensor (thermistor bolometer) shown in FIG.

【0006】図6の赤外線センサは基板1の表面に感温
薄膜2および取り出し電極3が形成されている。感温薄
膜2としては抵抗の温度係数の大きいSi、Ge、Si
C等の真性半導体、Pt、Ni等が用いられている。感
温薄膜2および電極3の上に赤外線吸収薄膜4が形成さ
れている。赤外線吸収薄膜4は樹脂の黒化膜あるいはN
iCr、金黒の金属などが用いられている。赤外線吸収
薄膜4が導電性の場合には感温薄膜2や電極3との間に
SiO2 、SiN等の絶縁体を挿入する。感温薄膜2の
裏側の基板1は除去されて空洞6となり(図7h参
照)、且つ感温薄膜2は細く長い梁5によってのみ基板
1とつながっている。これは、感温薄膜2に与えられた
熱を基板1の方へは伝導しにくくし、赤外線照射による
温度変化を効率良く出力することができるようにするた
めである。
In the infrared sensor shown in FIG. 6, a temperature-sensitive thin film 2 and a take-out electrode 3 are formed on the surface of a substrate 1. As the temperature-sensitive thin film 2, Si, Ge, Si having a large temperature coefficient of resistance is used.
Intrinsic semiconductors such as C, Pt, Ni, etc. are used. An infrared absorption thin film 4 is formed on the temperature sensitive thin film 2 and the electrode 3. The infrared absorption thin film 4 is a resin blackened film or N
iCr, gold-black metal, etc. are used. When the infrared absorption thin film 4 is conductive, an insulator such as SiO 2 or SiN is inserted between the temperature sensitive thin film 2 and the electrode 3. The substrate 1 on the back side of the temperature-sensitive thin film 2 is removed to form a cavity 6 (see FIG. 7h), and the temperature-sensitive thin film 2 is connected to the substrate 1 only by a thin and long beam 5. This is to make it difficult for the heat applied to the temperature-sensitive thin film 2 to be conducted to the substrate 1 and to efficiently output the temperature change due to infrared irradiation.

【0007】上記構成になる従来の赤外線センサは図7
に示す作製工程に従って作製される。
A conventional infrared sensor having the above structure is shown in FIG.
It is manufactured according to the manufacturing process shown in.

【0008】図7(a)に示すSi基板{結晶面(10
0)面}1の上に熱酸化法やプラズマCVD法等により
絶縁薄膜7を形成する(図7(b))。次に、真空蒸着
法やスパッタ法等により絶縁薄膜7の上に感温薄膜2を
成膜パターニングした(図7(c))後、感温薄膜2の
上に取り出し電極3を形成する(図7(d))。つい
で、層間絶縁または素子保護用のためプラズマCVD法
等によりSiO2 、SiN等の絶縁薄膜8を形成(図7
(e))した後、NiCr、金黒等の赤外線吸収薄膜4
を感温薄膜2上に形成する(図7(f))。さらに、絶
縁薄膜7、8をエッチングし、Si基板1のエッチング
用窓9を形成する(図7(g))。なお、この絶縁薄膜
7、8のパタニーング工程で梁5(図6参照)が形成さ
れる。最後に、Si基板{結晶面(100)面}1の異
方性エッチングを行い、感温薄膜2の裏面の基板1を除
去し、空洞6を形成する(図2(h))。なお、Si基
板1の異方性エッチングには結晶面(111)面に対す
る他の方位の選択性が高いTMAH(Tetra Methyl A
nmonium Hydroxide、(CH3)4NOH )やTEAH(Tetra
Ethyl Anmonium Hydroxide 、(C2H5)4NOH)等アンモニ
ア系のアルカリ水溶液、または水酸化カリウム(KO
H)等のアルカリ水溶液を用いる。
The Si substrate {crystal plane (10
The insulating thin film 7 is formed on the (0) plane} 1 by the thermal oxidation method, the plasma CVD method, or the like (FIG. 7B). Next, after the temperature-sensitive thin film 2 is formed and patterned on the insulating thin film 7 by the vacuum deposition method or the sputtering method (FIG. 7C), the extraction electrode 3 is formed on the temperature-sensitive thin film 2 (FIG. 7C). 7 (d)). Then, an insulating thin film 8 of SiO 2 , SiN or the like is formed by plasma CVD or the like for interlayer insulation or element protection (see FIG. 7).
After (e)), the infrared absorption thin film 4 of NiCr, gold black, etc.
Is formed on the temperature-sensitive thin film 2 (FIG. 7F). Further, the insulating thin films 7 and 8 are etched to form the etching window 9 of the Si substrate 1 (FIG. 7G). The beam 5 (see FIG. 6) is formed in the patterning process of the insulating thin films 7 and 8. Finally, the Si substrate {crystal plane (100) plane} 1 is anisotropically etched to remove the substrate 1 on the back surface of the temperature-sensitive thin film 2 to form a cavity 6 (FIG. 2 (h)). For anisotropic etching of the Si substrate 1, TMAH (Tetra Methyl A) having high selectivity for other orientations with respect to the crystal plane (111) plane.
nmonium Hydroxide, (CH 3 ) 4 NOH) and TEAH (Tetra
Ethyl Anmonium Hydroxide, (C 2 H 5 ) 4 NOH) and other ammonia-based alkaline aqueous solutions, or potassium hydroxide (KO
An alkaline aqueous solution such as H) is used.

【0009】[0009]

【発明が解決しようとする課題】従来の赤外線センサに
おいては、熱の放散を抑えるために梁5を長くする必要
がある。しかし、梁5を長くすると素子の面積に対する
受光部の面積が相対的に狭くなり、受光効率が小さくな
ってしまうので、これを補うため、空洞6の基板壁面1
0および基板底面11から反射される赤外線も効率的に
吸収する必要がある。しかるに、感温薄膜2の裏面は通
常鏡面であるため、基板壁面10および基板底面11か
ら反射されて感温薄膜2に入射する赤外線はこの感温薄
膜2により反射されてしまう欠点がある。また、熱容量
を抑え、金属光沢を発生させないためにも、NiCr、
金黒等の赤外線吸収薄膜4はできるだけ薄く形成される
ことが多い。この場合、赤外線吸収薄膜4に入射した赤
外線は完全に吸収されず、一部は感温薄膜2で反射され
たり、透過してしまう欠点がある。
In the conventional infrared sensor, it is necessary to lengthen the beam 5 in order to suppress heat dissipation. However, if the beam 5 is lengthened, the area of the light receiving portion becomes relatively small with respect to the area of the element, and the light receiving efficiency becomes small.
It is also necessary to efficiently absorb the infrared rays reflected from the substrate 0 and the bottom surface 11 of the substrate. However, since the back surface of the temperature-sensitive thin film 2 is usually a mirror surface, there is a drawback that infrared rays reflected from the substrate wall surface 10 and the substrate bottom surface 11 and incident on the temperature-sensitive thin film 2 are reflected by the temperature-sensitive thin film 2. Further, in order to suppress the heat capacity and not generate metallic luster, NiCr,
The infrared absorbing thin film 4 such as gold black is often formed as thin as possible. In this case, there is a drawback that the infrared rays incident on the infrared absorption thin film 4 are not completely absorbed and a part thereof is reflected or transmitted by the temperature sensitive thin film 2.

【0010】本発明は上述の点にかんがみてなされたも
ので、受光部に入射する赤外線はもちろん受光部の周囲
から入射する赤外線も効率的に吸収することができる高
感度の赤外線センサおよびその作製方法を提供すること
を目的とする。
The present invention has been made in view of the above points, and a highly sensitive infrared sensor capable of efficiently absorbing not only the infrared rays incident on the light receiving portion but also the infrared rays incident from the periphery of the light receiving portion. The purpose is to provide a method.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
本発明の赤外線センサは基板の表面に感温薄膜が形成さ
れ、且つ該感温薄膜の裏側の基板の一部が除去されて空
洞となっている赤外線センサにおいて、前記感温薄膜の
表裏の両側に赤外線吸収薄膜が形成されていることを特
徴とする。
In order to solve the above problems, in the infrared sensor of the present invention, a temperature sensitive thin film is formed on the surface of a substrate, and a part of the substrate on the back side of the temperature sensitive thin film is removed to form a cavity. In the infrared sensor, an infrared absorption thin film is formed on both sides of the front and back of the temperature sensitive thin film.

【0012】また、本発明は前記基板の裏側に赤外線反
射板を取り付けたことを特徴とする。
Further, the present invention is characterized in that an infrared reflecting plate is attached to the back side of the substrate.

【0013】また、本発明は前記感温薄膜の表裏両側に
形成した前記赤外線吸収薄膜の中の少なくとも一方を前
記感温薄膜の電極に用いたことを特徴とする。
Further, the present invention is characterized in that at least one of the infrared absorption thin films formed on both sides of the temperature sensitive thin film is used as an electrode of the temperature sensitive thin film.

【0014】また、本発明は前記感温薄膜が感温抵抗
体、焦電薄膜、熱電対およびサーモパイルの中のいずれ
かであることを特徴とする。
Further, the present invention is characterized in that the temperature sensitive thin film is any one of a temperature sensitive resistor, a pyroelectric thin film, a thermocouple and a thermopile.

【0015】また、本発明は上記赤外線センサを複数個
平面的に配列したことを特徴とする。
Further, the present invention is characterized in that a plurality of the infrared sensors are arranged in a plane.

【0016】また、本発明はSi基板の上に赤外線吸収
薄膜を形成する工程と、前記赤外線吸収薄膜の上に絶縁
薄膜を形成する工程と、前記絶縁薄膜の上に感温薄膜を
形成する工程と、前記感温薄膜の上に取り出し電極を形
成する工程と、層間絶縁または素子保護のためSiO
2 、SiN等の絶縁薄膜を前記感温薄膜と前記取り出し
電極の上に形成する工程と、別の赤外線吸収薄膜を前記
感温薄膜上に形成する工程と、前記絶縁薄膜をエッチン
グしSi基板のエッチング用窓および梁を形成する工程
と、Si基板の異方性エッチングを行い前記感温薄膜の
裏面の基板を除去して空洞を形成する工程とを包含する
ことを特徴とする。
Further, according to the present invention, a step of forming an infrared absorbing thin film on a Si substrate, a step of forming an insulating thin film on the infrared absorbing thin film, and a step of forming a temperature sensitive thin film on the insulating thin film. And a step of forming an extraction electrode on the temperature-sensitive thin film, and SiO for interlayer insulation or element protection.
2. Forming an insulating thin film such as SiN on the temperature sensitive thin film and the extraction electrode; forming another infrared absorbing thin film on the temperature sensitive thin film; and etching the insulating thin film to form a Si substrate. The method is characterized by including a step of forming an etching window and a beam, and a step of anisotropically etching the Si substrate to remove the substrate on the back surface of the temperature-sensitive thin film to form a cavity.

【0017】[0017]

【作用】受光部の表面より入射した赤外線を感温薄膜の
表裏の両赤外線吸収薄膜で吸収し、かつ、受光部の周囲
に入射した赤外線を感温薄膜の基板壁面および基板底面
で反射し感温薄膜の裏側の赤外線吸収薄膜により吸収す
る。
[Function] The infrared rays incident from the surface of the light receiving part are absorbed by both infrared absorbing thin films on the front and back of the temperature sensitive thin film, and the infrared rays incident on the periphery of the light receiving part are reflected by the wall surface and bottom surface of the temperature sensitive thin film. It is absorbed by the infrared absorption thin film on the back side of the warm thin film.

【0018】[0018]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0019】図1は本発明の赤外線センサの概略構成を
示す斜視図である。図2は図1に示す本発明の赤外線セ
ンサの作製方法を説明する図である。
FIG. 1 is a perspective view showing a schematic structure of an infrared sensor of the present invention. FIG. 2 is a diagram illustrating a method of manufacturing the infrared sensor of the present invention shown in FIG.

【0020】図1および図2の実施例は本発明をサーミ
スタボロメータに適用したものである。基板1の表面
(赤外線の入射方向に見て)の一部に感温薄膜2として
の感温抵抗体と、取り出し電極3が形成されている。感
温薄膜2としては抵抗の温度係数の大きいSi、Ge、
SiC等の真性半導体、Pt、Niなどが用いられてい
る。感温薄膜2および取り出し電極3の上すなわち表側
に赤外線吸収薄膜4が形成されている。さらに、感温薄
膜2および取り出し電極3の裏側にも赤外線吸収薄膜1
2が形成されている。赤外線吸収薄膜4、12は樹脂の
黒化膜あるいはNiCr、金黒の金属などが用いられて
いる。赤外線吸収薄膜4、12が導電性の場合には感温
薄膜2や電極3との間にSiO4 、SiN等の絶縁体を
挿入する。感温薄膜2の裏側は空洞6となり、基板1は
除去されており(図2h参照)、且つ感温薄膜2は細く
長い梁5によってのみ基板1とつながっている。これ
は、感温薄膜2に与えられた熱を基板1の方へは伝導し
にくくし、赤外線照射による温度変化を効率良く出力す
ることができるようにするためである。
The embodiment shown in FIGS. 1 and 2 is an application of the present invention to a thermistor bolometer. A temperature-sensitive resistor as a temperature-sensitive thin film 2 and a take-out electrode 3 are formed on a part of the surface of the substrate 1 (as viewed in the direction of incidence of infrared rays). As the temperature-sensitive thin film 2, Si, Ge, which has a large temperature coefficient of resistance,
Intrinsic semiconductors such as SiC, Pt, Ni, etc. are used. An infrared absorption thin film 4 is formed on the temperature-sensitive thin film 2 and the extraction electrode 3, that is, on the front side. Furthermore, the infrared absorption thin film 1 is also provided on the back side of the temperature sensitive thin film 2 and the extraction electrode 3.
2 is formed. The infrared absorption thin films 4 and 12 are made of a resin blackening film, NiCr, gold black metal, or the like. When the infrared absorption thin films 4 and 12 are conductive, an insulator such as SiO 4 or SiN is inserted between the temperature sensitive thin film 2 and the electrode 3. The back side of the temperature-sensitive thin film 2 becomes a cavity 6, the substrate 1 is removed (see FIG. 2h), and the temperature-sensitive thin film 2 is connected to the substrate 1 only by a thin and long beam 5. This is to make it difficult for the heat applied to the temperature-sensitive thin film 2 to be conducted to the substrate 1 and to efficiently output the temperature change due to infrared irradiation.

【0021】上記構成になる本発明の赤外線センサは次
のように作動する。
The infrared sensor of the present invention having the above structure operates as follows.

【0022】素子の表面から赤外線吸収薄膜4に入射し
た赤外線の内、大部分はこれに吸収されるが、一部はこ
れに吸収されずに感温薄膜2を通過する。感温薄膜2を
通過した赤外線は裏面の赤外線吸収薄膜12に入射さ
れ、そこで吸収される。すなわち、図1の赤外線センサ
によれば、素子表面に入射した赤外線は表側の赤外線吸
収薄膜4と裏側の赤外線吸収薄膜12によって効率良く
吸収される。さらに、素子の受光部の周辺に入射した赤
外線は感温薄膜抵抗体2の裏側の基板1の壁面10およ
び底面11により反射されてのち感温薄膜2の裏側に入
射し、感温薄膜2の裏側の赤外線吸収薄膜12よって吸
収される。なお、感温薄膜2の裏側の基板1の壁面10
および底面11を赤外線反射性の薄膜によりコーティン
グすることにより、素子の受光部の周辺に入射した赤外
線を一層効率良く収集することができる。また、感温薄
膜2の裏側の赤外線吸収薄膜12と空洞6の間に絶縁膜
が無い場合、すなわち、感温薄膜2の裏側の赤外線吸収
薄膜12が空洞6に露出している場合では、絶縁膜によ
る赤外線の反射が無く、裏面からの赤外線の吸収効率が
高くなる。なお、感温薄膜2としては感温抵抗体の代わ
りに焦電薄膜、熱電対、サーモパイルを使用しても良
い。
Most of the infrared rays incident on the infrared absorbing thin film 4 from the surface of the element are absorbed by the infrared absorbing thin film 4, but some of them are not absorbed by the infrared ray and pass through the temperature sensitive thin film 2. The infrared rays that have passed through the temperature-sensitive thin film 2 are incident on the infrared absorption thin film 12 on the back surface and are absorbed there. That is, according to the infrared sensor of FIG. 1, the infrared rays incident on the element surface are efficiently absorbed by the front side infrared absorbing thin film 4 and the back side infrared absorbing thin film 12. Further, the infrared rays incident on the periphery of the light receiving portion of the element are reflected by the wall surface 10 and the bottom surface 11 of the substrate 1 on the back side of the temperature sensitive thin film resistor 2 and then are incident on the back side of the temperature sensitive thin film 2 and It is absorbed by the infrared absorption thin film 12 on the back side. In addition, the wall surface 10 of the substrate 1 on the back side of the temperature-sensitive thin film 2
By coating the bottom surface 11 with the infrared reflective thin film, the infrared rays incident on the periphery of the light receiving portion of the element can be more efficiently collected. In addition, when there is no insulating film between the infrared absorption thin film 12 on the back side of the temperature sensitive thin film 2 and the cavity 6, that is, when the infrared absorption thin film 12 on the back side of the temperature sensitive thin film 2 is exposed in the cavity 6, insulation is performed. There is no reflection of infrared rays by the film, and the efficiency of infrared absorption from the back surface is high. As the temperature sensitive thin film 2, a pyroelectric thin film, a thermocouple or a thermopile may be used instead of the temperature sensitive resistor.

【0023】上記構成になる本発明の赤外線センサは図
2に示す工程順に作製される。
The infrared sensor of the present invention having the above structure is manufactured in the order of steps shown in FIG.

【0024】図2(a)に示すSi基板{結晶面(10
0)面}1の上に赤外線吸収薄膜12を形成する(図2
(b))。次に、プラズマCVD法等により赤外線吸収
薄膜12の上に絶縁薄膜7を形成する(図2(c))。
真空蒸着法やスパッタ法等により絶縁薄膜7の上に感温
薄膜2を形成する(図2(d))。感温薄膜2の上に取
り出し電極3を形成する(図2(e))。層間絶縁また
は素子保護用のためプラズマCVD法等によりSiO
2 、SiN等の絶縁薄膜8を絶縁薄膜7、感温薄膜2と
取り出し電極3の上に形成する(図2(f))。赤外線
吸収薄膜4を感温薄膜2上に形成する(図2(g))。
絶縁薄膜7、8をエッチングし、Si基板1のエッチン
グ用窓9を形成する(図2(h))。なお、この絶縁薄
膜7、8のパタニーング工程で梁5(図1参照)が形成
される。最後に、Si基板{結晶面(100)面}1の
異方性エッチングを行い、感温薄膜2の裏面の基板1を
除去し、空洞6を形成する(図2(i))。以上の工程
を経て本発明の赤外線センサが完成する。
The Si substrate {crystal plane (10
(0) plane} 1 and the infrared absorption thin film 12 is formed (FIG. 2).
(B)). Next, the insulating thin film 7 is formed on the infrared absorbing thin film 12 by the plasma CVD method or the like (FIG. 2C).
The temperature-sensitive thin film 2 is formed on the insulating thin film 7 by the vacuum vapor deposition method, the sputtering method, or the like (FIG. 2D). The extraction electrode 3 is formed on the temperature-sensitive thin film 2 (FIG. 2E). SiO by plasma CVD or the like for interlayer insulation or element protection
2 , an insulating thin film 8 such as SiN is formed on the insulating thin film 7, the temperature-sensitive thin film 2 and the extraction electrode 3 (FIG. 2 (f)). An infrared absorption thin film 4 is formed on the temperature sensitive thin film 2 (FIG. 2 (g)).
The insulating thin films 7 and 8 are etched to form an etching window 9 in the Si substrate 1 (FIG. 2 (h)). The beam 5 (see FIG. 1) is formed in the patterning process of the insulating thin films 7 and 8. Finally, the Si substrate {crystal plane (100) plane} 1 is anisotropically etched to remove the substrate 1 on the back surface of the temperature-sensitive thin film 2 to form a cavity 6 (FIG. 2 (i)). The infrared sensor of the present invention is completed through the above steps.

【0025】なお、赤外線吸収体12がNiCr、金黒
の場合、Si基板1のエッチング材に、TMAH(Tetr
a Methyl Anmonium Hydroxide、(CH3)4NOH )やTE
AH(Tetra Ethyl Anmonium Hydroxide 、(C2H5)4NO
H)等を用いれば、赤外線吸収体12は腐食されない。
When the infrared absorber 12 is NiCr or gold black, TMAH (Tetr) is used as an etching material for the Si substrate 1.
a Methyl Anmonium Hydroxide, (CH 3 ) 4 NOH) and TE
AH (Tetra Ethyl Anmonium Hydroxide, (C 2 H 5 ) 4 NO
If H) or the like is used, the infrared absorber 12 will not be corroded.

【0026】図3は本発明の他の実施例の概略構成を示
す斜視図である。
FIG. 3 is a perspective view showing the schematic construction of another embodiment of the present invention.

【0027】図3の実施例は本発明を焦電センサまたは
感温抵抗体の抵抗値が比較的高いサーミスタボロメータ
に適用したものである。焦電センサは一般的に焦電体の
表裏正面を一対の取り出し電極で挟み込んだ構造になっ
ている。また、サーミスタボロメータの感温抵抗体の抵
抗率が高い場合も同様に、感温薄膜2としての感温抵抗
体を取り出し電極で挟む構造となる。感温薄膜(焦電体
または感温抵抗体)2の両側の取り出し電極兼赤外線吸
収薄膜13、14はNiCr、金黒等で出来ており、赤
外線吸収体としての役割を果たすことにより、従来の赤
外線センサと比較して簡単な工程で作製できる。なお、
取り出し電極兼赤外線吸収薄膜13、14のうち片方あ
るいは両方を赤外線吸収薄膜以外の材料で形成し、赤外
線吸収薄膜を別に設けてもかまわない。なお、梁5、空
洞6、空洞の基板壁面10、空洞の基板底面11は図
1、2の実施例と同様の構成を有する。
The embodiment of FIG. 3 applies the present invention to a thermistor bolometer in which the resistance value of a pyroelectric sensor or a temperature sensitive resistor is relatively high. A pyroelectric sensor generally has a structure in which the front and back of a pyroelectric body are sandwiched by a pair of extraction electrodes. Similarly, when the temperature sensitive resistor of the thermistor bolometer has a high resistivity, the temperature sensitive resistor as the temperature sensitive thin film 2 is similarly sandwiched between the electrodes. The extraction electrodes and infrared absorption thin films 13 and 14 on both sides of the temperature-sensitive thin film (pyroelectric body or temperature-sensitive resistor) 2 are made of NiCr, gold black, etc. It can be manufactured by a simple process as compared with an infrared sensor. In addition,
One or both of the extraction electrode / infrared absorbing thin films 13 and 14 may be formed of a material other than the infrared absorbing thin film, and the infrared absorbing thin film may be separately provided. The beam 5, the cavity 6, the substrate wall surface 10 of the cavity, and the substrate bottom surface 11 of the cavity have the same configurations as those in the embodiments of FIGS.

【0028】図4は本発明の他の実施例の概略構成を示
す斜視図である。図5は図4の実施例の断面図である。
FIG. 4 is a perspective view showing the schematic construction of another embodiment of the present invention. FIG. 5 is a cross-sectional view of the embodiment of FIG.

【0029】図4および図5の実施例は本発明をサーミ
スタボロメータに適用したものである。感温薄膜2とし
ての感温抵抗体の裏側の空洞6は、裏側から基板1をエ
ッチングして形成したものである。したがって、図1、
3の実施例の底面11が存在せず、またエッチング用窓
9が存在しない。基板1の裏側には赤外線反射板15が
貼り付けられている。図1および図3の実施例では感温
薄膜2が細く長い梁5によってのみ基板1とつながり、
取り出し電極3がこの梁5に沿っていたが、この実施例
ではこの構成が異なっている。受光部の周辺に入射する
赤外線の一部はダイヤフラム16、17を透過したの
ち、赤外線反射板15で反射され、感温薄膜の裏側の赤
外線吸収薄膜12に吸収される。勿論、素子表面から赤
外線吸収薄膜4に入射した赤外線の大部分はここに吸収
される。このようにして、上記各実施例におけると同様
に赤外線は赤外線吸収薄膜4と赤外線吸収薄膜12に効
率良く吸収される。
The embodiment shown in FIGS. 4 and 5 is an application of the present invention to a thermistor bolometer. The cavity 6 on the back side of the temperature sensitive resistor as the temperature sensitive thin film 2 is formed by etching the substrate 1 from the back side. Therefore, in FIG.
The bottom surface 11 of the third embodiment is not present, and the etching window 9 is not present. An infrared reflection plate 15 is attached to the back side of the substrate 1. 1 and 3, the temperature-sensitive thin film 2 is connected to the substrate 1 only by the thin and long beams 5.
The lead-out electrode 3 was provided along the beam 5, but this structure is different in this embodiment. A part of infrared rays incident on the periphery of the light receiving portion is transmitted through the diaphragms 16 and 17, and then reflected by the infrared reflecting plate 15 and absorbed by the infrared absorbing thin film 12 on the back side of the temperature sensitive thin film. Of course, most of the infrared rays incident on the infrared absorption thin film 4 from the element surface are absorbed here. In this way, the infrared rays are efficiently absorbed by the infrared absorption thin film 4 and the infrared absorption thin film 12 as in the above-described embodiments.

【0030】上記赤外線センサを複数個平面的に配列し
て赤外線センサアレイを形成した場合、赤外線アレイセ
ンサの実効的な面積効率を高めることができる。
When a plurality of the infrared sensors are arranged in a plane to form an infrared sensor array, the effective area efficiency of the infrared array sensor can be increased.

【0031】[0031]

【発明の効果】以上説明したように、本発明の赤外線セ
ンサは、赤外線の入射方向に見て基板の表面の一部に感
温薄膜が形成され、且つ感温薄膜の裏側部分の基板が除
去されて空洞となり、感温薄膜の表裏の両側に赤外線吸
収薄膜が形成されているので、表面より入射した赤外線
を感温薄膜の表裏の両赤外線吸収薄膜で効率良く吸収す
ることができる。また、受光部の周囲に入射した赤外線
も感温薄膜の基板壁面および基板底面から反射後、感温
薄膜の裏側の赤外線吸収薄膜に吸収する。したがって、
実効的な受光面積が広くなる。このようにして、高感度
の赤外線センサを実現することができる。
As described above, in the infrared sensor of the present invention, the temperature-sensitive thin film is formed on a part of the surface of the substrate when viewed in the direction of incidence of infrared rays, and the substrate on the back side of the temperature-sensitive thin film is removed. As a result, the infrared absorption thin films are formed on both sides of the temperature-sensitive thin film on both sides of the temperature-sensitive thin film, so that the infrared rays incident from the surface can be efficiently absorbed by both the infrared absorption thin films on the front and back sides of the temperature-sensitive thin film. Further, the infrared rays incident on the periphery of the light receiving portion are also reflected by the substrate wall surface and the substrate bottom surface of the temperature sensitive thin film and then absorbed by the infrared absorbing thin film on the back side of the temperature sensitive thin film. Therefore,
The effective light receiving area becomes wider. In this way, a highly sensitive infrared sensor can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外線センサの概略構成を示す斜視図
である。
FIG. 1 is a perspective view showing a schematic configuration of an infrared sensor of the present invention.

【図2】(a)ないし(i)は図1に示す本発明の赤外
線センサの作製工程を説明する図である。
2 (a) to (i) are views for explaining a manufacturing process of the infrared sensor of the present invention shown in FIG.

【図3】本発明の他の実施例の概略構成を示す斜視図で
ある。
FIG. 3 is a perspective view showing a schematic configuration of another embodiment of the present invention.

【図4】本発明の他の実施例の概略構成を示す斜視図で
ある。
FIG. 4 is a perspective view showing a schematic configuration of another embodiment of the present invention.

【図5】図4の実施例の断面図である。5 is a cross-sectional view of the embodiment of FIG.

【図6】従来の赤外線センサの概略構成を示す斜視図で
ある。
FIG. 6 is a perspective view showing a schematic configuration of a conventional infrared sensor.

【図7】(a)ないし(h)は従来の赤外線センサの作
製工程を説明する図である。
7 (a) to 7 (h) are views for explaining a manufacturing process of a conventional infrared sensor.

【符号の説明】[Explanation of symbols]

1 基板 2 感温薄膜 3 取り出し電極 4 赤外線吸収薄膜 5 梁 6 空洞 7 絶縁薄膜 8 絶縁薄膜 9 エッチング用窓 10 壁面 11 底面 12 赤外線吸収薄膜 13 取り出し電極兼赤外線吸収薄膜 14 取り出し電極兼赤外線吸収薄膜 15 赤外線反射板 16 ダイヤフラム 17 ダイヤフラム 1 Substrate 2 Temperature Sensitive Thin Film 3 Extraction Electrode 4 Infrared Absorption Thin Film 5 Beam 6 Cavity 7 Insulating Thin Film 8 Insulating Thin Film 9 Etching Window 10 Wall Surface 11 Bottom Surface 12 Infrared Absorption Thin Film 13 Extraction Electrode / Infrared Absorption Thin Film 14 Extraction Electrode / Infrared Absorption Thin Film 15 Infrared reflector 16 Diaphragm 17 Diaphragm

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面に感温薄膜が形成され、且つ
該感温薄膜の裏側の基板の一部が除去されて空洞となっ
ている赤外線センサにおいて、前記感温薄膜の表裏の両
側に赤外線吸収薄膜が形成されていることを特徴とする
赤外線センサ。
1. An infrared sensor in which a temperature-sensitive thin film is formed on the surface of a substrate, and a part of the substrate on the back side of the temperature-sensitive thin film is removed to form a cavity, on both sides of the front and back of the temperature-sensitive thin film. An infrared sensor having an infrared absorbing thin film formed thereon.
【請求項2】 前記基板の裏側に赤外線反射板を取り付
けたことを特徴とする請求項1に記載の赤外線センサ。
2. The infrared sensor according to claim 1, further comprising an infrared reflection plate attached to the back side of the substrate.
【請求項3】 前記感温薄膜の表裏両側に形成した前記
赤外線吸収薄膜の中の少なくとも一方を前記感温薄膜の
電極に用いたことを特徴とする請求項1または請求項2
に記載の赤外線センサ。
3. An infrared absorbing thin film formed on both sides of the temperature sensitive thin film, wherein at least one of the infrared absorbing thin films is used as an electrode of the temperature sensitive thin film.
Infrared sensor described in.
【請求項4】 前記感温薄膜が感温抵抗体、焦電薄膜、
熱電対およびサーモパイルの中のいずれかであることを
特徴とする請求項1乃至請求項3のいずれか1項に記載
の赤外線センサ。
4. The temperature-sensitive thin film is a temperature-sensitive resistor, a pyroelectric thin film,
The infrared sensor according to any one of claims 1 to 3, which is one of a thermocouple and a thermopile.
【請求項5】 請求項1乃至請求項4のいずれか1項に
記載の赤外線センサを複数個平面的に配列したことを特
徴とする赤外線センサアレイ。
5. An infrared sensor array comprising a plurality of infrared sensors according to claim 1 arranged in a plane.
【請求項6】 Si基板の上に赤外線吸収薄膜を形成す
る工程と、前記赤外線吸収薄膜の上に絶縁薄膜を形成す
る工程と、前記絶縁薄膜の上に感温薄膜を形成する工程
と、前記感温薄膜の上に取り出し電極を形成する工程
と、層間絶縁または素子保護のためSiO2 、SiN等
の絶縁薄膜を前記感温薄膜と前記取り出し電極の上に形
成する工程と、別の赤外線吸収薄膜を前記感温薄膜上に
形成する工程と、前記絶縁薄膜をエッチングしSi基板
のエッチング用窓および梁を形成する工程と、Si基板
の異方性エッチングを行い前記感温薄膜の裏面の基板を
除去して空洞を形成する工程とを包含することを特徴と
する赤外線センサの作製方法。
6. A step of forming an infrared absorbing thin film on a Si substrate, a step of forming an insulating thin film on the infrared absorbing thin film, a step of forming a temperature sensitive thin film on the insulating thin film, Another step of forming an extraction electrode on the temperature-sensitive thin film, a step of forming an insulating thin film such as SiO 2 or SiN on the temperature-sensitive thin film and the extraction electrode for interlayer insulation or element protection, and another infrared absorption A step of forming a thin film on the temperature-sensitive thin film; a step of etching the insulating thin film to form an etching window and a beam of a Si substrate; and an anisotropic etching of the Si substrate to form a substrate on the back surface of the temperature-sensitive thin film. And removing it to form a cavity.
JP6110763A 1994-05-25 1994-05-25 Infrared ray sensor and manufacture thereof Pending JPH07318420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6110763A JPH07318420A (en) 1994-05-25 1994-05-25 Infrared ray sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6110763A JPH07318420A (en) 1994-05-25 1994-05-25 Infrared ray sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07318420A true JPH07318420A (en) 1995-12-08

Family

ID=14543958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6110763A Pending JPH07318420A (en) 1994-05-25 1994-05-25 Infrared ray sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07318420A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142237A (en) * 1997-11-05 1999-05-28 Yokogawa Electric Corp Infrared detecting element and infrared spectral apparatus using the same as well as imaging element
US7495220B2 (en) 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor
JP4794693B1 (en) * 2010-05-27 2011-10-19 パナソニック株式会社 Thermoelectric conversion device, radiation detector, and radiation detection method using the same
JP2011249769A (en) * 2011-03-24 2011-12-08 Panasonic Corp Radiation detector and method for detecting electromagnetic wave using the same
JP2012173191A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Thermal photodetector, thermal photodetection device, and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495220B2 (en) 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor
JPH11142237A (en) * 1997-11-05 1999-05-28 Yokogawa Electric Corp Infrared detecting element and infrared spectral apparatus using the same as well as imaging element
JP4794693B1 (en) * 2010-05-27 2011-10-19 パナソニック株式会社 Thermoelectric conversion device, radiation detector, and radiation detection method using the same
WO2011148425A1 (en) * 2010-05-27 2011-12-01 パナソニック株式会社 Thermoelectric conversion device, radiation detector, and radiation detection method using same
US8129689B2 (en) 2010-05-27 2012-03-06 Panasonic Corporation Thermoelectric conversion device, and radiation detector and radiation detection method using the same
US8203122B1 (en) 2010-05-27 2012-06-19 Panasonic Corporation Thermoelectric conversion device, and radiation detector and radiation detection method using the same
JP2012173191A (en) * 2011-02-23 2012-09-10 Seiko Epson Corp Thermal photodetector, thermal photodetection device, and electronic device
JP2011249769A (en) * 2011-03-24 2011-12-08 Panasonic Corp Radiation detector and method for detecting electromagnetic wave using the same

Similar Documents

Publication Publication Date Title
JP3514681B2 (en) Infrared detector
KR100704518B1 (en) Micro-bridge structure
JP3097591B2 (en) Thermal infrared detector
JP2856180B2 (en) Thermal type infrared detecting element and manufacturing method thereof
US20080265164A1 (en) Thermal detector for electromagnetic radiation and infrared detection device using such detectors
JP2000298060A (en) Infrared ray sensor and manufacture thereof
JP3604130B2 (en) Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
JPH11258038A (en) Infrared ray sensor
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPH07318420A (en) Infrared ray sensor and manufacture thereof
JPH07190854A (en) Infrared sensor
JP3132197B2 (en) Thermal infrared sensor
JP5672742B2 (en) Infrared temperature sensor
CN116481653A (en) MEMS thermopile infrared detector and preparation method thereof
JP3274881B2 (en) Infrared sensor and method of manufacturing the same
JPH10288550A (en) Thermal infrared sensor and solid image pickup device
JP3417855B2 (en) Infrared sensor
JP2000298061A (en) Infrared ray sensor
KR100339395B1 (en) pile bolometer sensor and fabrication methode of the same
JP2697938B2 (en) Temperature sensor
JP3435997B2 (en) Infrared detector
JP2001066182A (en) Infrared sensor and its manufacture
JP2003344151A (en) Infrared sensor and infrared sensor array
JP2000230860A (en) Thermal infrared sensor, manufacture thereof and thermal infrared array element
JP2772776B2 (en) Thermopile

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010807