JPH07317508A - Power generation/desalination device utilizing sea water temperature difference - Google Patents

Power generation/desalination device utilizing sea water temperature difference

Info

Publication number
JPH07317508A
JPH07317508A JP10833494A JP10833494A JPH07317508A JP H07317508 A JPH07317508 A JP H07317508A JP 10833494 A JP10833494 A JP 10833494A JP 10833494 A JP10833494 A JP 10833494A JP H07317508 A JPH07317508 A JP H07317508A
Authority
JP
Japan
Prior art keywords
seawater
temperature difference
power generation
desalination
sea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10833494A
Other languages
Japanese (ja)
Other versions
JP3640410B2 (en
Inventor
Daishin Ito
大伸 伊藤
Masakazu Kondo
正和 近藤
Hidenobu Ito
秀伸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP10833494A priority Critical patent/JP3640410B2/en
Publication of JPH07317508A publication Critical patent/JPH07317508A/en
Application granted granted Critical
Publication of JP3640410B2 publication Critical patent/JP3640410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide a device which can efficiently drive both a sea water temperature difference power generator and a sea water temperature difference desalination device. CONSTITUTION:A power generation is arranged in which heating medium is evaporated by utilizing temperature difference between surface sea water W2 and deep sea water W1, and power generation is carried out by driving a generating turbine 23 by the obtained steam. In addition to that, a desalination device is arranged in which sea water is desalinated by utilizing the temperature difference between the surface sea water W2 and the deep sea water W1 A sea water pump 27 is commonly used for supplying the deep sea water W1 to both devices. Hot discharge water on the side of the power generator is used as a heat source. Hot water at the desalination device side is used as a heat source for heating the heating medium on the side of the power generator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は海水の温度差を利用した
発電・淡水化装置、更に詳しくは比較的深海域に浮揚す
るバージ等に設置して海水温度差を効果的に利用して発
電と淡水化とを同時に行うことができる装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation / desalination apparatus utilizing the temperature difference of seawater, and more specifically, it is installed in a barge or the like levitated in a relatively deep sea area to effectively utilize the temperature difference of seawater for power generation. The present invention relates to an apparatus capable of simultaneously performing desalination and desalination.

【0002】[0002]

【従来の技術】従来、自然エネルギーの利用を図るため
風力や波力又は太陽熱を利用することが提案され、その
一部は実用化されつつある。海水の温度差を利用してエ
ネルギーを回収する方法もその一つであり、この方法は
海水の表層の28℃程度と500〜600m程度の深層
の7℃程度の海水温度差を効果的に利用して電力等を得
ようとするものである。
2. Description of the Related Art Conventionally, it has been proposed to utilize wind power, wave power or solar heat in order to utilize natural energy, and part of it has been put into practical use. One of them is the method of recovering energy by utilizing the temperature difference of seawater, and this method effectively uses the seawater temperature difference of about 28 ° C in the surface layer of seawater and about 7 ° C in the deep layer of 500 to 600 m. Then, they try to obtain electric power.

【0003】この海水温度差発電の一例を示すと、図4
に示すように蒸発器1で得られたアンモニアガスGを管
路L1 でアンモニアタービン2に供給してこのアンモニ
アタービン2を作動して発電機3を駆動して電力を発生
させ、このアンモニアタービン2で低温低圧となったア
ンモニアガスG’を管路L2 を介して凝縮器4に供給
し、こゝで深層海水ポンプ5で管路L3 を介して供給さ
れる低温の深層海水W1によって冷却されて凝縮して液
体アンモニアLGとなり、管路L4 を経由してアンモニ
アポンプ6で加圧して蒸発器1に供給する。そしてこの
蒸発器1において表層海水ポンプ7により管路L5 を介
して供給される高温の表層海水W2 より熱を受けてアン
モニアガスGを発生するようになっている。
An example of this seawater temperature difference power generation is shown in FIG.
As shown in FIG. 2, the ammonia gas G obtained in the evaporator 1 is supplied to the ammonia turbine 2 through the line L1 to operate the ammonia turbine 2 to drive the generator 3 to generate electric power. The ammonia gas G ', which has become low temperature and low pressure in the above, is supplied to the condenser 4 via the line L2, and is cooled by the low temperature deep sea water W1 supplied via the line L3 in the deep sea water pump 5 here. The condensed ammonia becomes liquid ammonia LG, which is pressurized by the ammonia pump 6 via the line L4 and supplied to the evaporator 1. In the evaporator 1, the surface seawater pump 7 receives heat from the high-temperature surface seawater W2 supplied through the pipe L5 to generate the ammonia gas G.

【0004】また、一方で海水温度差発電とは独立して
海水を淡水化する装置が提案されている。なお、海水温
度差発電は、陸地より遠く離れた海域に浮揚する浮体上
にプラントを設置して行うものであるので、このプラン
トを操作する人達の生活水が必要であり、このプラント
は必要なものである。この淡水化装置は、図5に示すよ
うに分離膜装置8の冷却側8a に冷却水ポンプ9で管路
L6 を経由して低温の深層海水W1 を供給する。そし
て、原海水投入ポンプ10で表層海水W2 を海水ポンプ
11を有する管路L7 を経由して熱交換器12に供給し
て昇温させた後、分離膜装置8の高温側8b に供給する
ようにしている。この高温側8b には膜体8c が配置さ
れており、この膜体8c を表層海水W2 の一部が蒸気の
状態で透過し、この蒸気は冷却側8a を流れる低温の深
層海水W1 によって冷却されて淡水W3 となり、真空ポ
ンプ13を経て貯槽14に回収するようになっている。
On the other hand, a device for desalinating seawater independently of seawater temperature difference power generation has been proposed. In addition, since seawater temperature difference power generation is performed by installing a plant on a floating body that floats in a sea area far away from the land, it is necessary to provide domestic water for the people who operate this plant. It is a thing. As shown in FIG. 5, this desalination apparatus supplies low-temperature deep seawater W1 to the cooling side 8a of the separation membrane apparatus 8 by a cooling water pump 9 via a pipe line L6. Then, the raw seawater input pump 10 supplies the surface seawater W2 to the heat exchanger 12 via the pipe L7 having the seawater pump 11 to raise the temperature, and then supplies it to the high temperature side 8b of the separation membrane device 8. I have to. A membrane 8c is arranged on the high temperature side 8b, and a part of the surface seawater W2 permeates the membrane 8c in the form of steam, and the steam is cooled by the low temperature deep seawater W1 flowing on the cooling side 8a. It becomes fresh water W3 and is collected in the storage tank 14 through the vacuum pump 13.

【0005】前記のように海水温度差発電装置と、海水
の淡水化装置とは独立して実施されており、両者を合体
化して効率化を図るという手段が提案されていなかっ
た。ところで、海水温度差発電装置と海水淡水化装置に
は次のような大きな問題があった。即ち、図4に示す発
電装置の場合は、海水より大量の熱を得るために蒸発器
1と凝縮器4に大量の海水を供給する必要があり、その
ため深層海水ポンプ5と表層海水ポンプ7を駆動する電
力は発電量の20%も必要とするために有効に利用でき
る電力が減少するばかりでなく、更に通常は表層海水W
2 の温度が28℃程度と比較的低く、十分な熱量を確保
するためには蒸発器1に大量の表層海水W2を供給する
必要とすることから装置が大型化するという問題があっ
た。また、図5に示す淡水化装置の場合は、冷却水ポン
プ9と原海水投入ポンプ10に多量の動力を必要とする
という問題があった。
As described above, the seawater temperature difference power generation device and the seawater desalination device are implemented independently, and no means has been proposed for integrating the two to improve efficiency. By the way, the seawater temperature difference power generator and the seawater desalination apparatus had the following big problems. That is, in the case of the power generator shown in FIG. 4, it is necessary to supply a large amount of seawater to the evaporator 1 and the condenser 4 in order to obtain a larger amount of heat than seawater, and therefore the deep seawater pump 5 and the surface seawater pump 7 are Since the driving power requires 20% of the amount of power generation, not only the power that can be effectively used decreases but also the surface seawater W
The temperature of 2 is relatively low at about 28 ° C., and in order to secure a sufficient amount of heat, it is necessary to supply a large amount of surface seawater W2 to the evaporator 1, which causes a problem that the device becomes large. Further, in the case of the desalination apparatus shown in FIG. 5, there is a problem that a large amount of power is required for the cooling water pump 9 and the raw seawater input pump 10.

【0006】前記のように海水温度差発電装置と海水淡
水化装置には各種の問題が存在しているが、これをまと
めると次のようになる。 1)海水温度差発電装置 ア)深層海水と表層海水の温度差が比較的小さい。 イ)深層と表層との海水の温度差が小さいことから、十
分な熱量を得るためには大量の海水を必要とする。具体
的には発電量12.5MWで30 t/sもの海水を必要とする。
As described above, the seawater temperature difference power generator and the seawater desalination apparatus have various problems, which are summarized as follows. 1) Seawater temperature difference generator a) The temperature difference between deep seawater and surface seawater is relatively small. B) Since the temperature difference between the deep sea and the surface is small, a large amount of seawater is required to obtain a sufficient amount of heat. Specifically, it requires 30 t / s of seawater with a power generation of 12.5 MW.

【0007】ウ)イ)のように、大量の海水を移送する
必要があることから大型の海水ポンプが必要となる。 エ)タービンの冷却用に使用した温排水が多量に廃棄さ
れ、エネルギーが無駄になる。 2)海水淡水化装置 A)十分な熱量を得るために海水を大量に必要とする。
但し、1)の方法とは比較にならない程度に少ない。
As described in c) b), a large seawater pump is required because it is necessary to transfer a large amount of seawater. D) A large amount of warm waste water used for cooling the turbine is wasted, resulting in wasted energy. 2) Seawater desalination equipment A) A large amount of seawater is required to obtain a sufficient amount of heat.
However, it is so small that it cannot be compared with the method of 1).

【0008】B)海水を大量に必要とするために大型の
海水ポンプを必要とする。 C)廃棄される温排水が多量に発生する。 D)淡水製造のため海水を温める必要がある。 本発明は前記海水温度差発電方法と海水淡水化方法との
両方法の欠点を分析した結果、両者を結合することによ
ってこれらの欠点を大幅に改善できることを見出し、提
案することを目的とするものである。
B) Since a large amount of seawater is required, a large seawater pump is required. C) A large amount of warm waste water that is discarded is generated. D) Seawater needs to be warmed to produce fresh water. As a result of analyzing the drawbacks of both the seawater temperature difference power generation method and the seawater desalination method, the present invention finds and proposes that these drawbacks can be significantly improved by combining the two methods. Is.

【0009】[0009]

【課題を解決するための手段】本発明の基本的な技術思
想は、(ア〜C)、(イ〜B)、(ウ〜A)及び(エ〜
D)の2条件あるいはそれ以上の条件を相互に組合わせ
ることによって両工程の欠点を互いに補完させて結合さ
れた両工程の総合的な効率化を図ろうとするものであ
る。
The basic technical idea of the present invention is (a-c), (a-b), (c-a) and (d).
By combining the two or more conditions of D) with each other, the drawbacks of both processes are complemented with each other and the combined efficiency of both processes is attempted.

【0010】本発明に係る海水温度差を利用した発電・
淡水化装置は、表層海水と深層海水との温度差を利用し
て熱媒を蒸発させ、得られた蒸気によって発電用タービ
ンを駆動して発電する装置と、表層海水と深層海水との
温度差を利用して海水を淡水化する装置とを併設し、前
記両装置に深層海水を供給する海水ポンプを兼用すると
共に、前記発電装置側の温排水を淡水化装置の熱源と
し、前記淡水化装置側の温排水を発電装置側の熱媒を加
熱する熱源に利用することを特徴としている。
Power generation utilizing the seawater temperature difference according to the present invention
The desalination system uses the temperature difference between the surface seawater and the deep seawater to evaporate the heat medium and drives the power generation turbine with the resulting steam to generate electricity, and the temperature difference between the surface seawater and the deep seawater. And a device for desalinating seawater using the same, and also serving as a seawater pump for supplying deep seawater to both the devices, the hot drainage of the power generator side as a heat source of the desalination device, the desalination device The feature is that the warm waste water on the side is used as a heat source for heating the heat medium on the side of the power generator.

【0011】表層海水を海水ポンプによって発電装置側
と海水淡水化装置側とに圧力損失の調整用具を介して逆
流を防止しながら供給するように構成している。また、
この圧力損失の調整用具はバルブあるいはオリフイスを
使用するのがよい。更に、海水を淡水化する装置は膜分
離装置を使用するのが好ましい。
The surface seawater is supplied to the power generator side and the seawater desalination side by a seawater pump through a pressure loss adjusting tool while preventing backflow. Also,
A valve or an orifice is preferably used as the tool for adjusting the pressure loss. Furthermore, it is preferable to use a membrane separation device as the device for desalinating seawater.

【0012】[0012]

【作 用】海水温度差を利用した発電設備に海水淡水化
装置を併設したので、海水淡水化装置の海水ポンプを削
減することが可能となる。海水淡水化装置の排水の熱を
発電装置側の熱媒を加熱する熱源として利用できるの
で、熱を効率的に利用することができる。
[Operation] Since the seawater desalination equipment was installed side-by-side with the power generation equipment that uses the seawater temperature difference, it is possible to reduce the seawater pumps of the seawater desalination equipment. Since the heat of the wastewater of the seawater desalination apparatus can be used as a heat source for heating the heat medium on the power generation apparatus side, the heat can be efficiently used.

【0013】[0013]

【実 施 例】以下、図1及び2に基づき本発明による
海水温度差利用による発電・淡水化装置の実施例を説明
する。 (実施例−1)図1は「電力優先」の実施例のプロセス
フローシートであり、蒸発器21でガス化したアンモニ
アガスGは例えば22.9℃程度の温度で管路22から
アンモニアタービン23に供給され、このアンモニアタ
ービン23を作動させて発電機24(出力:129.5
MW)を駆動する。
[Examples] Examples of a power generation / desalination apparatus using the seawater temperature difference according to the present invention will be described below with reference to FIGS. (Example-1) FIG. 1 is a process flow sheet of an example of "electric power priority". The ammonia gas G gasified in the evaporator 21 is, for example, at a temperature of about 22.9 [deg.] C. from the pipeline 22 to the ammonia turbine 23. Is supplied to a generator 24 (output: 129.5).
Drive MW).

【0014】そしてこのアンモニアタービン23で使用
されたアンモニアガスG’は低温となって管路25から
凝縮器26に供給され、こゝで深層海水ポンプ27(出
力:14.4MW)により管路28を経て7℃程度の深
層海水W1 (流量:2.92×105 kg/s)により冷却
されて凝縮し、例えば12.5℃程度の液体アンモニア
LGとなってアンモニアポンプ29により管路30を経
て蒸発器21に供給される。
Then, the ammonia gas G'used in the ammonia turbine 23 becomes a low temperature and is supplied from the pipe 25 to the condenser 26, where the pipe 28 is supplied by the deep seawater pump 27 (output: 14.4 MW). And is condensed by deep seawater W1 (flow rate: 2.92 × 10 5 kg / s) of about 7 ° C. and condensed, and becomes liquid ammonia LG of about 12.5 ° C. It is then supplied to the evaporator 21.

【0015】そしてこの蒸発器21には表層海水ポンプ
31により管路32を経て供給される28℃程度の表層
海水W2 (流量:3.52×105 kg/s)と、後述する
管路33から供給される約41.8℃程度の加熱海水W
4 (流量:1.35×103kg/s)との混合海水W5
(流量:3.52×105 kg/s)が28℃程度となって
供給され、液体アンモニアLGを気化させる。このよう
にして海水温度差発電が行なわれるのである。
Then, the surface seawater W2 (flow rate: 3.52 × 10 5 kg / s) of about 28 ° C., which is supplied to the evaporator 21 by the surface seawater pump 31 via the conduit 32, and the conduit 33 described later. Heated seawater W of about 41.8 ℃ supplied from
Mixed seawater W5 with 4 (flow rate: 1.35 × 10 3 kg / s)
(Flow rate: 3.52 × 10 5 kg / s) is supplied at about 28 ° C. to vaporize the liquid ammonia LG. In this way, seawater temperature difference power generation is performed.

【0016】一方、分離膜装置34の冷却側34aには
管路28上で、かつ深層海水ポンプ27の下流側に連結
された管路35から約7℃程度の深層海水W1 (流量:
1.10×103 kg/s)が供給され、膜体34cを透過
した蒸気を冷却した後、約25℃に昇温し、管路36に
おいて蒸発器21から送出された海水と合流して系外へ
排出される。
On the other hand, on the cooling side 34a of the separation membrane device 34, on the pipe 28, and from the pipe 35 connected to the downstream side of the deep seawater pump 27, the deep seawater W1 of about 7 ° C. (flow rate:
1.10 × 10 3 kg / s) is supplied, and after cooling the vapor that has permeated the membrane 34c, the temperature is raised to about 25 ° C., and the pipe 36 merges with the seawater sent from the evaporator 21. It is discharged outside the system.

【0017】表層海水ポンプ31により管路32に供給
された表層海水W2 (流量:1.39×103 kg/s)の
一部は管路37から熱交換器38に至り、こゝで55℃
程度の加熱海水W4 となって分離膜装置34の高温側3
4bに至り、その一部が膜体34cを水蒸気となって透
過して真空側34dに至り、こゝで冷却されて透過液と
なる。即ち、淡水(流量:34.7kg/s)が製造される
ことになる。なお、40は真空側34d内を真空に保持
するための真空ポンプである。
A part of the surface seawater W2 (flow rate: 1.39 × 10 3 kg / s) supplied to the pipe 32 by the surface seawater pump 31 reaches the heat exchanger 38 from the pipe 37, and 55 ℃
It becomes heated seawater W4 of a certain degree, and the high temperature side 3 of the separation membrane device 34
4b, a part of the water vapor permeates the membrane 34c and permeates to the vacuum side 34d, where it is cooled and becomes a permeate. That is, fresh water (flow rate: 34.7 kg / s) is produced. Reference numeral 40 is a vacuum pump for keeping the inside of the vacuum side 34d in vacuum.

【0018】分離膜装置34の高温側34bに供給され
た加熱海水W4 は、これを通過する間に41.8℃程度
に減温されて加熱海水W5 となって管路33から管路3
2に流入し、蒸発器21に供給される。この場合、実際
の運転においては前記した発電系と淡水化系においては
圧力損失が異なる。即ち、一般には淡水化系の圧力損失
が大きい(抵抗が大きい)ために表層海水ポンプ31か
ら供給される表層海水W2 が蒸発器21側へ流入し易
く、管路37への流入量が減少する傾向がある。そのた
め、この管路32にバルブ39を設けてこれによって自
動的に圧力制御して分離膜装置34側へ供給される表層
海水W2 の流量を調節する。このバルブ39の代わりに
流量を管路にオリフイスを設けて流量を調節するように
してもよい。
The heated seawater W4 supplied to the high temperature side 34b of the separation membrane device 34 is reduced in temperature to about 41.8 ° C. while passing therethrough to become heated seawater W5, which is from the conduit 33 to the conduit 3
2 and is supplied to the evaporator 21. In this case, in actual operation, the pressure loss differs between the power generation system and the desalination system. That is, generally, since the pressure loss of the desalination system is large (the resistance is large), the surface seawater W2 supplied from the surface seawater pump 31 easily flows into the evaporator 21 side, and the amount of inflow into the pipe 37 decreases. Tend. Therefore, a valve 39 is provided in the pipe 32 to automatically control the pressure to adjust the flow rate of the surface seawater W2 supplied to the separation membrane device 34 side. Instead of the valve 39, the flow rate may be adjusted by providing an orifice in the pipeline.

【0019】なお、41は凝縮器26の排出管路であ
り、更に42は熱交換器21を通過した海水W5 の一部
をアンモニアタービン23の軸受冷却水として利用して
60℃程度に昇温させて熱交換器38の熱源とするため
の管路である。図2に図1におけるラインを丸印内の記
号で示し、物質・熱収支を下記の表1に示している。
Reference numeral 41 is a discharge pipe line of the condenser 26, and 42 is a part of the seawater W5 that has passed through the heat exchanger 21 is utilized as bearing cooling water for the ammonia turbine 23 to raise its temperature to about 60.degree. It is a conduit for allowing the heat exchanger 38 to use as a heat source. The lines in FIG. 1 are shown in FIG. 2 by the symbols in circles, and the substance / heat balance is shown in Table 1 below.

【0020】 (実施例−2)図3は「淡水優先」の実施例のプロセス
フローシートであり、淡水の製造量を増加させ、その代
わりに淡水製造の排熱を用いてアンモニア蒸発器の大き
さを小さくすることを目的としたものである。図3と図
2との装置を比較すると、蒸発器の入口での海水温度が
28℃から39℃と高くなっている。従って、ΔTm が
大きくなるので熱交換器の伝熱面積を小さくすることが
でき、熱交換器全体の大きさを小さくすることができ
る。
[0020] (Example-2) FIG. 3 is a process flow sheet of an example of "fresh water priority", in which the amount of fresh water produced is increased, and instead the exhaust heat of fresh water production is used to reduce the size of the ammonia evaporator. The purpose is to do. Comparing the devices of FIG. 3 and FIG. 2, the seawater temperature at the inlet of the evaporator is as high as 28 ° C. to 39 ° C. Therefore, since ΔTm becomes large, the heat transfer area of the heat exchanger can be made small, and the size of the entire heat exchanger can be made small.

【0021】[0021]

【発明の効果】本発明にかかる海水温度差を利用した発
電・淡水化装置は、表層海水W2 と深層海水W1 との温
度差を利用して熱媒を蒸発させ、得られた蒸気によって
発電用タービン23を駆動して発電する装置と、表層海
水W2 と深層海水W1 との温度差を利用して海水を淡水
化する装置34とを併設し、前記両装置に深層海水W1
を供給する海水ポンプ27を兼用すると共に、前記発電
装置側の温排水を淡水化装置の熱源とし、前記淡水化装
置側の温排水を発電装置側の熱媒を加熱する熱源に利用
することを特徴としており、次の効果を奏することがで
きる。
The power generation / desalination apparatus using the seawater temperature difference according to the present invention uses the temperature difference between the surface seawater W2 and the deep seawater W1 to evaporate the heat medium, and the resulting steam is used for power generation. A device for driving the turbine 23 to generate electric power and a device 34 for desalinating seawater by utilizing the temperature difference between the surface seawater W2 and the deep seawater W1 are provided side by side.
While also using the seawater pump 27 for supplying heat, the hot drainage of the power generator side is used as a heat source of the desalination device, and the hot drainage of the desalination device side is used as a heat source for heating the heat medium of the power generator side. As a feature, the following effects can be achieved.

【0022】A)発電装置側の深層海水ポンプ27を淡
水化装置側の深層海水ポンプと兼用するために高価なポ
ンプを1台あるいは少数台準備するだけで良く、ポンプ
購入費のコストを低減することができる。なお、ポンプ
の容量にもよるが、103 〜105 t/h の容量のポンプ
は1台では実現できず、複数台のものを必要とする。従
って、淡水化装置のポンプも複数台あり、このポンプ台
数の削減による建設費の低下は大きいものがある。
A) Since the deep seawater pump 27 on the side of the power generator also serves as the deep seawater pump on the side of the desalination plant, it is sufficient to prepare one or a few expensive pumps, which reduces the cost of pump purchase. be able to. Although it depends on the capacity of the pump, a pump with a capacity of 10 3 to 10 5 t / h cannot be realized with one pump, and multiple pumps are required. Therefore, there are a plurality of pumps for the desalination apparatus, and the reduction in the number of pumps greatly reduces the construction cost.

【0023】B)淡水化装置の分離膜装置と34より排
出される高温の温排水W5 を発電装置側の蒸発器21の
熱原として使用することにより、この熱交換器21を小
型化することができ、これもまた熱交換器21の製造コ
ストを低減することができることになる。 C)タービン23の軸受部分を冷却した冷却水を淡水化
装置の熱交換器38の熱原として使用することにより、
表層海水W2 を温めるヒータが不要となる。
B) The heat exchanger 21 can be miniaturized by using the high temperature hot waste water W5 discharged from the separation membrane device of the desalination device and 34 as the heat source of the evaporator 21 on the power generator side. This also reduces the manufacturing cost of the heat exchanger 21. C) By using the cooling water that has cooled the bearing portion of the turbine 23 as the heat source of the heat exchanger 38 of the desalination device,
No heater is required to heat the surface seawater W2.

【0024】D)既設の海水温度差発電装置に、海水温
度差淡水化装置を併設することによって陸地より離れた
海域の発電設備に生活用淡水を供給することができるの
で、一連の装置を効率的に設置し、運転することが可能
となる。
D) By installing a seawater temperature difference desalination device alongside an existing seawater temperature difference power generation device, it is possible to supply domestic freshwater to a power generation device in a sea area distant from the land. It can be installed and operated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すフローシートであ
る。
FIG. 1 is a flow sheet showing a first embodiment of the present invention.

【図2】図2のフローシートにおける物質・熱収支を示
すための図である。
FIG. 2 is a diagram showing a substance / heat balance in the flow sheet of FIG.

【図3】本発明の第2の実施例を示すフローシートであ
る。
FIG. 3 is a flow sheet showing a second embodiment of the present invention.

【図4】従来の海水温度差発電装置の一例を示すフロー
シートである。
FIG. 4 is a flow sheet showing an example of a conventional seawater temperature difference power generator.

【図5】従来の海水温度差淡水化装置の一例を示すフロ
ーシートである。
FIG. 5 is a flow sheet showing an example of a conventional seawater temperature difference desalination apparatus.

【符合の説明】[Explanation of sign]

21 蒸発器 22,25,28,30,32,33
管路 23 アンモニアタービン 26 凝縮器 27 深
層海水ポンプ 29 アンモニアポンプ 31 表層海水ポンプ
34 分離膜装置 34a 冷却側 34b 高温側 34c 膜体
34d 真空側 38 熱交換器 39 圧力損失の調整用具:バルブ 40 真空ポンプ 41 排水管路
21 Evaporator 22, 25, 28, 30, 32, 33
Pipeline 23 Ammonia turbine 26 Condenser 27 Deep seawater pump 29 Ammonia pump 31 Surface seawater pump
34 Separation Membrane Device 34a Cooling Side 34b High Temperature Side 34c Membrane Body
34d Vacuum side 38 Heat exchanger 39 Pressure loss adjusting tool: Valve 40 Vacuum pump 41 Drainage line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表層海水と深層海水との温度差を利用し
て熱媒を蒸発させ、得られた蒸気によって発電用タービ
ンを駆動して発電する装置と、表層海水と深層海水との
温度差を利用して海水を淡水化する装置とを併設し、前
記両装置に深層海水を供給する海水ポンプを兼用すると
共に、前記発電装置側の温排水を淡水化装置の熱源と
し、前記淡水化装置側の温排水を発電装置側の熱媒を加
熱する熱源に利用することを特徴とする海水温度差を利
用した発電・淡水化装置。
1. A device for evaporating a heat medium by utilizing a temperature difference between surface seawater and deep seawater, driving a turbine for power generation with the obtained steam, and a temperature difference between the surface seawater and the deep seawater. And a device for desalinating seawater using the same, and also serving as a seawater pump for supplying deep seawater to both the devices, the hot drainage of the power generator side as a heat source of the desalination device, the desalination device An electric power generation / desalination apparatus utilizing seawater temperature difference, characterized in that the hot waste water on the side is used as a heat source for heating the heat medium on the side of the power generator.
【請求項2】 表層海水を海水ポンプによって発電装置
側と海水淡水化装置側とに圧力損失の調整用具を介して
逆流を防止しながら供給するように構成した請求項1記
載の海水温度差を利用した発電・淡水化装置。
2. The seawater temperature difference according to claim 1, wherein the surface seawater is supplied to the power generation device side and the seawater desalination device side by a seawater pump through a pressure loss adjusting tool while preventing backflow. Used power generation and desalination equipment.
【請求項3】 圧力損失の調整用具はバルブあるいはオ
リフイスである請求項2記載の海水温度差を利用した発
電・淡水化装置。
3. The power generation / desalination apparatus using the seawater temperature difference according to claim 2, wherein the pressure loss adjusting tool is a valve or an orifice.
【請求項4】 海水を淡水化する装置は膜分離装置であ
る請求項1記載の海水温度差を利用した発電・淡水化装
置。
4. The power generation / desalination apparatus using the seawater temperature difference according to claim 1, wherein the apparatus for desalinating seawater is a membrane separator.
JP10833494A 1994-05-23 1994-05-23 Power generation and desalination equipment using seawater temperature difference Expired - Fee Related JP3640410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10833494A JP3640410B2 (en) 1994-05-23 1994-05-23 Power generation and desalination equipment using seawater temperature difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10833494A JP3640410B2 (en) 1994-05-23 1994-05-23 Power generation and desalination equipment using seawater temperature difference

Publications (2)

Publication Number Publication Date
JPH07317508A true JPH07317508A (en) 1995-12-05
JP3640410B2 JP3640410B2 (en) 2005-04-20

Family

ID=14482065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10833494A Expired - Fee Related JP3640410B2 (en) 1994-05-23 1994-05-23 Power generation and desalination equipment using seawater temperature difference

Country Status (1)

Country Link
JP (1) JP3640410B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041971A1 (en) * 1999-01-18 2000-07-20 Zhilong Gu Deep sea water desalination method and system
WO2002010071A3 (en) * 2000-07-28 2002-06-13 Dais Analytic Corp A process and an apparatus for extracting potable water from a brine
JP2007309295A (en) * 2006-05-22 2007-11-29 Toshiba Corp Desalination power generation plant
JP2013506078A (en) * 2009-09-23 2013-02-21 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Underwater compressed fluid energy storage system
WO2021087468A1 (en) * 2019-11-01 2021-05-06 Natural Ocean Well Co. Thermal energy conversion submerged reverse osmosis desalination system
US11174877B2 (en) 2017-02-09 2021-11-16 Natural Ocean Well Co. Submerged reverse osmosis system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041971A1 (en) * 1999-01-18 2000-07-20 Zhilong Gu Deep sea water desalination method and system
WO2002010071A3 (en) * 2000-07-28 2002-06-13 Dais Analytic Corp A process and an apparatus for extracting potable water from a brine
JP2007309295A (en) * 2006-05-22 2007-11-29 Toshiba Corp Desalination power generation plant
JP2013506078A (en) * 2009-09-23 2013-02-21 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Underwater compressed fluid energy storage system
US11174877B2 (en) 2017-02-09 2021-11-16 Natural Ocean Well Co. Submerged reverse osmosis system
US11326625B2 (en) 2017-02-09 2022-05-10 Natural Ocean Well Co. Brine dispersal system
US11846305B2 (en) 2017-02-09 2023-12-19 Natural Ocean Well Co. Submerged reverse osmosis system
WO2021087468A1 (en) * 2019-11-01 2021-05-06 Natural Ocean Well Co. Thermal energy conversion submerged reverse osmosis desalination system
JP2022549520A (en) * 2019-11-01 2022-11-25 ナチュラル オーシャン ウェル カンパニー Thermal energy conversion underwater reverse osmosis desalination system
US11813571B2 (en) 2019-11-01 2023-11-14 Natural Ocean Well Co. Thermal energy conversion submerged reverse osmosis desalination system

Also Published As

Publication number Publication date
JP3640410B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
CA2398625C (en) Water distillation system
AU759283B2 (en) Desalination method and desalination apparatus
EP1481947B1 (en) Combined power generation and desalinization apparatus and related method
JPS595793B2 (en) Geothermal energy conversion system
JP2014188475A (en) Integrated system of power-generating plant and seawater desalination plant using solar heat
JPH09103766A (en) Seawater desalting device
US9879885B2 (en) Cooling water supply system and binary cycle power plant including same
JPH0463755B2 (en)
JP2007309295A (en) Desalination power generation plant
KR101297983B1 (en) Desalination System Based on Mechanical Vapor Recompression and Desalination Method
AU2005284554A1 (en) Seawater desalination plant
CN210267441U (en) Recycling device for waste heat of periodic blowdown and continuous blowdown of power plant boiler
US7827792B2 (en) Refrigerant cooled main steam condenser binary cycle
JP3640410B2 (en) Power generation and desalination equipment using seawater temperature difference
JPH06254553A (en) Apparatus for producing pure water
CN102649591A (en) Water-producing device and water-producing method
JP4139597B2 (en) Desalination equipment
CN112062189B (en) Multistage multi-heat-source evaporation type hot fresh water preparation device and method and waste heat recovery system
JP2001004791A (en) Reactor heat utilization system
JPH11267643A (en) Reverse osmosis membrane sea water desalination plant and method thereof
JPH0985059A (en) Seawater desalting apparatus by reverse osmosis membrane
JP2001055906A (en) Combined power generating method and system therefor
JPS61141985A (en) Seawater desalting system
US20070220905A1 (en) Cooling Water for a Natural Gas Conversion Complex
JPH05240004A (en) Optimum operation method for heat recovering power generation system plant

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees