JPH07309912A - Polypropylene resin and oriented film - Google Patents

Polypropylene resin and oriented film

Info

Publication number
JPH07309912A
JPH07309912A JP10570094A JP10570094A JPH07309912A JP H07309912 A JPH07309912 A JP H07309912A JP 10570094 A JP10570094 A JP 10570094A JP 10570094 A JP10570094 A JP 10570094A JP H07309912 A JPH07309912 A JP H07309912A
Authority
JP
Japan
Prior art keywords
temperature
elution
polypropylene resin
film
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10570094A
Other languages
Japanese (ja)
Other versions
JP3290293B2 (en
Inventor
Isao Shoda
勲 正田
Tetsuo Hayashi
哲男 林
Junichi Fujii
純一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14414651&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07309912(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP10570094A priority Critical patent/JP3290293B2/en
Publication of JPH07309912A publication Critical patent/JPH07309912A/en
Application granted granted Critical
Publication of JP3290293B2 publication Critical patent/JP3290293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a polypropylene resin which forms an oriented film of high rigidity and heat resistance, has good stretchability in forming an oriented film and is suitable for a biaxially oriented film. CONSTITUTION:This resin has a melt flow rate of 0.1-10g/10min, and a peak temperature (Tp) of 105-125 deg.C, preferably 110-120 deg.C, and an elution peak width (sigma) of at least 9.0 deg., preferably at least 10 deg., on the elution curve by the temperature rising elution fractionation method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリプロピレン樹脂お
よび該ポリプロピレン樹脂よりなる延伸フィルムに関す
る。詳しくは、一軸または二軸延伸フィルムの製膜に際
して、製膜可能な温度調整範囲が広く、延伸時の機械負
荷が小さく、延伸によるフィルム破れが少なく、熱収縮
率等の耐熱性の良好な一軸または二軸延伸フィルムに適
したポリプロピレン樹脂および該ポリプロピレン樹脂よ
りなる延伸フィルムに関する。
TECHNICAL FIELD The present invention relates to a polypropylene resin and a stretched film made of the polypropylene resin. Specifically, when forming a uniaxially or biaxially stretched film, the uniaxially stretchable film has a wide temperature control range, a small mechanical load during stretching, little film breakage due to stretching, and good heat resistance such as heat shrinkage. It also relates to a polypropylene resin suitable for a biaxially stretched film and a stretched film made of the polypropylene resin.

【0002】[0002]

【従来の技術】二軸延伸ポリプロピレンフィルムは、そ
の機械的強度、透明性等の優れた物性のために広く使用
されている。その製造方法はテンター方式による逐時二
軸延伸法が一般的である。
2. Description of the Related Art Biaxially oriented polypropylene films are widely used because of their excellent physical properties such as mechanical strength and transparency. The manufacturing method thereof is generally a biaxial stretching method using a tenter method.

【0003】近年では、二軸延伸ポリプロピレンフィル
ムの生産設備の大型化、高速化が進み、一般的な従来の
ポリプロピレン樹脂では製膜時における延伸装置の機械
負荷の上昇、フィルムの厚薄精度の低下、さらにはフィ
ルムの延伸破れが発生する等の問題が生起してきた。
In recent years, the production facilities for biaxially oriented polypropylene films have become larger and faster, and with conventional conventional polypropylene resins, the mechanical load of the stretching device during film formation has increased, and the accuracy of the film thickness has decreased. Furthermore, problems such as stretching breakage of the film have occurred.

【0004】[0004]

【発明が解決しようとする課題】そのため、二軸延伸ポ
リプロピレンフィルムの生産設備の大型化、高速化に対
応できるポリプロピレン樹脂の開発が望まれていた。す
なわち、延伸に際して、製膜可能な温度調整範囲が広
く、機械負荷が小さく、製膜されたフィルムの厚薄精度
が優れ、延伸性が良好で、延伸破れ等が発生せず、安定
に生産できる一軸または二軸延伸フィルムに適したポリ
プロピレン樹脂が望まれていた。
Therefore, there has been a demand for the development of a polypropylene resin which can cope with an increase in the size and speed of production equipment for a biaxially oriented polypropylene film. That is, during stretching, the temperature control range in which the film can be formed is wide, the mechanical load is small, the thickness accuracy of the formed film is excellent, the stretchability is good, and stretching tear does not occur, etc. Alternatively, a polypropylene resin suitable for a biaxially stretched film has been desired.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を行ない、その結果、ポリプロピレ
ン樹脂の結晶性分布の広いことが製膜性に有効であるこ
と、詳細には低結晶性の成分(温度上昇溶離分別法で溶
出ピークの低温側溶出成分)が、延伸性や延伸時の機械
負荷の低減に有効に働き、高結晶性の成分(温度上昇溶
離分別法で溶出ピークの高温側溶出成分)が、製膜して
得られたフィルムの剛性や熱収縮率等の耐熱性の保持に
有効に働くことを見出し、本発明を完成しここに提案す
るに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, a wide crystallinity distribution of polypropylene resin is effective for film-forming property. Low crystalline components (eluting components on the low temperature side of the elution peak in the temperature rising elution fractionation method) work effectively to reduce stretchability and mechanical load during stretching, and highly crystalline components (eluting in the temperature rising elution fractionation method) The inventors have found that the peak high-temperature-side elution component) effectively acts to maintain the heat resistance such as the rigidity and the heat shrinkage rate of the film obtained by film formation, and completed the present invention, resulting in the proposal thereof.

【0006】すなわち、本発明はメルトフローレイトが
0.1〜10g/10分、温度上昇溶離分別法による溶
出曲線のピーク温度(Tp)が105〜125℃、溶出
ピーク幅(σ)が9.0度以上であることを特徴とする
ポリプロピレン樹脂である。
That is, in the present invention, the melt flow rate is 0.1 to 10 g / 10 minutes, the peak temperature (Tp) of the elution curve by the temperature rising elution fractionation method is 105 to 125 ° C., and the elution peak width (σ) is 9. It is a polypropylene resin characterized by being 0 degree or more.

【0007】本発明のポリプロピレン樹脂のメルトフロ
ーレイトは0.1〜10g/10分でなければならず、
1.0〜5.0g/10分の範囲であることが好まし
い。メルトフローレイトが0.1g/10分未満では溶
融状態のポリプロピレン樹脂の粘度が高くなり、二軸延
伸フィルム製造時の最初の段階である押し出し成形によ
るシート成形の際の押出機の機械負荷が上昇して押し出
し成形が困難になる。また、メルトフローレイトが10
g/10分を越えるとポリプロピレン樹脂の溶融張力が
低下するために、二軸延伸フィルム製造時の最初の段階
である押し出し成形によるシート成形の際、シートの厚
み精度が低下し、二軸延伸によって製造されたフィルム
の厚薄精度が悪くなる。本発明で用いるポリプロピレン
樹脂のメルトフローレイトの範囲を重量平均分子量で表
わすと250,000〜800,000、好ましくは3
00,000〜450,000の範囲となる。
The melt flow rate of the polypropylene resin of the present invention must be 0.1 to 10 g / 10 minutes,
It is preferably in the range of 1.0 to 5.0 g / 10 minutes. When the melt flow rate is less than 0.1 g / 10 minutes, the viscosity of the molten polypropylene resin becomes high, and the mechanical load of the extruder at the time of sheet forming by extrusion, which is the first step in the production of biaxially stretched film, increases. This makes extrusion molding difficult. The melt flow rate is 10
When it exceeds g / 10 minutes, the melt tension of the polypropylene resin decreases, so the sheet thickness accuracy decreases during sheet formation by extrusion, which is the first step in the production of biaxially stretched film, and the biaxial stretching causes The thickness accuracy of the manufactured film is deteriorated. When the range of the melt flow rate of the polypropylene resin used in the present invention is expressed by weight average molecular weight, it is 250,000 to 800,000, preferably 3
It will be in the range of 0,000 to 450,000.

【0008】本発明でいう温度上昇溶離分別法(以下、
単にTREFと略す。)とは、ポリプロピレン樹脂等の
ポリオレフィンをその結晶性の分布、すなわち溶剤への
溶解温度の差により分別する方法である。詳しくは、ク
ロモソルブを充填剤として用い、そのカラム内に試料溶
液を導入し、試料を充填剤表面に吸着させた後、溶剤を
通過させながらカラムの温度を上昇させていき、各温度
で溶出してくるポリマー濃度を検出することにより測定
することができる。
The temperature rising elution fractionation method referred to in the present invention (hereinafter referred to as
Abbreviated as TREF. ) Is a method of separating polyolefin such as polypropylene resin by its crystallinity distribution, that is, the difference in the dissolution temperature in a solvent. Specifically, chromosolve was used as the packing material, the sample solution was introduced into the column, the sample was adsorbed on the packing material surface, and then the temperature of the column was increased while allowing the solvent to pass through, and elution was performed at each temperature. It can be measured by detecting the incoming polymer concentration.

【0009】ここで、溶出ピーク温度(Tp)とは、溶
出温度(℃)と溶出量(重量%)の関係を示す溶出曲線
において溶出量が最大となるピーク位置(℃)を示す。
図1は、後述する実施例1で製造したポリプロピレン樹
脂の溶出温度(℃)と溶出量(重量%)との関係を示す
溶出曲線であり、ここで、A点で示されるピーク位置の
温度118.4℃が、溶出ピーク温度(Tp)となる。
Here, the elution peak temperature (Tp) refers to the peak position (° C.) at which the elution amount is maximum in the elution curve showing the relationship between the elution temperature (° C.) and the elution amount (% by weight).
FIG. 1 is an elution curve showing the relationship between the elution temperature (° C.) and the elution amount (% by weight) of the polypropylene resin produced in Example 1 described later, where the temperature 118 at the peak position indicated by point A is 118. The elution peak temperature (Tp) is 0.4 ° C.

【0010】また、溶出ピーク幅(σ)とは、積算溶出
量が20重量%〜90重量%の温度差であり、下記式で
求められる。
The elution peak width (σ) is a temperature difference in which the integrated elution amount is 20% by weight to 90% by weight, and is calculated by the following formula.

【0011】σ=T(90)−T(20) 但し、T(90):積算溶出量が90重量%となるとき
の温度(℃) T(20):積算溶出量が20重量%となるときの温度
(℃) 図2は、後述する実施例1で製造したポリプロピレン樹
脂の溶出温度(℃)と積算溶出量(重量%)との関係を
示す溶出曲線であり、ここで、B点がT(90)で12
1.1℃であり、C点がT(20)で110.1℃であ
る。したがって、この場合の溶出ピーク幅(σ)は(1
21.1−110.1)で11.0度となる。
Σ = T (90) -T (20) where T (90) is the temperature (° C.) when the integrated elution amount is 90% by weight. T (20): The integrated elution amount is 20% by weight. 2 is a dissolution curve showing the relationship between the dissolution temperature (° C.) and the cumulative dissolution amount (% by weight) of the polypropylene resin produced in Example 1 described later, where point B is 12 at T (90)
The temperature is 1.1 ° C, and the C point is 110.1 ° C at T (20). Therefore, the elution peak width (σ) in this case is (1
21.1-110.1) results in 11.0 degrees.

【0012】溶出温度はポリマーの結晶性すなわち立体
規則性および共重合組成に依存するので、TREFによ
って溶出温度とポリマーの溶出量(重量%)との関係を
求めることにより、ポリマーの結晶性の分布を知ること
ができる。
Since the elution temperature depends on the crystallinity of the polymer, that is, the stereoregularity and the copolymerization composition, the distribution of the crystallinity of the polymer is obtained by determining the relationship between the elution temperature and the elution amount (% by weight) of the polymer by TREF. You can know.

【0013】本発明のポリプロピレン樹脂のTREFに
よる溶出曲線のピーク温度(Tp)は105〜125℃
の範囲でなければならず、110〜120℃の範囲であ
ることが好ましい。溶出ピーク温度が105℃未満では
二軸延伸フィルムの剛性、耐熱性が低下する。また、1
25℃を越えると製膜における延伸の際の延伸性が低下
し、機械負荷が上昇してフィルムの延伸破れが多発す
る。
The peak temperature (Tp) of the elution curve by TREF of the polypropylene resin of the present invention is 105 to 125 ° C.
The range is 110 to 120 ° C., and the range is preferably 110 to 120 ° C. If the elution peak temperature is less than 105 ° C, the rigidity and heat resistance of the biaxially stretched film decrease. Also, 1
If the temperature exceeds 25 ° C, the stretchability during stretching during film formation will decrease, the mechanical load will increase, and stretch breakage of the film will frequently occur.

【0014】また、本発明のポリプロピレン樹脂のTR
EFによる溶出ピーク幅(σ)は9.0度以上でなけれ
ばならず、10.0度以上であることが好ましい。溶出
ピーク幅(σ)が9.0度未満であるとやはり延伸性が
低下し、機械負荷が上昇してフィルムの延伸破れが多発
するために好ましくない。
Further, the TR of the polypropylene resin of the present invention
The elution peak width (σ) by EF must be 9.0 degrees or more, and is preferably 10.0 degrees or more. When the elution peak width (σ) is less than 9.0 degrees, the stretchability is deteriorated, the mechanical load is increased, and stretching breakage of the film frequently occurs, which is not preferable.

【0015】本発明のポリプロピレン樹脂は、TREF
による溶出曲線のピーク温度および溶出ピーク幅が上記
した範囲であれば本発明の効果を十分に達成することが
できるが、さらに、本発明のポリプロピレン樹脂を用い
て得た二軸延伸フィルムの剛性および耐熱性を勘案する
と、積算溶出量が90重量%となる溶出温度(T(9
0))は110℃以上であることが好ましく、さらには
115℃以上であることがより好ましい。
The polypropylene resin of the present invention is TREF.
When the peak temperature and the elution peak width of the elution curve by the above, the effect of the present invention can be sufficiently achieved, further, the rigidity and biaxially stretched film obtained using the polypropylene resin of the present invention and Considering heat resistance, the elution temperature (T (9
0)) is preferably 110 ° C. or higher, and more preferably 115 ° C. or higher.

【0016】また、溶出温度20℃以下での溶出量
(a)は、得られる二軸延伸フィルムの耐熱性やブロッ
キング防止の点から5.0重量%以下であることが好ま
しく、さらには3.5重量%以下であることがより好ま
しい。なお、溶出温度20℃以下での溶出量は、溶出温
度20℃での積算溶出量(重量%)であり、20℃以下
において溶剤に可溶のポリマー成分の量である。
The elution amount (a) at an elution temperature of 20 ° C. or lower is preferably 5.0% by weight or less from the viewpoint of heat resistance and blocking prevention of the obtained biaxially stretched film, and further 3. It is more preferably 5% by weight or less. The elution amount at an elution temperature of 20 ° C or lower is an integrated elution amount (wt%) at an elution temperature of 20 ° C, and is the amount of a polymer component soluble in a solvent at 20 ° C or lower.

【0017】本発明に用いられるポリプロピレン樹脂と
はプロピレンの単独重合体であってもよく、また、本発
明の効果を阻害しない範囲で共重合成分としてプロピレ
ン以外のα−オレフィンが含まれていてもよい。プロピ
レン以外のα−オレフィンとしては、エチレン、ブテン
−1、ペンテン−1、3−メチル−1−ブテン、ヘキセ
ン−1、3−メチル−1−ペンテン、4−メチル−1−
ペンテン、ヘプテン−1、オクテン−1、ノネン−1、
デセン−1、ドデセン−1、テトラデセン−1、ヘキサ
デセン−1、オクタデセン−1、エイコセン−1等の炭
素数2〜20のα−オレフィンを例示することができ
る。これらのα−オレフィンは、共重合成分として単独
もしくは複数の組み合わせで含まれていてよい。含有さ
れる割合はプロピレン以外のモノマーの種類により異な
るが、一般には、共重合体中に占める割合で5モル%以
下であることが好ましい。例えば、プロピレン以外のα
−オレフィンがエチレンの場合には、TREFのピーク
温度(Tp)を本発明の範囲とするためには共重合体中
に占めるエチレン成分の割合を1.0モル%以下とする
ことが好ましい。
The polypropylene resin used in the present invention may be a homopolymer of propylene, or may contain an α-olefin other than propylene as a copolymerization component within a range that does not impair the effects of the present invention. Good. Examples of α-olefins other than propylene include ethylene, butene-1, pentene-1, 3-methyl-1-butene, hexene-1, 3-methyl-1-pentene, 4-methyl-1-.
Pentene, heptene-1, octene-1, nonene-1,
Examples of the α-olefin having 2 to 20 carbon atoms include decene-1, dodecene-1, tetradecene-1, hexadecene-1, octadecene-1, eicosene-1. These α-olefins may be contained alone or in combination as a copolymerization component. The content ratio varies depending on the type of monomer other than propylene, but in general, it is preferably 5 mol% or less in terms of the ratio in the copolymer. For example, α other than propylene
-When the olefin is ethylene, the proportion of the ethylene component in the copolymer is preferably 1.0 mol% or less so that the peak temperature (Tp) of TREF falls within the range of the present invention.

【0018】本発明のポリプロピレン樹脂の製造方法は
特に限定されないが、一般には次のような方法を採用す
ることが好ましい。例えば、異なる立体規則性のポリプ
ロピレン樹脂を重合し得る触媒成分を数種混合してプロ
ピレンを重合する方法を挙げることができる。特に、固
体状チタン触媒成分、有機アルミニウム化合物および立
体規則性の異なるポリプロピレン樹脂を与える電子供与
体を2種以上混合してプロピレンを重合する方法を好適
に採用することができる。この方法において、電子供与
体は、プロピレンの重合において一般に知られているも
のを何等制限なく使用できるが、下記の一般式(I)お
よび一般式(II)で示される有機ケイ素化合物を併用す
ることが、結晶性分布の広い、すなわち、TREFによ
る溶出曲線のピーク幅(σ)が9.0度以上であるポリ
プロピレンを、アタクチック成分の生成量をより少なく
して得ることができるために好ましい。
The method for producing the polypropylene resin of the present invention is not particularly limited, but it is generally preferable to employ the following method. For example, a method of mixing propylene by mixing several kinds of catalyst components capable of polymerizing polypropylene resins having different stereoregularity can be mentioned. In particular, a method of polymerizing propylene by mixing two or more kinds of electron donors that give a solid titanium catalyst component, an organoaluminum compound, and a polypropylene resin having different stereoregularity can be preferably used. In this method, as the electron donor, those generally known in the polymerization of propylene can be used without any limitation. However, an organosilicon compound represented by the following general formula (I) and general formula (II) should be used in combination. However, polypropylene having a wide crystallinity distribution, that is, a polypropylene having a peak width (σ) of the elution curve by TREF of 9.0 degrees or more is preferable because it can be obtained with a smaller amount of atactic component.

【0019】 (R3n−Si−(OC254-n (II) (但し、R1、R2及びR3は同種または異種の炭化水素
基であり、nは0または1である。)前記した固体状チ
タン触媒成分は、プロピレンの重合に使用されることが
公知の化合物をなんら制限なく用いることができる。特
に、チタン、マグネシウム及びハロゲンを成分とする触
媒活性の高い固体状チタン触媒成分が好適である。この
ような触媒成分は、ハロゲン化チタン、特に四塩化チタ
ンを種々のマグネシウム化合物、特に塩化マグムシウム
に担持させたものとなっている。
[0019] (R 3) n -Si- (OC 2 H 5) 4-n (II) ( where, R 1, R 2 and R 3 is a hydrocarbon group having same or different, n is 0 or 1. ) As the solid titanium catalyst component described above, a compound known to be used for propylene polymerization can be used without any limitation. In particular, a solid titanium catalyst component having high catalytic activity, which contains titanium, magnesium and halogen, is suitable. Such a catalyst component comprises titanium halide, especially titanium tetrachloride, supported on various magnesium compounds, especially magnesium chloride.

【0020】有機アルミニウム化合物は、プロピレンの
重合に使用されることが公知の化合物をなんら制限なく
採用できる。例えば、トリメチルアルミニウム、トリエ
チルアルミニウム、トリ−n−プロピルアルミニウム、
トリ−n−ブチルアルミニウム、トリ−イソブチルアル
ミニウム、トリ−n−ヘキシルアルミニウム、トリ−n
−オクチルアルミニウム、トリ−n−デシルアルミニウ
ム等のトリアルキルアルミニウム類;ジエチルアルミニ
ウムモノクロライド等のジエチルアルミニウムモノハラ
イド類;メチルアルミニウムジクロライド、エチルアル
ミニウムジクロライド等のアルキルアルミニウムハライ
ド類などが挙げられる。他にモノエトキシジエチルアル
ミニウム、ジエトキシモノエチルアルミニウム等のアル
コキシアルミニウム類を用いることができる。なかでも
トリエチルアルミニウムが最も好ましい。有機アルミニ
ウム化合物の使用量は固体状チタン触媒成分中のチタン
原子に対しアルミニウム/チタン(モル比)で10〜1
000であることが好ましく、さらに50〜500であ
ることが好ましい。
As the organoaluminum compound, compounds known to be used for propylene polymerization can be adopted without any limitation. For example, trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum,
Tri-n-butyl aluminum, tri-isobutyl aluminum, tri-n-hexyl aluminum, tri-n
Examples include trialkylaluminums such as octylaluminum and tri-n-decylaluminum; diethylaluminum monohalides such as diethylaluminum monochloride; alkylaluminum halides such as methylaluminum dichloride and ethylaluminum dichloride. Alternatively, alkoxyaluminums such as monoethoxydiethylaluminum and diethoxymonoethylaluminum can be used. Of these, triethylaluminum is most preferred. The amount of the organoaluminum compound used is 10 to 1 in terms of aluminum / titanium (molar ratio) with respect to titanium atoms in the solid titanium catalyst component.
It is preferably 000, more preferably 50 to 500.

【0021】前記一般式(I)および一般式(II)で示
される有機ケイ素化合物において、R1、R2およびR3
で示される炭化水素基は、鎖状、分枝状、環状の脂肪族
炭化水素基、または芳香族炭化水素基を挙げることがで
き、その炭素数は特に制限されない。本発明において好
適な炭化水素基を例示すると、メチル基、エチル基、n
−プロピル基、i−プロピル基、n−ブチル基、i−ブ
チル基、s−ブチル基、t−ブチル基、ペンチル基、ヘ
キシル基等の炭素数1〜6のアルキル基;ビニル基、プ
ロペニル基、アリル基等の炭素数2〜6のアルケニル
基;エチニル基、プロピニル基等の炭素数2〜6のアル
キニル基;シクロペンチル基、シクロヘキシル基、シク
ロヘプチル基等の炭素数5〜7のシクロアルキル基;フ
ェニル基、トリル基、キシリル基、ナフチル基等の炭素
数6〜12のアリール基等を挙げることができる。この
なかで、R3は直鎖状のアルキル基、アルケニル基、ア
リール基であることが好ましい。また、nは0または1
である。
In the organosilicon compounds represented by the above general formulas (I) and (II), R 1 , R 2 and R 3
The hydrocarbon group represented by can be a chain, branched, or cyclic aliphatic hydrocarbon group, or an aromatic hydrocarbon group, and the carbon number thereof is not particularly limited. Examples of suitable hydrocarbon groups in the present invention include methyl group, ethyl group, n
-Propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, and other alkyl groups having 1 to 6 carbon atoms; vinyl group, propenyl group An alkenyl group having 2 to 6 carbon atoms such as allyl group; an alkynyl group having 2 to 6 carbon atoms such as ethynyl group and propynyl group; a cycloalkyl group having 5 to 7 carbon atoms such as cyclopentyl group, cyclohexyl group and cycloheptyl group An aryl group having 6 to 12 carbon atoms such as a phenyl group, a tolyl group, a xylyl group and a naphthyl group. Of these, R 3 is preferably a linear alkyl group, alkenyl group, or aryl group. N is 0 or 1
Is.

【0022】本発明において好適に用いられる有機ケイ
素化合物を例示すると次の通りである。一般式(I)で
示される有機ケイ素化合物としては、例えば、ジメチル
ジメトキシシラン、ジエチルジメトキシシラン、ジプロ
ピルジメトキシシラン、ジビニルジメトキシシラン、ジ
アリルジメトキシシラン、ジ−1−プロペニルジメトキ
シシラン、ジエチニルジメトキシシラン、ジフェニルジ
メトキシシラン、メチルフェニルジメトキシシラン、シ
クロヘキシルメチルジメトキシシラン、ターシャリーブ
チルエチルジメトキシシラン、エチルメチルジメトキシ
シラン、プロピルメチルジメトキシシラン、シクロヘキ
シルトリメトキシシラン、ジイソプロピルジメトキシシ
ラン、ジシクロペンチルジメトキシシラン、ビニルトリ
メトキシシラン、フェニルトリメトキシシラン、アリル
トリメトキシシラン等を挙げることができる。
Examples of the organosilicon compound preferably used in the present invention are as follows. Examples of the organosilicon compound represented by the general formula (I) include dimethyldimethoxysilane, diethyldimethoxysilane, dipropyldimethoxysilane, divinyldimethoxysilane, diallyldimethoxysilane, di-1-propenyldimethoxysilane, diethynyldimethoxysilane, and the like. Diphenyldimethoxysilane, methylphenyldimethoxysilane, cyclohexylmethyldimethoxysilane, tert-butylethyldimethoxysilane, ethylmethyldimethoxysilane, propylmethyldimethoxysilane, cyclohexyltrimethoxysilane, diisopropyldimethoxysilane, dicyclopentyldimethoxysilane, vinyltrimethoxysilane, Examples thereof include phenyltrimethoxysilane and allyltrimethoxysilane.

【0023】一般式(II)で示される有機ケイ素化合物
としては、例えば、テトラエトキシシラン、メチルトリ
エトキシシラン、エチルトリエトキシシラン、ビニルト
リエトキシシラン、ブチルトリエトキシシラン、ペンチ
ルトリエトキシシラン、イソプロピルトリエトキシシラ
ン、1−プロペニルトリエトキシシラン、イソプロペニ
ルトリエトキシシラン、エチニルトリエトキシシラン、
オクチルトリエトキシシラン、ドデシルトリエトキシシ
ラン、フェニルトリエトキシシラン、アリルトリエトキ
シシラン等を挙げることができる。
Examples of the organosilicon compound represented by the general formula (II) include tetraethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, butyltriethoxysilane, pentyltriethoxysilane and isopropyltrisilane. Ethoxysilane, 1-propenyltriethoxysilane, isopropenyltriethoxysilane, ethynyltriethoxysilane,
Examples include octyltriethoxysilane, dodecyltriethoxysilane, phenyltriethoxysilane and allyltriethoxysilane.

【0024】一般式(I)および一般式(II)で示され
る有機ケイ素化合物の使用量は、それぞれ固体状チタン
触媒成分のTi原子に対しSi/Ti(モル比)で0.
1〜500が好ましく、さらには1〜100であること
が好ましい。また、これら二種の有機ケイ素化合物の使
用比率はモル比で(I):(II)=1:5〜1:25で
あることが必要であり、1:10〜1:20であること
が好ましい。有機ケイ素化合物(I)と(II)の使用比
率が1:25より多い場合には、得られたポリプロピレ
ン樹脂のTREFによる溶出ピーク温度(Tp)が10
5℃未満となり、また、積算溶出量が90重量%となる
ときの温度T(90)が110℃未満となり、溶出温度
20℃以下での溶出量(a)が5重量%を越え、製膜し
た延伸フィルムの耐熱性が低下する。また、有機ケイ素
化合物(I)と(II)の使用比率が1:5よりも少ない
場合には、得られたポリプロピレン樹脂のTREFによ
る溶出ピーク幅(σ)が9.0度未満となり、製膜時の
延伸性が低下し、機械負荷が上昇してフィルムの延伸破
れが発生する。
The amount of the organosilicon compound represented by the general formula (I) or the general formula (II) used is Si / Ti (molar ratio) of Ti atom of the solid titanium catalyst component, respectively.
1 to 500 is preferable, and 1 to 100 is more preferable. Further, the use ratio of these two kinds of organosilicon compounds needs to be (I) :( II) = 1: 5 to 1:25, and 1:10 to 1:20 in molar ratio. preferable. When the use ratio of the organosilicon compounds (I) and (II) is more than 1:25, the elution peak temperature (Tp) by TREF of the obtained polypropylene resin is 10
The temperature is less than 5 ° C., the temperature T (90) when the integrated elution amount is 90% by weight is less than 110 ° C., and the elution amount (a) at an elution temperature of 20 ° C. or less exceeds 5% by weight. The heat resistance of the stretched film is lowered. When the use ratio of the organosilicon compounds (I) and (II) is less than 1: 5, the elution peak width (σ) by TREF of the obtained polypropylene resin is less than 9.0 degrees, and the film formation At that time, the stretchability is lowered, the mechanical load is increased, and the film is broken due to stretching.

【0025】上記した各成分の添加順序は特に限定され
ず、一般式(I)および一般式(II)で示される有機ケ
イ素化合物を同時に混合供給しても、または別々に供給
してもよい。またこれらは、予め有機アルミニウム化合
物と接触あるいは混合した後に供給することもできる。
The order of adding the above-mentioned respective components is not particularly limited, and the organosilicon compounds represented by the general formulas (I) and (II) may be mixed and supplied simultaneously or separately. Further, these may be supplied after being contacted or mixed with the organoaluminum compound in advance.

【0026】その他の重合条件は、本発明の効果が認め
られる限り、特に制限されないが一般には次の条件が好
ましい。重合温度は20〜200℃、好ましくは50〜
150℃であり、分子量調節剤として水素を共存させる
こともできる。また重合は、スラリー重合、無溶媒重合
および気相重合等が適用でき、回分式、半回分式、連続
式のいずれの方法でもよく、更に重合を条件の異なる2
段階に分けて行うこともできる。また、プロピレンの重
合前に、プロピレンや他のモノマーの予備重合を行なっ
てもよい。さらに、上記した重合を多段に行ってもよ
い。
Other polymerization conditions are not particularly limited as long as the effects of the present invention are recognized, but the following conditions are generally preferable. The polymerization temperature is 20 to 200 ° C, preferably 50 to
The temperature is 150 ° C., and hydrogen can coexist as a molecular weight modifier. For the polymerization, slurry polymerization, solventless polymerization, gas phase polymerization, etc. can be applied, and any of batch, semi-batch and continuous methods can be used.
It can also be performed in stages. Also, propylene and other monomers may be prepolymerized before the polymerization of propylene. Further, the above-mentioned polymerization may be carried out in multiple stages.

【0027】本発明においては、上記した方法で得られ
たポリプロピレン樹脂を単独で使用することができ、ま
た、他のポリプロピレン樹脂とをブレンドして用いるこ
ともできる。勿論、上記した方法で得られたポリプロピ
レン樹脂同士をブレンドすることもできる。
In the present invention, the polypropylene resin obtained by the above-mentioned method can be used alone, or can be used by blending with other polypropylene resin. Of course, it is also possible to blend the polypropylene resins obtained by the above method.

【0028】更には、メタロセン化合物とアルモキサン
からなるメタロセン触媒を用いるポリプロピレンの重合
方法においても、異なる立体規則性のポリプロピレン樹
脂を重合し得る2種類以上の触媒成分を併用して結晶性
分布の広いポリプロピレンを得る方法が適用される。
Further, also in the method of polymerizing polypropylene using a metallocene catalyst composed of a metallocene compound and alumoxane, polypropylene having a wide crystallinity distribution is used by combining two or more kinds of catalyst components capable of polymerizing polypropylene resins having different stereoregularity. The method of obtaining

【0029】本発明に用いられるポリプロピレン樹脂に
は、必要に応じて、酸化防止剤、塩素捕捉剤、耐熱安定
剤、帯電防止剤、防曇剤、紫外線吸収剤、滑剤、造核
剤、ブロッキング防止剤、顔料、他の樹脂等の添加剤が
効果の阻害されない範囲で配合されていてもよい。
In the polypropylene resin used in the present invention, if necessary, an antioxidant, a chlorine scavenger, a heat stabilizer, an antistatic agent, an antifogging agent, an ultraviolet absorber, a lubricant, a nucleating agent, an antiblocking agent. Additives such as agents, pigments, and other resins may be blended within a range that does not impair the effect.

【0030】本発明のポリプロピレン樹脂は、延伸フィ
ルムの素材として好適である。延伸フィルムとしては一
軸延伸および二軸延伸のいずれであってもよい。延伸フ
ィルムの厚さは特に制限されないが、通常は3〜150
μmの範囲であることが好ましい。また、本発明の延伸
フィルムの片面あるいは両面には、必要に応じてコロナ
放電処理等の表面処理が施されてもよい。さらに、ヒー
トシール性等の機能を付与する目的で片面あるいは両面
に本発明のポリプロピレン樹脂よりも融点の低い他の樹
脂よりなる層が積層されてもよい。他の樹脂の積層方法
は特に制限されないが、共押し出し法、ラミネート法等
が好適である。
The polypropylene resin of the present invention is suitable as a material for stretched films. The stretched film may be either uniaxially stretched or biaxially stretched. The thickness of the stretched film is not particularly limited, but is usually 3 to 150.
It is preferably in the range of μm. Further, one or both surfaces of the stretched film of the present invention may be subjected to surface treatment such as corona discharge treatment, if necessary. Further, for the purpose of imparting a function such as heat sealability, a layer made of another resin having a lower melting point than the polypropylene resin of the present invention may be laminated on one side or both sides. The method for laminating other resins is not particularly limited, but a coextrusion method, a laminating method, etc. are preferable.

【0031】本発明の延伸フィルムの製造方法は、公知
の方法を何等制限なく採用することができる。例えば、
テンター法による逐次二軸延伸法を示すと、上記のポリ
プロピレン樹脂原料をTダイ法、インフレーション法等
でシートあるいはフィルムを成形した後、縦延伸装置に
供給し、加熱ロール温度120〜170℃で4〜10倍
縦延伸し、つづいてテンターでテンター温度130〜1
80℃で4〜15倍横延伸する方法であり、さらに、必
要に応じて横方向に0〜25%の緩和を許しながら80
〜180℃で熱処理する方法を挙げることができる。勿
論、これらの延伸の後に再び延伸してもよく、また縦延
伸において多段延伸、圧延等の延伸法を組み合わせるこ
とができる。
As the method for producing the stretched film of the present invention, known methods can be adopted without any limitation. For example,
The sequential biaxial stretching method by the tenter method is as follows. After the polypropylene resin raw material is formed into a sheet or film by a T-die method, an inflation method or the like, it is supplied to a longitudinal stretching device and heated at a heating roll temperature of 120 to 170 ° C. for 4 hours. Longitudinal stretching of 10 times, followed by a tenter with a tenter temperature of 130 to 1
This is a method of transversely stretching 4 to 15 times at 80 ° C., and while allowing a relaxation of 0 to 25% in the transverse direction as necessary, 80
The method of heat-treating at -180 degreeC can be mentioned. Of course, the stretching may be carried out again after these stretchings, and in the longitudinal stretching, stretching methods such as multi-stage stretching and rolling can be combined.

【0032】[0032]

【発明の効果】本発明のポリプロピレン樹脂は、延伸フ
ィルムを製膜する際に、従来公知のポリプロピレン樹脂
に比べて製膜可能な温度調製範囲が広く、延伸時の機械
負荷が小さく、フィルムの延伸破れが発生しにくく、延
伸時の延伸性が優れており、長期連続運転が可能であ
る。また、本発明のポリプロピレン樹脂よりなる延伸フ
ィルムは厚薄精度が優れ、熱収縮率等の耐熱性が良好で
ある。このような効果は、本発明のポリプロピレン樹脂
が高速製膜に適した延伸フィルム用のポリプロピレン樹
脂として極めて優れていることを示している。
EFFECT OF THE INVENTION The polypropylene resin of the present invention has a wider temperature adjustment range in which a stretchable film can be formed, as compared with conventionally known polypropylene resins, has a small mechanical load during stretching, and can be stretched. It is less likely to tear and has excellent stretchability during stretching, enabling long-term continuous operation. Further, the stretched film made of the polypropylene resin of the present invention has excellent thickness accuracy and good heat resistance such as heat shrinkage. Such effects indicate that the polypropylene resin of the present invention is extremely excellent as a polypropylene resin for a stretched film suitable for high-speed film formation.

【0033】[0033]

【実施例】本発明を更に具体的に説明するため以下に実
施例及び比較例を掲げて説明するが、本発明はこれらの
実施例に限定されるものではない。
EXAMPLES In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples.

【0034】(1)メルトフローレイト(MFR) JIS K 7210に準じて測定した。(1) Melt flow rate (MFR) The melt flow rate was measured according to JIS K 7210.

【0035】(2)重量平均分子量 センシュー科学社製の高温GPC装置SSC−7100
を用い、次の条件で測定した。
(2) Weight average molecular weight High temperature GPC device SSC-7100 manufactured by Senshu Scientific Co., Ltd.
Was measured under the following conditions.

【0036】溶媒 :オルトジクロルベンゼン 流速 :1.0ml/分 カラム温度:145℃ 検出機 :高温示差屈折検出器 カラム :SHODEX UT 試料濃度 :0.1重量% 注入量 :0.50ml (3)ペンタッド分率 日本電子社製のJNM−GSX−270(13C−核共鳴
周波数67.8MHz)を用い、次の条件で測定した。
Solvent: Orthodichlorobenzene Flow rate: 1.0 ml / min Column temperature: 145 ° C. Detector: High temperature differential refraction detector Column: SHODEX UT Sample concentration: 0.1 wt% Injection volume: 0.50 ml (3) Pentad Fraction It was measured under the following conditions using JNM-GSX-270 ( 13 C-nuclear resonance frequency 67.8 MHz) manufactured by JEOL Ltd.

【0037】測定モード: 1H−完全デカップリング パルス幅 : 7.0マイクロ秒(C45度) パルス繰り返し時間: 3秒 積算回数 : 10000回 溶媒 : オルトジクロルベンゼン/重ベンゼンの
混合溶媒(90/10容量%) 試料濃度 : 120mg/2.5ml溶媒 測定温度 : 120℃ この場合、ペンタッド分率は13C−NMRスペクトルの
メチル基領域における***ピークの測定により求めた。
また、メチル基領域のピークの帰属はA.Zambel
li et al[Macromolecules 1
3, 267(1980)]によった。
Measurement mode: 1 H-complete decoupling Pulse width: 7.0 microseconds (C45 degrees) Pulse repetition time: 3 seconds Accumulation number: 10000 times Solvent: Orthodichlorobenzene / deuterated benzene mixed solvent (90 / 10% by volume) Sample concentration: 120 mg / 2.5 ml Solvent measurement temperature: 120 ° C. In this case, the pentad fraction was determined by measuring the split peak in the methyl group region of the 13 C-NMR spectrum.
The attribution of the peak in the methyl group region is A. Zambel
li et al [Macromolecules 1
3, 267 (1980)].

【0038】(4)温度上昇溶離分別法によるピーク温
度(Tp)、溶出ピーク幅(σ)、積算溶出量が90重
量%となる溶出温度(T(90))、および、溶出温度
20℃以下での溶出量(a)センシュー科学社製の自動
TREF装置SSC−7300ATREFを用い、次の
条件で測定した。
(4) Elevation of temperature Peak temperature (Tp) by elution fractionation method, elution peak width (σ), elution temperature (T (90)) at which cumulative elution amount becomes 90% by weight, and elution temperature of 20 ° C. or less Elution amount in (a) It was measured under the following conditions using an automatic TREF device SSC-7300ATREF manufactured by Senshu Scientific Co., Ltd.

【0039】溶媒 : オルトジクロルベンゼン 流速 : 150ml/時間 昇温速度: 4℃/時間 検出機 : 赤外検出器 測定波数: 3.41μm カラム : 30mmφ×300mm 充填剤 : クロモソルブP 濃度 : 1g/120ml 注入量 : 100ml この場合、カラム内に試量溶液を145℃で導入した
後、2℃/時間の速度で10℃まで徐冷して試料ポリマ
ーを充填剤表面に吸着させた後、カラム温度を上記条件
で昇温することにより、各温度で溶出してきたポリマー
濃度を赤外検出器で測定した。
Solvent: Orthodichlorobenzene Flow rate: 150 ml / hour Temperature rising rate: 4 ° C./hour Detector: Infrared detector Measurement wave number: 3.41 μm Column: 30 mmφ × 300 mm Filler: Chromosolve P concentration: 1 g / 120 ml Injection volume: 100 ml In this case, the sample solution was introduced into the column at 145 ° C., and then gradually cooled to 10 ° C. at a rate of 2 ° C./hour to adsorb the sample polymer on the surface of the packing material, and then the column temperature was changed. By raising the temperature under the above conditions, the concentration of the polymer eluted at each temperature was measured with an infrared detector.

【0040】実施例1 (チタン化合物の調整)固体状チタン成分の調整方法は
特開昭58−38006号公報の実施例1の方法に準じ
て行なった。すなわち、無水塩化マグネシウム9.5
g、デカン100ml及び2−エチルヘキシルアルコー
ル47ml(300mmol)を125℃で2時間加熱
攪拌した後、この溶媒中に無水フタル酸5.5g(3
7.5mmol)を添加し、125℃でさらに1時間攪
拌混合を行ない、均一溶液とした。室温まで冷却した
後、−20℃に保持された四塩化チタン400ml
(3.6mmol)中に1時間にわたって全量滴下装入
した。この混合液の温度を2時間かけて110℃に昇温
し、110℃に達したところでジイソブチルフタレート
5.4ml(25mmol)を添加し、これより2時
間、同温度にて攪拌下保持した。2時間の反応終了後、
熱時ろ過にて固体部を採取し、この固体部を2000m
lの四塩化チタンにて再懸濁させた後、再び110℃で
2時間、加熱反応を行なった。反応終了後、再び熱ろ過
にて固体部を採取し、デカン及びヘキサンにて、洗液中
に遊離のチタン化合物が検出されなくなるまで、充分洗
浄した。以上の製造方法にて調整された固体状チタン触
媒成分は、ヘプタンスラリーとして保存した。固体状チ
タン触媒成分の組成はチタン2.1重量%、塩素57.
0重量%、マグネシウム18.0重量%及びジイソブチ
ルフタレート21.9重量%であった。
Example 1 (Preparation of titanium compound) The solid titanium component was prepared according to the method described in Example 1 of JP-A-58-38006. That is, anhydrous magnesium chloride 9.5
g, 100 ml of decane and 47 ml (300 mmol) of 2-ethylhexyl alcohol were heated and stirred at 125 ° C. for 2 hours, and then 5.5 g (3 g of phthalic anhydride was added to this solvent.
7.5 mmol) was added, and the mixture was stirred and mixed at 125 ° C. for 1 hour to obtain a uniform solution. After cooling to room temperature, 400 ml of titanium tetrachloride kept at -20 ° C
The entire amount was charged dropwise into (3.6 mmol) over 1 hour. The temperature of this mixed solution was raised to 110 ° C. over 2 hours, and when it reached 110 ° C., 5.4 ml (25 mmol) of diisobutyl phthalate was added, and the mixture was maintained at the same temperature for 2 hours with stirring. After the reaction for 2 hours,
The solid part was collected by hot filtration, and the solid part was collected to 2000 m.
After resuspending with 1 liter of titanium tetrachloride, heating reaction was performed again at 110 ° C. for 2 hours. After the reaction was completed, the solid portion was collected again by hot filtration, and thoroughly washed with decane and hexane until no free titanium compound was detected in the washing liquid. The solid titanium catalyst component prepared by the above production method was stored as a heptane slurry. The composition of the solid titanium catalyst component was 2.1% by weight of titanium and 57.
It was 0% by weight, 18.0% by weight of magnesium and 21.9% by weight of diisobutyl phthalate.

【0041】(予備重合)窒素置換を施した10L重合
器中に精製ヘキサン6000ml、トリエチルアルミニ
ウム100mmol、固体状チタン触媒成分をチタン原
子換算で10mmol装入した後、プロピレンを全体で
チタン成分10gに対し50gとなるように1時間連続
的に反応器に導入した。なおこの間温度は10℃に保持
した。1時間後プロピレンの導入を停止し、反応器を窒
素で充分に置換した。得られたスラリーの固体部分を精
製ヘキサンで5回洗浄し、チタン含有ポリプロピレンを
得た。
(Preliminary Polymerization) Purified hexane (6000 ml), triethylaluminum (100 mmol) and solid titanium catalyst component (10 mmol) in terms of titanium atom were charged into a 10 L polymerization vessel subjected to nitrogen substitution, and then propylene was added to 10 g of titanium component as a whole. It was continuously introduced into the reactor for 1 hour so that the amount became 50 g. During this period, the temperature was kept at 10 ° C. After 1 hour, the introduction of propylene was stopped and the reactor was thoroughly replaced with nitrogen. The solid portion of the obtained slurry was washed 5 times with purified hexane to obtain a titanium-containing polypropylene.

【0042】(本重合)窒素置換を施した内容量200
0Lの重合器に、プロピレン500kgを装入し、トリ
エチルアルミニウム1.64mol、エチルトリエトキ
シシラン0.164mol、シクロヘキシルメチルジメ
トキシシラン0.0082mol、さらに水素10Lを
装入した後、重合器の内温を65℃に昇温した。チタン
含有ポリプロピレンをチタン原子で0.00656mo
l装入し、続いて重合器の内温を70℃まで昇温し、1
時間のプロピレン重合を行なった。1時間後未反応のプ
ロピレンをパージし、白色顆粒状の重合体を得た。得ら
れた重合体は、70℃で減圧乾燥を行なった。全重合体
の収量は166kgであった。
(Main Polymerization) Content of 200 after nitrogen substitution
After charging 500 kg of propylene into a 0 L polymerization vessel, charged with 1.64 mol of triethylaluminum, 0.164 mol of ethyltriethoxysilane, 0.0082 mol of cyclohexylmethyldimethoxysilane, and 10 L of hydrogen, the internal temperature of the polymerization vessel was changed. The temperature was raised to 65 ° C. Titanium-containing polypropylene with titanium atom 0.00656mo
Then, the internal temperature of the polymerization vessel was raised to 70 ° C., and 1
Propylene polymerization was carried out for an hour. After 1 hour, unreacted propylene was purged to obtain a white granular polymer. The obtained polymer was dried under reduced pressure at 70 ° C. The total polymer yield was 166 kg.

【0043】得られたポリプロピレン樹脂のメルトフロ
ーレイト(MFR)、重量平均分子量、ペンタッド分
率、共重合組成、温度上昇溶離分別法(TREF)によ
る溶出曲線のピーク温度(Tp)、溶出ピーク幅
(σ)、積算溶出量が90重量%となる温度(T(9
0))、溶出温度20℃以下での溶出量(a)を表1に
示した。また、図1に溶出温度(℃)と溶出量(重量
%)との関係を示す溶出曲線を、図2に溶出温度(℃)
と積算溶出量(重量%)との関係を示す溶出曲線を示し
た。
The melt flow rate (MFR) of the obtained polypropylene resin, the weight average molecular weight, the pentad fraction, the copolymerization composition, the peak temperature (Tp) of the elution curve by the temperature rising elution fractionation method (TREF), the elution peak width ( σ), the temperature at which the cumulative elution amount becomes 90% by weight (T (9
0)) and the elution amount (a) at an elution temperature of 20 ° C. or less are shown in Table 1. Further, FIG. 1 shows an elution curve showing the relationship between the elution temperature (° C.) and the elution amount (% by weight), and FIG. 2 shows the elution temperature (° C.).
The elution curve showing the relationship between the cumulative elution amount (wt%) is shown.

【0044】(造粒)重合器から得られたポリプロピレ
ンパウダー100重量部に2,6−ジ−t−ブチルヒド
ロキシトルエン、ステアリン酸カルシウムを各0.1重
量部添加し、ヘンシェルミキサーで混合し、スクリュー
径65mmの押出造粒機を用いて230℃で押し出し、
ペレットを造粒し原料ペレットを得た。
(Granulation) To 100 parts by weight of polypropylene powder obtained from the polymerization machine, 0.1 parts by weight of 2,6-di-t-butylhydroxytoluene and calcium stearate were added, mixed with a Henschel mixer, and screwed. Extrude at 230 ° C. using an extrusion granulator with a diameter of 65 mm,
The pellets were granulated to obtain raw material pellets.

【0045】(製膜)得られたポリプロピレン樹脂ペレ
ットを用いて以下の方法で二軸延伸フィルムの製膜実験
を行なった。ポリプロピレン樹脂ペレットを、スクリュ
ー径90mmφのシート押出機を用い、280℃で押し
出し、30℃の冷却ロールで厚さ1mmのシートを成形
した。次いで、このシートをテンター方式の逐次二軸延
伸装置を用いて、縦方向に4.5倍ロール延伸し、引き
続いて160℃のテンター内で横方向に10倍延伸し
て、厚さ20ミクロンの二軸延伸フィルムを50m/分
の速度で製膜した。
(Film Forming) Using the obtained polypropylene resin pellets, a film forming experiment of a biaxially stretched film was conducted by the following method. The polypropylene resin pellets were extruded at 280 ° C. using a sheet extruder having a screw diameter of 90 mmφ, and a sheet having a thickness of 1 mm was formed with a cooling roll at 30 ° C. Then, this sheet was roll-stretched by 4.5 times in the machine direction using a tenter type sequential biaxial stretching apparatus, and subsequently stretched by 10 times in the transverse direction in a tenter at 160 ° C. to obtain a film having a thickness of 20 μm. The biaxially stretched film was formed at a speed of 50 m / min.

【0046】製膜の際、縦延伸のロール加熱温度を変化
させ、フィルムの白化、厚薄ムラ、フィルム破れ等が起
こらずに10分の間安定製膜が可能な温度範囲、縦延伸
及び横延伸における機械負荷(電流値、単位アンペア)
により製膜性(延伸性)を評価した。さらに、8時間、
連続運転を行ない、フィルムの延伸破れの回数を評価し
た。得られたフィルムの厚薄精度は、テンターと巻取り
機の間に設置した横河電機社製の赤外線厚み測定機WE
B GAGEを用いて測定したフィルムの厚みパターン
により評価した。また、製膜したフィルムは35℃で3
日間エージングした後、熱収縮率を測定した。熱収縮率
の測定は、縦及び横方向に幅15mm、長さ300mm
の短冊状に切り出し、120℃のオーブン中で15分間
加熱した後の寸法変化より求めた。結果を表1に示し
た。
During film formation, the roll heating temperature for longitudinal stretching is changed so that the film can be stably formed for 10 minutes without causing whitening of the film, unevenness in thickness, film breakage, longitudinal stretching and transverse stretching. Machine load (current value, unit ampere)
The film forming property (stretchability) was evaluated by. 8 hours more
Continuous operation was carried out to evaluate the number of film breakages. The thickness accuracy of the obtained film is determined by Yokogawa Denki's infrared thickness gauge WE installed between the tenter and the winder.
It was evaluated by the thickness pattern of the film measured using B GAGE. In addition, the film formed is 3 ° C at 35 ° C.
After aging for a day, the heat shrinkage was measured. Measurement of heat shrinkage is 15 mm in width and 300 mm in length and width
Was cut into strips and heated in an oven at 120 ° C. for 15 minutes to obtain the dimensional change. The results are shown in Table 1.

【0047】比較例1 有機ケイ素化合物としてシクロヘキシルメチルジメトキ
シシラン0.164molを単独で用いた以外は実施例
1と同様にしてプロピレンの単独重合を行ない、結果を
表1に示した。
Comparative Example 1 Propylene homopolymerization was carried out in the same manner as in Example 1 except that 0.164 mol of cyclohexylmethyldimethoxysilane was used alone as the organosilicon compound, and the results are shown in Table 1.

【0048】比較例2 比較例1において、エチレン成分含有量0.5mol%
のエチレンとプロピレンとのランダムコポリマーを重合
し、結果を表1に示した。
Comparative Example 2 In Comparative Example 1, the ethylene component content was 0.5 mol%
A random copolymer of ethylene and propylene was polymerized, and the results are shown in Table 1.

【0049】比較例3 有機ケイ素化合物としてエチルトリエトキシシラン0.
164molを単独で用いた以外は実施例1と同様にし
てプロピレンの単独重合を行ない、その結果を表1に示
した。
Comparative Example 3 Ethyltriethoxysilane as an organosilicon compound
Homopolymerization of propylene was carried out in the same manner as in Example 1 except that 164 mol was used alone, and the results are shown in Table 1.

【0050】実施例2〜5 トリエチルアルミニウムの使用量を3.50mol、有
機ケイ素化合物としてシクロヘキシルメチルジメトキシ
シラン0.013molとエチルトリエトキシシラン
0.262molを用いた(実施例2)こと、また、ト
リエチルアルミニウムは上記と同量で、有機ケイ素化合
物としてシクロヘキシルメチルジメトキシシラン0.0
66molとエチルトリエトキシシラン0.656mo
lを用いた(実施例3)こと、トリエチルアルミニウム
の使用量を1.64mol、有機ケイ素化合物としてジ
イソプロピルジメトキシシラン0.0164molとペ
ンチルトリエトキシシラン0.164molを用いた
(実施例4)こと、ジフェニルジメトキシシラン0.0
164molとオクチルトリエトキシシラン0.164
molを用いた(実施例5)こと以外は実施例1と同様
にしてプロピレンの単独重合を行ない、その結果を表1
に示した。
Examples 2 to 5 The amount of triethylaluminum used was 3.50 mol, and 0.013 mol of cyclohexylmethyldimethoxysilane and 0.262 mol of ethyltriethoxysilane were used as the organosilicon compound (Example 2). Aluminum is the same amount as described above, and cyclohexylmethyldimethoxysilane 0.0
66 mol and ethyltriethoxysilane 0.656mo
1 (Example 3), the amount of triethylaluminum used was 1.64 mol, and 0.0164 mol of diisopropyldimethoxysilane and 0.164 mol of pentyltriethoxysilane were used as the organosilicon compound (Example 4). Dimethoxysilane 0.0
164 mol and octyltriethoxysilane 0.164
Homopolymerization of propylene was carried out in the same manner as in Example 1 except that mol was used (Example 5), and the results are shown in Table 1.
It was shown to.

【0051】比較例4、5 有機ケイ素化合物としてシクロヘキシルメチルジメトキ
シシラン0.0033molとエチルトリエトキシシラ
ン0.099molを用いた(比較例4)こと、および
シクロヘキシルメチルジメトキシシラン0.164mo
lとエチルトリエトキシシラン0.656molを用い
た(比較例5)こと以外は実施例2と同様にしてプロピ
レンの単独重合を行ない、その結果を表1に示した。
Comparative Examples 4 and 5 The use of 0.0033 mol of cyclohexylmethyldimethoxysilane and 0.099 mol of ethyltriethoxysilane as the organosilicon compound (Comparative Example 4), and 0.164 mo of cyclohexylmethyldimethoxysilane.
Homopolymerization of propylene was carried out in the same manner as in Example 2 except that 1 and 0.656 mol of ethyltriethoxysilane were used (Comparative Example 5), and the results are shown in Table 1.

【0052】比較例6、7 有機ケイ素化合物としてジイソプロピルジメトキシシラ
ン0.164molを単独で用いた(比較例6)こと、
また、ペンチルトリエトキシシラン0.164molを
単独で用いた(比較例7)こと以外は実施例4と同様に
してプロピレンの単独重合を行ない、その結果を表1に
示した。
Comparative Examples 6 and 7 0.164 mol of diisopropyldimethoxysilane was used alone as an organosilicon compound (Comparative Example 6).
Further, propylene homopolymerization was carried out in the same manner as in Example 4 except that 0.164 mol of pentyltriethoxysilane was used alone (Comparative Example 7), and the results are shown in Table 1.

【0053】実施例6 有機ケイ素化合物としてシクロヘキシルメチルジメトキ
シシラン0.0492molとテトラエトキシシラン
0.492molを用いて実施例1と同様の方法で、エ
チレン成分含有量0.5mol%のエチレンとプロピレ
ンとのランダムコポリマーを重合し、その結果を表1に
示した。
Example 6 In the same manner as in Example 1, except that 0.0492 mol of cyclohexylmethyldimethoxysilane and 0.492 mol of tetraethoxysilane were used as the organosilicon compound, ethylene and propylene having an ethylene component content of 0.5 mol% were prepared. The random copolymer was polymerized and the results are shown in Table 1.

【0054】実施例7 有機ケイ素化合物としてシクロヘキシルメチルジメトキ
シシラン0.0492molとテトラエトキシシラン
0.492molを用いて実施例1と同様の方法で、ブ
テン−1成分含有量0.5mol%のブテン−1とプロ
ピレンのランダムコポリマーを重合し、その結果を表1
に示した。
Example 7 In the same manner as in Example 1, except that 0.0492 mol of cyclohexylmethyldimethoxysilane and 0.492 mol of tetraethoxysilane were used as the organosilicon compound, butene-1 having a butene-1 component content of 0.5 mol% was obtained. A random copolymer of propylene and propylene was polymerized and the results are shown in Table 1.
It was shown to.

【0055】実施例8 本重合において、有機ケイ素化合物としてシクロヘキシ
ルメチルジメトキシシラン0.0492molとテトラ
エトキシシラン0.492molを用いて実施例1と同
様の方法で重合して得たプロピレンホモポリマーと、同
様の方法で重合して得られたエチレン含有量1.0mo
l%のランダムコポリマーの重合パウダーをそれぞれ5
0重量%ずつブレンドし、造粒して原料ペレットを得
た。結果を表1に示した。
Example 8 In this polymerization, a propylene homopolymer obtained by polymerizing in the same manner as in Example 1 using 0.0492 mol of cyclohexylmethyldimethoxysilane and 0.492 mol of tetraethoxysilane as the organosilicon compound, Ethylene content obtained by polymerizing by the method of 1.0mo
5% each of 1% of random copolymerization powder
The raw material pellets were obtained by blending 0% by weight and granulating. The results are shown in Table 1.

【0056】実施例9 実施例1と同様の方法で調製した固体状チタン触媒成分
を用いて以下のように3−メチル−1−ブテンの予備重
合を行なった。窒素置換を施した10L重合器中に精製
ヘキサン6000ml、トリエチルアルミニウム100
mmol、固体状チタン触媒成分をチタン原子換算で1
0mmol装入した後、3−メチル−1−ブテンを全体
でチタン成分10gに対し40gとなるように1時間連
続的に反応器に導入した。なお、この間温度は20℃に
保持した。1時間後、3−メチル−1−ブテンの導入を
停止し、反応器を窒素で充分に置換した。得られたスラ
リーの固体部分を精製ヘキサンで5回洗浄し、チタン含
有3−メチル−1−ブテン重合体を得た。このときの3
−メチル−1−ブテン重合体の重量は36gであった。
Example 9 Using a solid titanium catalyst component prepared in the same manner as in Example 1, prepolymerization of 3-methyl-1-butene was carried out as follows. Purified hexane (6000 ml) and triethylaluminum (100 ml) were placed in a 10 L polymerization vessel which had been purged with nitrogen.
mmol, solid titanium catalyst component 1 in terms of titanium atom
After charging 0 mmol, 3-methyl-1-butene was continuously introduced into the reactor for 1 hour so that the total amount was 40 g with respect to 10 g of titanium component. During this period, the temperature was kept at 20 ° C. After 1 hour, the introduction of 3-methyl-1-butene was stopped and the reactor was thoroughly replaced with nitrogen. The solid portion of the obtained slurry was washed 5 times with purified hexane to obtain a titanium-containing 3-methyl-1-butene polymer. 3 at this time
The weight of the -methyl-1-butene polymer was 36 g.

【0057】得られたチタン含有3−メチル−1−ブテ
ン重合体を用いた以外は実施例1の本重合と同様にして
プロピレンの重合を行なった。プロピレン重合体の収量
から求めた全重合体中の3−メチル−1−ブテン含有量
は約330ppmであった。得られたポリプロピレンパ
ウターを実施例1と同様の方法で造粒して原料ペレット
を得た。結果を表1に示した。
Polymerization of propylene was carried out in the same manner as the main polymerization of Example 1 except that the obtained titanium-containing 3-methyl-1-butene polymer was used. The content of 3-methyl-1-butene in all the polymers determined from the yield of the propylene polymer was about 330 ppm. The obtained polypropylene powder was granulated in the same manner as in Example 1 to obtain raw material pellets. The results are shown in Table 1.

【0058】[0058]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1のポリプロピレン樹脂の溶出
温度(℃)と溶出量(重量%)との関係を示す溶出曲線
である。
FIG. 1 is an elution curve showing the relationship between the elution temperature (° C.) and the elution amount (% by weight) of the polypropylene resin of Example 1.

【図2】図2は、実施例1のポリプロピレン樹脂の溶出
温度(℃)と積算溶出量(重量%)との関係を示す溶出
曲線である。
FIG. 2 is an elution curve showing the relationship between the elution temperature (° C.) and the integrated elution amount (% by weight) of the polypropylene resin of Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29L 7:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】メルトフローレイトが0.1〜10g/1
0分、温度上昇溶離分別法による溶出曲線のピーク温度
(Tp)が105〜125℃、溶出ピーク幅(σ)が
9.0度以上であることを特徴とするポリプロピレン樹
脂。
1. A melt flow rate of 0.1 to 10 g / 1.
A polypropylene resin characterized by having a peak temperature (Tp) of 105 to 125 ° C. and an elution peak width (σ) of 9.0 degrees or more in an elution curve by a temperature rising elution fractionation method at 0 minutes.
【請求項2】請求項1記載のポリプロピレン樹脂よりな
る延伸フィルム。
2. A stretched film made of the polypropylene resin according to claim 1.
JP10570094A 1994-05-19 1994-05-19 Polypropylene resin and stretched film Expired - Fee Related JP3290293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10570094A JP3290293B2 (en) 1994-05-19 1994-05-19 Polypropylene resin and stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10570094A JP3290293B2 (en) 1994-05-19 1994-05-19 Polypropylene resin and stretched film

Publications (2)

Publication Number Publication Date
JPH07309912A true JPH07309912A (en) 1995-11-28
JP3290293B2 JP3290293B2 (en) 2002-06-10

Family

ID=14414651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10570094A Expired - Fee Related JP3290293B2 (en) 1994-05-19 1994-05-19 Polypropylene resin and stretched film

Country Status (1)

Country Link
JP (1) JP3290293B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182899A (en) * 1996-12-27 1998-07-07 Mitsui Chem Inc Biaxially oriented polypropylene film
JP2000248080A (en) * 1998-12-16 2000-09-12 Tokuyama Corp Biaxially orientated polyolefin film and its production
JP2002275333A (en) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd Polypropylene resin composition and biaxially oriented film
JP2002275328A (en) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd Polypropylene resin composition and biaxially oriented film
JP2002275327A (en) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd Polypropylene resin composition and biaxially oriented film
US6489426B1 (en) 1999-09-10 2002-12-03 Chisso Corporation Propylene base polymer and a polypropylene film using the same
JP2015528518A (en) * 2012-08-07 2015-09-28 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Method for producing polypropylene having improved productivity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182899A (en) * 1996-12-27 1998-07-07 Mitsui Chem Inc Biaxially oriented polypropylene film
JP2000248080A (en) * 1998-12-16 2000-09-12 Tokuyama Corp Biaxially orientated polyolefin film and its production
US6489426B1 (en) 1999-09-10 2002-12-03 Chisso Corporation Propylene base polymer and a polypropylene film using the same
JP2002275333A (en) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd Polypropylene resin composition and biaxially oriented film
JP2002275328A (en) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd Polypropylene resin composition and biaxially oriented film
JP2002275327A (en) * 2001-03-22 2002-09-25 Grand Polymer Co Ltd Polypropylene resin composition and biaxially oriented film
JP2015528518A (en) * 2012-08-07 2015-09-28 ボレアリス・アクチェンゲゼルシャフトBorealis Ag Method for producing polypropylene having improved productivity
US9512246B2 (en) 2012-08-07 2016-12-06 Borealis Ag Process for the preparation of polypropylene with improved productivity

Also Published As

Publication number Publication date
JP3290293B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
CA2108821C (en) Biaxially oriented propylene polymer film or sheet articles
US6268063B1 (en) Propylene resin composition, process for the preparation thereof, and use thereof
EP0146968B1 (en) A laminated polypropylene film
JP4688247B2 (en) Propylene resin composition, production method and use thereof
EP0145014B1 (en) A packaging shrink film
JP4414513B2 (en) Propylene-based resin composition and method for producing the same
EP0730623B1 (en) Random copolymer compositions
JP3290293B2 (en) Polypropylene resin and stretched film
JP4803856B2 (en) Polypropylene for film and method for producing film
JP3575865B2 (en) Polypropylene composition
JP3580639B2 (en) Polypropylene resin
JPH0673132A (en) Polypropylene random copolymer and film therefrom
JP3175526B2 (en) Polypropylene composition for laminated stretched film and laminated stretched film
EP1041114B1 (en) Polyolefin resin modifier, polyolefin resin composition and oriented polyolefin film
CN112500541B (en) Polypropylene resin composition having excellent whitening resistance and heat resistance, method for preparing the same, and molded article molded therefrom
JPS61213244A (en) Packaging film
JPS61169246A (en) Polypropylene laminated film
JP4774142B2 (en) Polyolefin resin
JPS5922946A (en) Ethylene-alpha-olefin copolymer type resin composition of high quality for casting film and preparation thereof
JP3737621B2 (en) Propylene resin
JP3737620B2 (en) Low crystalline polypropylene
JP2533321B2 (en) Polypropylene laminated film
JP3338248B2 (en) Polypropylene resin composition
WO2024083610A1 (en) Polypropylene composition with good sealing properties
WO2023117512A1 (en) Soft polyolefin composition

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees