JPH07190854A - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPH07190854A
JPH07190854A JP5347400A JP34740093A JPH07190854A JP H07190854 A JPH07190854 A JP H07190854A JP 5347400 A JP5347400 A JP 5347400A JP 34740093 A JP34740093 A JP 34740093A JP H07190854 A JPH07190854 A JP H07190854A
Authority
JP
Japan
Prior art keywords
infrared
film
absorbing film
sensitive element
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5347400A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueshima
啓史 上嶋
Manabu Yamada
学 山田
Mamoru Takusagawa
守 田草川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5347400A priority Critical patent/JPH07190854A/en
Publication of JPH07190854A publication Critical patent/JPH07190854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an infrared sensor whose absorption efficiency of infrared rays is higher than that in conventional cases. CONSTITUTION:The figure shows the cross section of an infrared sensor provided with a temperature-sensitive film of a wedge-shaped structure as one example of this invention. A hollow is formed in an Si substrate 7, a temperature-sensitive film 5 which is supported by a support layer 4 is formed to be of a V-wedge-shaped structure, and a thermosensitive element 6 is formed at its bottom part. An infrared absorption film 1 is formed on the surface of the film 5 via an insulaitng layer 2. Infrared rays which are incident as to be deviated from the center are absorbed considerably by the absorption film 1, but they are incident again on other parts in the sensitive film so as to be absorbed there again. The inclination of a wedge shape is set at an angle at which the rays are reflected three times, and their absorption efficiency is enhanced remarkably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線を吸収して熱電
変換により信号を得るセンサに関し、特に、熱型の赤外
線センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for absorbing infrared rays to obtain a signal by thermoelectric conversion, and more particularly to a thermal infrared sensor.

【0002】[0002]

【従来の技術】近年、熱型赤外線センサを半導体微細加
工を利用して作成する技術が種々開発されている。この
赤外線センサは断熱構造を有した薄膜の温度感応膜で赤
外線を吸収し、その赤外線による温度上昇を、サーミス
タや焦電材料などの熱電変換素子(感熱素子)により電
気抵抗変化または起電力に変換し、測定対象である赤外
線の線量に比例した信号を得るものである。温度感応膜
の表面に設けられる赤外線吸収膜を構成する材料として
は、一般にNiCr薄膜や金黒(金ブラック)薄膜がよく用
いられている。
2. Description of the Related Art In recent years, various techniques have been developed for producing a thermal infrared sensor by utilizing semiconductor fine processing. This infrared sensor absorbs infrared rays with a thin temperature-sensitive film with a heat insulating structure, and converts the temperature rise due to the infrared rays into a change in electrical resistance or electromotive force with a thermoelectric conversion element (thermosensitive element) such as a thermistor or pyroelectric material. Then, a signal proportional to the dose of infrared rays to be measured is obtained. Generally, NiCr thin film and gold black (gold black) thin film are often used as a material forming the infrared absorbing film provided on the surface of the temperature sensitive film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この赤
外線吸収膜の吸収率は膜質や膜厚により変化し、現状で
は最も効果のあるNiCrの場合で最大50%程度が限界であ
る。元々センサの検出部位が小型のため、得られている
信号強度は小さく、信号はさらに強い、ノイズマージン
のとれるものが求められている。それでその検出効率を
補うため、受光量を多くするため集光用のマイクロレン
ズがセンサ前方に設けられたりするなどの提案がなされ
ているが、これは構造が複雑になり、光軸ずれ、焦点ず
れなどが発生してしまうという問題があり、製造上適切
とは言えない。従って本発明の目的は、従来より高い赤
外線吸収効率をもつ赤外線センサを提供することであ
る。
However, the absorptance of this infrared absorbing film varies depending on the film quality and film thickness, and in the present case, NiCr, which is the most effective, has a maximum limit of about 50%. Since the detection portion of the sensor is originally small, the obtained signal intensity is small, the signal is stronger, and a noise margin is required. Therefore, in order to compensate the detection efficiency, a proposal has been made such that a microlens for condensing light is provided in front of the sensor in order to increase the amount of received light, but this is complicated in structure, optical axis deviation, focus There is a problem in that misalignment occurs, which is not appropriate in manufacturing. Therefore, it is an object of the present invention to provide an infrared sensor having a higher infrared absorption efficiency than ever before.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め本発明の構成は、外部から照射された赤外線を吸収す
る第一の赤外線吸収膜と、熱電変換により抵抗変化また
は起電力として電気信号を得る感熱素子と、赤外線の入
射側の該感熱素子上に第二の赤外線吸収膜とが設けられ
ている赤外線センサであって、前記第一の赤外線吸収膜
に吸収されずに反射された赤外線が、前記感熱素子上の
前記第二の赤外線吸収膜に入射することである。また関
連発明の構成は、前記感熱素子が、NiCrもしくは金黒の
赤外線吸収膜で絶縁層とともに覆われたサーミスタもし
くは焦電素子もしくは熱電対のいずれかであることを特
徴とする。さらに関連する発明の構成は、前記感熱素子
の前記第二の赤外線吸収膜の長さをhとした時、前記感
熱素子周囲の前記第一の赤外線吸収膜が、前記感熱素子
の面に対して、0<α<(π/4)なるαで、傾斜角
In order to solve the above-mentioned problems, the structure of the present invention comprises a first infrared absorbing film for absorbing infrared rays radiated from the outside and an electric signal as resistance change or electromotive force by thermoelectric conversion. An infrared sensor provided with a heat-sensitive element for obtaining an infrared ray and a second infrared-ray absorbing film on the heat-sensitive element on the infrared ray incident side, wherein the infrared ray is reflected without being absorbed by the first infrared-ray absorbing film. Is incident on the second infrared absorbing film on the heat sensitive element. Further, the structure of the related invention is characterized in that the heat sensitive element is any of a thermistor, a pyroelectric element, and a thermocouple covered with an insulating layer by an infrared absorption film of NiCr or gold black. Further related configuration of the invention, when the length of the second infrared absorbing film of the heat sensitive element is h, the first infrared absorbing film around the heat sensitive element is relative to the surface of the heat sensitive element. , 0 <α <(π / 4) at α,

【数1】((π/2)−α) 〔ラジアン〕 で示される角度の傾斜を持ち、前記第一の赤外線吸収膜
の傾斜部分長さkが、
## EQU1 ## ((π / 2) -α) [radian] has an angle of inclination, and the inclined portion length k of the first infrared absorbing film is

【数2】k=hcos(2α) /sin(α) で示される値以上になっていることである(図6参
照)。
## EQU2 ## The value is equal to or more than the value represented by k = hcos (2α) / sin (α) (see FIG. 6).

【0005】[0005]

【作用および発明の効果】第一の赤外線吸収膜に当たっ
ても吸収されずに反射してしまった赤外線が、感熱素子
を取り巻く第一の赤外線吸収膜の構造により、反射後も
再び感熱素子上の第二の赤外線吸収膜に当たるので、い
ままで分散されて検出に寄与していなかった赤外線が信
号に寄与するようになり、赤外線の検出効率が上がる。
特に感熱素子のある中心部に赤外線が集中することにな
るので、熱電変換材料が直接熱を受ける率が大きくな
り、検出効率が向上する。
The function of the infrared ray reflected by the first infrared ray absorbing film without being absorbed by the first infrared ray absorbing film is again due to the structure of the first infrared ray absorbing film surrounding the heat sensitive element. Since it hits the second infrared absorption film, the infrared rays that have been dispersed and have not contributed to the detection until now come to contribute to the signal, and the infrared detection efficiency is improved.
In particular, since infrared rays are concentrated on the central portion where the heat sensitive element is present, the rate at which the thermoelectric conversion material directly receives heat is increased, and the detection efficiency is improved.

【0006】[0006]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は、本発明を応用した楔型構造の温度感応
膜5を有する赤外線センサの模式的構造断面図で、従来
と同様、この赤外線センサは、Si基板7に空洞を設け、
赤外線が照射される部分を絶縁層である支持層4で支え
た薄膜の温度感応膜5として形成してある。従来、平面
であった温度感応膜5は、図1に示すように断面がV字
状の楔型構造としてあり、その底の部分に熱電変換材料
の膜が感熱素子6として形成してある。温度感応膜5の
傾斜面部分に第一の赤外線吸収膜1が設けられ、中心と
なる底面部には絶縁層2を介して第二の赤外線吸収膜
1’、その下に感熱素子6が設けてある。なお、図1は
模式図であるので、実際の寸法比例を示しておらず、温
度感応膜の各膜厚等は図1に示す通りではない。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is a schematic structural sectional view of an infrared sensor having a wedge-shaped temperature sensitive film 5 to which the present invention is applied. As in the conventional case, this infrared sensor has a cavity in a Si substrate 7,
The portion irradiated with infrared rays is formed as a thin temperature-sensitive film 5 supported by a supporting layer 4 which is an insulating layer. Conventionally, the temperature-sensitive film 5, which has been flat in the past, has a wedge-shaped structure having a V-shaped cross section as shown in FIG. 1, and a film of thermoelectric conversion material is formed as a heat-sensitive element 6 on the bottom portion thereof. The first infrared absorbing film 1 is provided on the inclined surface portion of the temperature sensitive film 5, the second infrared absorbing film 1'is provided on the bottom surface, which is the center, through the insulating layer 2, and the heat sensitive element 6 is provided below it. There is. Since FIG. 1 is a schematic diagram, the actual dimensional proportions are not shown, and the film thickness of the temperature-sensitive film is not as shown in FIG.

【0007】中心を外れて上方から入射してきた赤外線
は、最初に第一の赤外線吸収膜1に当たって一部が吸収
され、残りは反射されてしまうが、再び温度感応膜の別
の部分、大半は底部分に当たって、そこの第二の赤外線
吸収膜1’に再び吸収され、さらに反射した残りの赤外
線はさらに別の箇所の第一の赤外線吸収膜1に当たって
吸収される。この楔型形状の傾きは図2に示すように、
都合3回、赤外線吸収膜に当たって吸収されることにな
る角度としてあるので、その吸収効率は格段に向上す
る。もちろんこのように2回反射して3回当たる領域は
限られているが、図2の (a)〜(c) に示した、中心から
ずれた三つの入射位置では、3回赤外線吸収膜にあたる
ことを示しており、この三箇所は中心部からほぼ等間隔
に周辺へと位置しているので、およそこの温度感応膜5
全体に渡って、入射された赤外線が少なくとも複数回、
大体は3回赤外線吸収膜1および1’に当たることがわ
かる。単純に1回の反射で50%吸収されるとして計算す
ると、3回では50+25+12.5=87.5%吸収されることに
なり、かなり吸収効率が改善される。
[0007] The infrared rays that are off-center and incident from above hit the first infrared absorption film 1 first and are partially absorbed, and the rest are reflected, but another part of the temperature sensitive film, most of which is again After hitting the bottom portion, the second infrared ray absorbing film 1 ′ there absorbs it again, and the remaining infrared ray reflected further hits the first infrared ray absorbing film 1 at another position and is absorbed. The wedge-shaped inclination is as shown in FIG.
Since the angle is set to hit the infrared absorption film three times for the sake of convenience, the absorption efficiency is remarkably improved. Of course, the area that is reflected twice and hits three times in this way is limited, but at the three incident positions deviated from the center shown in (a) to (c) of FIG. 2, it hits the infrared absorption film three times. Since these three locations are located from the center to the periphery at almost equal intervals, the temperature sensitive film 5 is
Throughout the whole, the incident infrared rays are at least several times,
It can be seen that the infrared-ray absorbing films 1 and 1 ′ are hit about three times. If the calculation is performed assuming that 50% is absorbed by one reflection, 50 + 25 + 12.5 = 87.5% is absorbed by three reflections, and the absorption efficiency is considerably improved.

【0008】この様な楔型構造の温度感応膜は、以下の
ようにして形成する。先ず図3(a)のように、Si基板
に、異方性エッチングを利用して楔状の溝を形成する。
この部分が温度感応膜を形成する部分となるので、この
溝の切り込みの角度を所定の希望する角度になるように
異方性エッチングする。次にこの溝の部分に、後に断熱
のための空洞を形成するための犠牲層32を図3(b) の
ように形成し、その上に温度感応膜の支持層となる Si3
N4膜33を形成する。そして次に、この支持層33の溝
の底の部分に熱電変換素子(感熱素子)37を形成し、
電極としてAl配線34をパターン形成して、その上に絶
縁層35、その上に第一および第二の赤外線吸収膜36
を形成する(図3(c))。そして必要部分の赤外線吸収膜
36を残し、温度感応膜を基板で支える梁部分を残して
エッチングホール38を形成し、先程形成した犠牲層3
2とその下部のSi基板部を選択異方性エッチングで空洞
を形成して、最後に温度感応膜を基板から浮かせた断熱
構造にして赤外線センサを完成する。なお、図3も模式
図であり、正確な寸法を反映しておらず、また第一およ
び第二の赤外線吸収膜36は独立な構成ではなく、同一
の工程で連続的構成膜として形成される。
The temperature sensitive film having such a wedge structure is formed as follows. First, as shown in FIG. 3A, a wedge-shaped groove is formed on a Si substrate by using anisotropic etching.
Since this portion serves as a portion for forming the temperature sensitive film, anisotropic etching is performed so that the groove is cut at a predetermined desired angle. Next, a sacrificial layer 32 for forming a cavity for heat insulation later is formed in this groove portion as shown in FIG. 3 (b), and Si 3 serving as a supporting layer of the temperature sensitive film is formed thereon.
The N 4 film 33 is formed. Then, next, a thermoelectric conversion element (heat sensitive element) 37 is formed at the bottom of the groove of the support layer 33,
An Al wiring 34 is patterned as an electrode, an insulating layer 35 is formed thereon, and first and second infrared absorbing films 36 are formed thereon.
Are formed (FIG. 3 (c)). Then, an etching hole 38 is formed by leaving the infrared absorbing film 36 in a necessary portion and a beam portion supporting the temperature sensitive film by the substrate, and the sacrificial layer 3 formed previously.
The infrared sensor is completed by forming a cavity in 2 and the Si substrate portion under it by selective anisotropic etching, and finally forming a heat insulating structure in which the temperature sensitive film is floated from the substrate. Note that FIG. 3 is also a schematic diagram and does not reflect accurate dimensions, and the first and second infrared absorbing films 36 are not independent structures but are formed as continuous constituent films in the same process. .

【0009】図6は第一の赤外線吸収膜の感熱素子に対
する傾斜角度の関係を詳しく説明する図で、感熱素子よ
りずっと遠方より放射される赤外線は、ほぼ感熱素子に
対して垂直に入射する。それで、そのような平行な入射
に対して、直接感熱素子に当たらなかった赤外線が、感
熱素子の周囲の第一の赤外線吸収膜に当たった後、反射
した分が再び感熱素子に当たるような反射角度をもつ場
合の構成を示している。この傾斜角度を両側に形成する
と、さらに反射された赤外線がもう一度反対側の第一の
赤外線吸収膜にも当たる。この第一の赤外線吸収膜の底
面に対する傾斜角度は数1式で示される。第一の赤外線
吸収膜の必要な傾斜部分長さは数2式で、赤外線入射側
に設けられた底面部分の第二の赤外線吸収膜の長さで決
まる。もちろん感熱素子に垂直に入射されなかった赤外
線はこの関係からずれるが、少なくとも周囲の赤外線吸
収膜に照射されて反射された分は感熱素子近傍に当た
る。温度感応膜の受光面積が広く、受けた赤外線が有効
に熱になるとすれば、それだけ感度が上がると見なせ
る。それで、この温度感応膜の開口面積は図6(b) に示
すhcos(2α)が最大になる場合であるが、そのような
傾斜角度はα→0となるため、実際にはkの長さが無限
大に発散してしまう上、kの長さは前述したエッチング
プロセスで形成するため、あまり長くはできない。ま
た、αがπ/4以上になると反射した光が感熱素子面と
平行もしくは当たらなくなる。従って、感熱素子に反射
光が程良く当たるためには、αが(π/8)<α<(π
/6)の範囲にあることが望ましい。
FIG. 6 is a diagram for explaining in detail the relationship of the inclination angle of the first infrared absorbing film with respect to the heat sensitive element. Infrared rays radiated far away from the heat sensitive element enter almost perpendicularly to the heat sensitive element. Therefore, for such a parallel incident, the infrared ray that did not directly hit the heat-sensitive element hits the first infrared absorbing film around the heat-sensitive element, and then the reflected amount hits the heat-sensitive element again. It shows the configuration in the case of having. When this inclination angle is formed on both sides, the reflected infrared rays again strike the first infrared absorption film on the opposite side. The inclination angle of the first infrared absorbing film with respect to the bottom surface is expressed by the equation (1). The required length of the inclined portion of the first infrared absorbing film is expressed by the equation 2 and is determined by the length of the second infrared absorbing film on the bottom surface portion provided on the infrared incident side. Of course, infrared rays not vertically incident on the heat-sensitive element deviate from this relationship, but at least a portion of the infrared-ray absorption film on the periphery that is irradiated and reflected hits the vicinity of the heat-sensitive element. If the light receiving area of the temperature sensitive film is large and the received infrared rays are effectively heated, it can be considered that the sensitivity is increased accordingly. Therefore, the opening area of this temperature-sensitive film is the case where hcos (2α) shown in Fig. 6 (b) becomes the maximum, but such an inclination angle becomes α → 0, so the length of k is actually Diverges to infinity, and the length of k cannot be too long because it is formed by the etching process described above. Further, when α becomes π / 4 or more, the reflected light becomes parallel to or does not hit the surface of the thermosensitive element. Therefore, in order for the reflected light to satisfactorily reach the heat-sensitive element, α is (π / 8) <α <(π
It is desirable that it is in the range of / 6).

【0010】図4に、この本発明実施例の構造の赤外線
センサの感熱素子としてサーミスタを用いたホイートス
トーンブリッジ回路を示す。サーミスタは図4のR1で、
赤外線が照射されて、この抵抗値が変化し、ブリッジ出
力として検出される。本赤外線センサと従来構造の赤外
線センサとの出力の比較を図5に示す。図5からわかる
ように同一条件でおよそ2倍の信号が得られる結果とな
った。R2〜R4は参照抵抗で図1に示すセンサ部分以外の
基板部もしくは外部抵抗で構成する。
FIG. 4 shows a Wheatstone bridge circuit using a thermistor as a heat sensitive element of the infrared sensor having the structure of this embodiment of the present invention. The thermistor is R1 in Figure 4,
When infrared rays are radiated, this resistance value changes and is detected as a bridge output. A comparison of the outputs of the present infrared sensor and the conventional infrared sensor is shown in FIG. As can be seen from FIG. 5, under the same conditions, the result is that the signal is approximately doubled. R2 to R4 are reference resistors, which are constituted by a substrate portion other than the sensor portion shown in FIG. 1 or an external resistor.

【0011】反射された赤外線が再び赤外線吸収膜に当
たるような構造は、図1に示す楔型構造に限らず、放物
面型やポリゴンミラー形状のような温度感応膜でもよ
い。またもちろん、赤外線センサの回路構成は、図4で
なく他の構成であっても本発明の効果は同様である。
The structure in which the reflected infrared rays strike the infrared absorption film again is not limited to the wedge structure shown in FIG. 1, but may be a temperature sensitive film such as a parabolic type or a polygon mirror type. Of course, the effect of the present invention is the same even if the infrared sensor has a circuit configuration other than that shown in FIG.

【0012】以上のように、本発明の反射された赤外線
を再び吸収できる構造の温度感応膜により、吸収される
赤外線の吸収効率が大幅に高まり、より高感度で扱いや
すい赤外線センサを得ることができた。
As described above, the temperature-sensitive film of the present invention having a structure capable of absorbing reflected infrared rays again significantly increases the absorption efficiency of the absorbed infrared rays, and an infrared sensor having higher sensitivity and easier handling can be obtained. did it.

【図面の簡単な説明】[Brief description of drawings]

【図1】楔型構造の温度感応膜を有する本発明の赤外線
センサの模式的構造断面図。
FIG. 1 is a schematic structural sectional view of an infrared sensor of the present invention having a wedge-shaped temperature sensitive film.

【図2】各位置で入射した赤外線の反射の様子を示す説
明図。
FIG. 2 is an explanatory diagram showing a state of reflection of infrared rays incident at each position.

【図3】楔型構造の温度感応膜を形成する工程の説明
図。
FIG. 3 is an explanatory diagram of a process of forming a temperature sensitive film having a wedge structure.

【図4】センサ応用回路図。FIG. 4 is a sensor application circuit diagram.

【図5】本発明と従来構造とのセンサ出力の比較図。FIG. 5 is a comparison diagram of sensor outputs of the present invention and a conventional structure.

【図6】本発明の赤外線感応膜の傾斜の説明図。FIG. 6 is an explanatory view of the inclination of the infrared sensitive film of the present invention.

【符号の説明】[Explanation of symbols]

1 第一の赤外線吸収膜 1’第二の赤外線吸収膜 2 絶縁層(SiO2) 3 Al配線 4 支持層(Si3N4) 5 温度感応膜(1、2、3、4、6) 6 熱電変換素子(感熱素子) 7 Si基板 31 Si基板 32 犠牲層 38 エッチングホール1 first infrared absorption film 1 'second infrared absorption film 2 insulating layer (SiO 2) 3 Al wiring 4 supporting layer (Si 3 N 4) 5 temperature-sensitive film (1,2,3,4,6) 6 Thermoelectric conversion element (heat sensitive element) 7 Si substrate 31 Si substrate 32 Sacrificial layer 38 Etching hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外部から照射された赤外線を吸収する第
一の赤外線吸収膜と、熱電変換により抵抗変化または起
電力として電気信号を得る感熱素子と、赤外線の入射側
の該感熱素子上に第二の赤外線吸収膜とが設けられてい
る赤外線センサであって、 前記第一の赤外線吸収膜に吸収されずに反射された赤外
線が、前記感熱素子上の前記第二の赤外線吸収膜に入射
することを特徴とする赤外線センサ。
1. A first infrared absorption film that absorbs infrared rays emitted from the outside, a thermosensitive element that obtains an electric signal as a resistance change or electromotive force by thermoelectric conversion, and a thermosensitive element on the infrared ray incident side. An infrared sensor provided with a second infrared absorbing film, wherein infrared rays reflected without being absorbed by the first infrared absorbing film are incident on the second infrared absorbing film on the thermosensitive element. Infrared sensor characterized in that.
【請求項2】 前記感熱素子は、NiCrもしくは金黒の赤
外線吸収膜が絶縁層とともに覆われたサーミスタもしく
は焦電素子もしくは熱電対のいずれかであることを特徴
とする請求項1に記載の赤外線センサ。
2. The infrared ray according to claim 1, wherein the thermosensitive element is a thermistor, a pyroelectric element, or a thermocouple in which an infrared absorption film of NiCr or gold black is covered with an insulating layer. Sensor.
【請求項3】 前記感熱素子の前記第二の赤外線吸収膜
の長さをhとした時、前記感熱素子周囲の前記第一の赤
外線吸収膜が、前記感熱素子の面に対して、0<α<
(π/4)なるαで、傾斜角 【数1】((π/2)−α) 〔ラジアン〕 で示される角度の傾斜を持ち、前記第一の赤外線吸収膜
の傾斜部分長さkが、 【数2】k=hcos(2α) /sin(α) で示される値以上になっていることを特徴とする請求項
1に記載の赤外線センサ。
3. When the length of the second infrared absorbing film of the heat sensitive element is set to h, the first infrared absorbing film around the heat sensitive element has a length of 0 <with respect to the surface of the heat sensitive element. α <
(Α / 4), the inclination angle is represented by the following formula: ((π / 2) −α) [radian], and the inclined portion length k of the first infrared absorbing film is The infrared sensor according to claim 1, wherein k = hcos (2α) / sin (α) or more.
JP5347400A 1993-12-25 1993-12-25 Infrared sensor Pending JPH07190854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5347400A JPH07190854A (en) 1993-12-25 1993-12-25 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5347400A JPH07190854A (en) 1993-12-25 1993-12-25 Infrared sensor

Publications (1)

Publication Number Publication Date
JPH07190854A true JPH07190854A (en) 1995-07-28

Family

ID=18389968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5347400A Pending JPH07190854A (en) 1993-12-25 1993-12-25 Infrared sensor

Country Status (1)

Country Link
JP (1) JPH07190854A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541449A (en) * 1999-04-01 2002-12-03 ハネウエル・インコーポレーテッド Large area, low mass IR pixel with neat cross section
US7145144B2 (en) 2004-02-17 2006-12-05 Mitsubishi Denki Kabushiki Kaisha Thermal infrared sensor device and thermal infrared sensor array
JP2008192180A (en) * 2008-05-12 2008-08-21 Hochiki Corp Heat sensor
WO2009022698A1 (en) * 2007-08-13 2009-02-19 National Institute Of Advanced Industrial Science And Technology Process for producing fine thermoelectric element, the fine thermoelectric element, and product employing the fine thermoelectric element
WO2010073288A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and infrared sensor manufacturing method
WO2010073286A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor
WO2010073287A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and method for manufacturing infrared sensor
WO2011039798A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor and sensor array equipped with same
WO2011039797A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor
WO2011039799A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Sensor array
US8643133B2 (en) 2011-02-23 2014-02-04 Seiko Epson Corporation Thermal detector, thermal detection device, and electronic instrument
US9000372B2 (en) 2010-01-26 2015-04-07 Seiko Epson Corporation Thermal detector, thermal detection device and electronic instrument, and method for manufacturing thermal detector
CN112781732A (en) * 2020-12-31 2021-05-11 北京北方高业科技有限公司 Infrared detector pixel adaptive to temperature adjustment and infrared detector

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700196B2 (en) * 1999-04-01 2011-06-15 ハネウェル・インターナショナル・インコーポレーテッド Large area low mass IR pixel with neat cross section
JP2002541449A (en) * 1999-04-01 2002-12-03 ハネウエル・インコーポレーテッド Large area, low mass IR pixel with neat cross section
US7145144B2 (en) 2004-02-17 2006-12-05 Mitsubishi Denki Kabushiki Kaisha Thermal infrared sensor device and thermal infrared sensor array
WO2009022698A1 (en) * 2007-08-13 2009-02-19 National Institute Of Advanced Industrial Science And Technology Process for producing fine thermoelectric element, the fine thermoelectric element, and product employing the fine thermoelectric element
JP2009049050A (en) * 2007-08-13 2009-03-05 National Institute Of Advanced Industrial & Technology Manufacturing method of fine thermoelectric element, fine thermoelectric element and product using the same
JP2008192180A (en) * 2008-05-12 2008-08-21 Hochiki Corp Heat sensor
JPWO2010073288A1 (en) * 2008-12-22 2012-05-31 パイオニア株式会社 Infrared sensor and method of manufacturing infrared sensor
WO2010073287A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and method for manufacturing infrared sensor
WO2010073286A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor
WO2010073288A1 (en) * 2008-12-22 2010-07-01 パイオニア株式会社 Infrared sensor and infrared sensor manufacturing method
WO2011039798A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor and sensor array equipped with same
WO2011039797A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor
WO2011039799A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Sensor array
JPWO2011039798A1 (en) * 2009-09-29 2013-02-21 パイオニア株式会社 MEMS sensor and sensor array including the same
JPWO2011039797A1 (en) * 2009-09-29 2013-02-21 パイオニア株式会社 MEMS sensor
US9000372B2 (en) 2010-01-26 2015-04-07 Seiko Epson Corporation Thermal detector, thermal detection device and electronic instrument, and method for manufacturing thermal detector
US8643133B2 (en) 2011-02-23 2014-02-04 Seiko Epson Corporation Thermal detector, thermal detection device, and electronic instrument
CN112781732A (en) * 2020-12-31 2021-05-11 北京北方高业科技有限公司 Infrared detector pixel adaptive to temperature adjustment and infrared detector

Similar Documents

Publication Publication Date Title
JP3514681B2 (en) Infrared detector
JPH07190854A (en) Infrared sensor
JP3097591B2 (en) Thermal infrared detector
JPS6129648B2 (en)
US10585002B2 (en) Micromechanical device for electromagnetic radiation sensing
KR20000076051A (en) Thermopile sensor and radiation thermometer with a thermopile sensor
JPH08201177A (en) Infrared ray detector and its driving method
JPH08278192A (en) Infrared detector
JPH09329499A (en) Infrared sensor and infrared detector
JP2910448B2 (en) Infrared sensor
JP3132197B2 (en) Thermal infrared sensor
JPH0249124A (en) Thermopile
US5141330A (en) Thin-film quadrant temperature sensor for use in a system to control the alignment of a CO2 laser beam
JP3085830B2 (en) Radiant heat sensor
JP2000131147A (en) Infrared sensor
JP2002156283A (en) Thermopile-type infrared sensor
JPH1114449A (en) Infrared sensor
JPH11160146A (en) Infrared ray detecting element and manufacture of the same
JP2000111396A (en) Infrared detecting element and its manufacture
JPH11258040A (en) Thermopile type infrared ray sensor
JPH07318420A (en) Infrared ray sensor and manufacture thereof
JPH11326064A (en) Infrared image pickup element
JP3052329B2 (en) Infrared sensor
JP2722203B2 (en) Infrared detector
JP3435997B2 (en) Infrared detector