JPH07289864A - Microporous membrane - Google Patents

Microporous membrane

Info

Publication number
JPH07289864A
JPH07289864A JP8673894A JP8673894A JPH07289864A JP H07289864 A JPH07289864 A JP H07289864A JP 8673894 A JP8673894 A JP 8673894A JP 8673894 A JP8673894 A JP 8673894A JP H07289864 A JPH07289864 A JP H07289864A
Authority
JP
Japan
Prior art keywords
membrane
fine particles
polymer matrix
film
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8673894A
Other languages
Japanese (ja)
Inventor
Akio Nakamura
昭雄 中村
Masatoshi Naoi
正俊 直井
Masahide Takahashi
昌秀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP8673894A priority Critical patent/JPH07289864A/en
Publication of JPH07289864A publication Critical patent/JPH07289864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To inexpensively prepare a solid-liq. separating membrane especially useful for the treatment of waste water by a membrane separating method. CONSTITUTION:This microporous membrane 1 is a polymer composite membrane consisting of a polymer matrix 3 and fine particles 2 and having a gap 5 between the polymer matrix 3 and each of the fine particles 2 under at least the pressure of a fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は精密濾過用の微孔性膜の
改良に関し、特に膜分離法による排水処理に有用な固液
分離膜を安価に提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of microporous membranes for microfiltration, and particularly to inexpensively provide a solid-liquid separation membrane useful for wastewater treatment by a membrane separation method.

【0002】[0002]

【従来の技術】溶液中の懸濁物質、微粒子、細菌類等の
分離に用いられる分離膜には、一般に精密濾過膜(以下
MF膜という)と呼ばれる微孔性膜が使用されている。
このMF膜は、膜の有する篩目(微細孔)により溶液中
に含まれる0.05〜10μmの微粒子を分離するもので、製
薬及び医療工業では水、液体、ガス等の除菌及び微粒子
の除去、輸液セットフィルタ−、血球血漿分離、手術用
水の除菌、電子工業では超純水中の微粒子の除去、薬
品、溶剤、ガス等の精製、食品工業では食用油、飲料
水、生ビ−ル、生酒等の精製、その他工業では溶剤、作
動油の微粒子除去、原子力発電復水精製、家庭用浄水
器、等々に使用される。
2. Description of the Related Art As a separation membrane used for separating suspended substances, fine particles, bacteria and the like in a solution, a microporous membrane generally called a microfiltration membrane (hereinafter referred to as MF membrane) is used.
This MF membrane separates fine particles of 0.05 to 10 μm contained in a solution by the sieve mesh (fine pores) of the membrane. In the pharmaceutical and medical industries, sterilization of water, liquid, gas, etc. and removal of fine particles, Infusion set filter, blood cell plasma separation, sterilization of surgical water, removal of fine particles in ultrapure water in the electronic industry, purification of chemicals, solvents, gas, etc., edible oil, drinking water, raw beer in the food industry, It is used for refining sake, etc., and for other industries, it is used for solvent, fine particle removal of hydraulic oil, condensate refining for nuclear power generation, household water purifier, etc.

【0003】現在、このMF膜を、排水処理プロセスに
応用しようという動きがある。排水処理すなわち、排水
中に含まれる有機物等の汚濁成分処理には、活性汚泥法
といわれる微生物による処理が一般に行われている。こ
の活性汚泥法においては、流入した排水は、最初沈殿池
で含有する有機性浮遊物や泥が沈殿分離された後、曝気
槽で好気条件下に細菌、原生動物等の微生物からなる活
性汚泥と混合される。次いで排水中の有機物は微生物等
からなる活性汚泥によって分解吸着され、沈殿しやすい
フロック状となり、次の最終沈殿池で、活性汚泥と上澄
水に分離された後、上澄水は滅菌池で消毒、滅菌し、放
流される。この最終沈殿池においては、年に何回かの頻
度で発生するバルキングが問題となっている。このバル
キングは、糸状菌の異常繁殖によって活性汚泥の沈降性
が低下し、沈殿池における上澄み水と汚泥との界面が上
昇して、わずかな水量変化に対しても汚泥が越流して、
汚泥と上澄水との分離が不十分になる現象である。排水
処理への膜分離法の応用は、最終沈殿池プロセスを膜分
離プロセスで代替することにより、糸状菌を完全に阻止
し、バルキング問題を根本的に解決しようとするもので
ある。
Currently, there is a movement to apply this MF membrane to a wastewater treatment process. Wastewater treatment, that is, treatment of pollutants such as organic substances contained in wastewater, is generally performed by a microorganism called an activated sludge method. In this activated sludge method, the inflowing wastewater is an activated sludge made of microorganisms such as bacteria and protozoa under aerobic conditions in an aeration tank after the organic suspended matter and mud contained in the sedimentation tank are first separated and separated. Mixed with. Next, the organic matter in the wastewater is decomposed and adsorbed by the activated sludge composed of microorganisms, etc., and becomes a floc shape that easily precipitates, and is separated into activated sludge and supernatant water in the next final settling tank, and then the supernatant water is disinfected in a sterilization tank Sterilized and discharged. Bulking, which occurs several times a year, is a problem in this final settling tank. In this bulking, the sedimentation of activated sludge decreases due to the abnormal growth of filamentous fungi, the interface between the supernatant water and sludge in the sedimentation basin rises, and the sludge overflows even with a slight change in water volume,
This is a phenomenon in which the separation of sludge and supernatant water becomes insufficient. The application of the membrane separation method to wastewater treatment aims to completely prevent the filamentous fungus and fundamentally solve the bulking problem by substituting the final sedimentation tank process with the membrane separation process.

【0004】膜分離法による排水処理の概略は、図3に
示すように、曝気槽を出た排水と活性汚泥との混合水6
を、まず最初は循環槽10を経てサブミクロンレベルの固
液分離膜7によって濾過し、透過水8を次工程に送り、
濃縮水9は循環槽10に返送して混合水6と混合し攪拌羽
根11で攪拌し固液分離膜7への循環を繰り返すことによ
って行われる。なお図中のPはポンプを示す。
The outline of the wastewater treatment by the membrane separation method is, as shown in FIG. 3, mixed water 6 of the wastewater discharged from the aeration tank and the activated sludge.
Is first filtered through the circulation tank 10 through the submicron level solid-liquid separation membrane 7, and the permeated water 8 is sent to the next step,
The concentrated water 9 is returned to the circulation tank 10, mixed with the mixed water 6, stirred by the stirring blade 11, and repeatedly circulated through the solid-liquid separation membrane 7. In addition, P in a figure shows a pump.

【0005】MF膜の素材としては、酢酸セルロ−ス、
ポリカ−ボネ−ト、ポリアミド、ポリプロピレン、ポリ
サルホン、ポリエチレンサルファイド、ポリビニリデン
フルオライド、ポリテトラフルオロエチレン等が使用さ
れ、細孔径0.1 〜1μm、膜厚0.1 〜0.3mm 、空孔率60
〜 70 %が一般仕様である。このMF膜は主に、「溶媒
−ゲル化法」と呼ばれるミクロ相分離を利用した細孔形
成法によって作られる。この方法は高分子化合物を良溶
媒で溶解し、非溶媒を均一にド−プした液を作り、流延
して良溶媒を蒸発させた後、非溶媒溶液からなる凝固浴
中に浸漬して、ミクロ相分離を行わせる。流延工程では
良溶媒の蒸発と高分子のゲル化が行われ、高分子濃厚相
からなる小球が現れ、これを中心に相分離が起こる。次
いで凝固浴中で更に小球が成長し、脱溶媒の進行ととも
に、成長した小球が連鎖状に連結して、網状多孔質膜が
形成される。その他の製法としては、結晶性高分子フィ
ルムを延伸して微細孔を形成する「延伸法」、高分子の
溶液中に無機塩類を混ぜて製膜後、この塩類を溶出させ
て微細孔を形成する「抽出法」等があるが、細孔分布や
孔径の均一性に劣るため使用されることは少ない。
As a material for the MF membrane, cellulose acetate,
Polycarbonate, polyamide, polypropylene, polysulfone, polyethylene sulfide, polyvinylidene fluoride, polytetrafluoroethylene, etc. are used, and the pore diameter is 0.1 to 1 μm, the film thickness is 0.1 to 0.3 mm, and the porosity is 60.
~ 70% is the general specification. This MF membrane is mainly produced by a pore formation method utilizing micro phase separation called a “solvent-gelation method”. In this method, a high molecular compound is dissolved in a good solvent to form a solution in which a non-solvent is uniformly doped, cast to evaporate the good solvent, and then immersed in a coagulation bath consisting of a non-solvent solution. , Perform microphase separation. In the casting process, the good solvent is evaporated and the polymer is gelled, and small spheres composed of a polymer-rich phase appear, and phase separation occurs around this. Next, small spheres further grow in the coagulation bath, and as the desolvation progresses, the grown spheres are connected in a chain to form a reticulated porous film. Other manufacturing methods include the "stretching method" in which a crystalline polymer film is stretched to form micropores. After the inorganic salt is mixed in the polymer solution to form a film, the salt is eluted to form micropores. However, since it is inferior in pore size distribution and pore size uniformity, it is rarely used.

【0006】[0006]

【発明が解決しようとする課題】溶媒−ゲル化法による
MF膜は、上記ミクロ相分離原理により、微細な多孔質
網目構造を、かなり厚い膜厚に亙って均一に形成するた
め、製造コストが嵩み、非常に高価となる欠点がある。
排水処理のように比較的低い処理コストを要求される用
途には、このような高価な材料を適用するのは困難なこ
とは自明である。
The MF film formed by the solvent-gelation method has a manufacturing cost because a fine porous network structure is uniformly formed over a considerably large film thickness by the above-mentioned microphase separation principle. However, there is a drawback that it becomes bulky and very expensive.
Obviously, it is difficult to apply such an expensive material to an application that requires a relatively low treatment cost such as wastewater treatment.

【0007】[0007]

【課題を解決するための手段】本発明は精密濾過用の改
良された微孔性膜であり、特に膜分離法による排水処理
に有用な固液分離膜を安価に提供するもので、高分子マ
トリックスと微粒子とからなる高分子複合膜であって、
高分子マトリックスと微粒子間に、少なくとも流体圧力
がかかった状態で、空隙を有することを特徴とする微孔
性膜に関し、更には高分子マトリックスと微粒子とが互
いに非接着性の物質からなることを特徴とする請求項1
記載の微孔性膜に関する。また工業的には一定の流体圧
力に耐えるなどの機械的強度が要求されるので、高分子
マトリックスと微粒子とからなる高分子複合膜が、多孔
質支持体上に形成されてなる微孔性膜が好適である。
The present invention is an improved microporous membrane for microfiltration, which provides a solid-liquid separation membrane, which is particularly useful for wastewater treatment by a membrane separation method, at a low cost. A polymer composite film comprising a matrix and fine particles,
The present invention relates to a microporous membrane characterized by having voids between a polymer matrix and fine particles under at least a fluid pressure. Furthermore, the polymer matrix and the fine particles are composed of non-adhesive substances. Claim 1 characterized by
It relates to the described microporous membrane. Further, industrially, mechanical strength such as withstanding a certain fluid pressure is required. Therefore, a polymer composite membrane composed of a polymer matrix and fine particles is a microporous membrane formed on a porous support. Is preferred.

【0008】発明者等は微孔性膜について鋭意研究の結
果、高分子マトリックスと微粒子の関係は任意とし、高
分子マトリックス中に、微粒子を一定割合以上に充填す
ることにより、高分子マトリックスと微粒子の間に空隙
を設けることができるが、更にこれらを互いに非接着性
の材料とすることにより高分子マトリックスと微粒子間
に、少なくとも流体圧力がかかった時に空隙を設けるこ
とが出来ることを見いだし本発明を完成した。接着性に
最も影響を与える因子としては、固化する前には溶液状
の高分子マトリックスが、固体微粒子の表面を如何に十
分に濡らすかであり、この濡れは表面張力と関係があ
る。即ち固体表面で液滴が接触角θを保って平行に達し
た状態を考察すると、固体が液体で完全に濡れるときθ
=0°(cos θ=1)、全く濡れないときθ=180 °(co
s θ=-1 )となる。表面張力とは、その液体を構成する
分子の分子間引力によって表面が収縮しようとする力
(dyn/cm) で、液体が自発的に広がって固体表面を濡ら
す(cos θ=1)ときの表面張力を臨界表面張力といいγ
C で表す。γC は固体に関する特性値であって、ある固
体のγC 以下の表面張力γSL(固体と液体との間の表面
張力)を持つ液体ならば、その液体はその固体を完全に
濡らすことができる。このγC を列挙すると、シリコ−
ン:16〜20dyn/cm(以下単位を省略する)、ポリテトラ
フルオロエチレン:18.5、ポリビニリデンフルオライ
ド:25、ポリプロピレン:28.5、ポリエチレン:31、ポ
リクロロトリフルオロエチレン:31、ポリスチレン:3
3、ポリビニルアルコ−ル:37、ポリメチルメタクリレ
−ト:39、ポリビニルクロライド:39、ポリスチレン:
33、ポリビニルアセテ−ト:37、ポリビニリデンクロラ
イド:40、 ポリエチレンテレフタレ−ト:43、セルロ−
スアセテ−ト:45、ナイロン66:46等である。
As a result of earnest studies on the microporous membrane, the inventors have determined that the relationship between the polymer matrix and the fine particles is arbitrary, and by filling the polymer matrix with the fine particles at a certain ratio or more, the polymer matrix and the fine particles are filled. It has been found that a void can be provided between the polymer matrix and the microparticles by making them non-adhesive materials to each other, and at least when a fluid pressure is applied. Was completed. The factor that most affects the adhesiveness is how well the polymer matrix in solution wets the surface of the solid fine particles before solidification, and this wetting is related to the surface tension. That is, considering the state in which the liquid droplets have reached the contact angle θ parallel to each other on the surface of the solid, when the solid is completely wet with the liquid θ
= 0 ° (cos θ = 1), when not wet at all θ = 180 ° (co
s θ = -1). The surface tension is the force (dyn / cm) that the surface tries to contract due to the intermolecular attractive force of the molecules that compose the liquid, and the surface when the liquid spontaneously spreads and wets the solid surface (cos θ = 1). Tension is called critical surface tension γ
Represented by C. gamma C is a characteristic value relates to a solid, if a liquid having a gamma C below the surface tension gamma SL of a solid (surface tension between the solid and liquid), the liquid to wet the solid completely it can. When γ C is enumerated,
16-20 dyn / cm (the unit is omitted below), polytetrafluoroethylene: 18.5, polyvinylidene fluoride: 25, polypropylene: 28.5, polyethylene: 31, polychlorotrifluoroethylene: 31, polystyrene: 3
3, polyvinyl alcohol: 37, polymethyl methacrylate: 39, polyvinyl chloride: 39, polystyrene:
33, polyvinyl acetate: 37, polyvinylidene chloride: 40, polyethylene terephthalate: 43, cellulose
Suacetate: 45, nylon 66: 46, etc.

【0009】従って、本発明の高分子マトリックス材質
と微粒子材質との関係は、微粒子を固体、高分子マトリ
ックスを液体として、被着性について考えることになる
ため、高分子マトリックスのγC が微粒子のγC より大
きい材質を選択すれば良い。すなわち本発明の微粒子と
してはγC の小さいシリコ−ン粒子、フッ素樹脂粒子等
を選択すれば良く、高分子マトリックスとしてはγC
大きいポリエチレンテレフタレ−ト、酢酸セルロ−ス、
ナイロン66等を選択すれば良い。
Accordingly, the relationship between the polymer matrix material and particulate material of the present invention, the particulate solid, the polymer matrix as a liquid, it becomes to thinking about the deposition of, in the polymer matrix gamma C is fine A material larger than γ C may be selected. That is, as the fine particles of the present invention, small γ C silicone particles, fluororesin particles or the like may be selected, and as the polymer matrix, large γ C polyethylene terephthalate, cellulose acetate,
Nylon 66 etc. should be selected.

【0010】本発明の微粒子は、形状が扁平な場合に
は、その扁平な面が膜面と平行に重なって並び、膜と直
角方向に抜ける液体流路を閉じてしまうので、粒状また
は球状であることが望ましい。微粒子の直径は、後述す
る高分子膜厚との関連において決まるが、1〜30μm の
範囲とし、好ましくは3〜5μm ±2μm でシャ−プな
粒度分布を持つことが望ましい。
When the fine particles of the present invention have a flat shape, the flat surfaces thereof are aligned in parallel with the film surface, and the liquid flow passages passing in the direction perpendicular to the film are closed. Is desirable. The diameter of the fine particles is determined in relation to the polymer film thickness described later, but it is preferably in the range of 1 to 30 μm, preferably 3 to 5 μm ± 2 μm and having a sharp particle size distribution.

【0011】本発明において、高分子マトリックスと微
粒子の複合膜を形成するには、高分子マトリックス100
重量部を、これと相溶性のある溶媒に溶解し、これに微
粒子を1 〜1000重量部混合した微粒子混合高分子溶液を
調製する。微粒子の配合割合は、これが少な過ぎると、
微粒子が高分子マトリックスの海の中に完全に取り巻か
れてしまい、液体流路が形成できず、これが多過ぎると
微粒子が高分子マトリックスから脱落しやすくなるた
め、50〜300 重量部の範囲とするのが好ましい。次に、
グラビアコ−タ−、三本リバ−スロ−ルコ−タ−、ナイ
フコ−タ−、コンマコ−タ−等を用い、ステンレスベル
ト等の支持体上に該溶液をキャステイング製膜後剥離す
るか、または多孔質支持体上に、同様のコ−タ−を用い
てコ−テイング製膜する。製膜後の乾燥膜は、これが薄
過ぎると高分子マトリックスが微粒子を固定できず、微
粒子が脱落しやすいし、これが厚過ぎると液体流路が長
くなり、したがって液体に対する抵抗が増えるため、1
〜500 μm の範囲とするのが良い。
In the present invention, the polymer matrix 100 is used to form a composite film of the polymer matrix and fine particles.
Part by weight is dissolved in a solvent compatible with this, and 1 to 1000 parts by weight of fine particles are mixed therein to prepare a fine particle mixed polymer solution. If the mixing ratio of the fine particles is too small,
The particles are completely surrounded by the sea of the polymer matrix, and the liquid flow path cannot be formed. If there are too many particles, the particles easily fall off from the polymer matrix, so the range is 50 to 300 parts by weight. Is preferred. next,
Gravure coater, three reversal roll coater, knife coater, comma coater, etc. are used to cast the solution on a support such as a stainless belt or the like and then peeled off after casting, or A coating film is formed on the porous support using the same coater. When the dry film after film formation is too thin, the polymer matrix cannot fix the fine particles, and the fine particles easily fall off, and when it is too thick, the liquid flow path becomes long and therefore the resistance to the liquid increases.
It is recommended that the range is up to 500 μm.

【0012】本発明において膜が厚い場合は、図1及び
図4に示すように微粒子の大部分が高分子マトリックス
3の中にある状態、膜が薄い場合は、図2及び図5に示
すように微粒子の多くが高分子マトリックスの膜面から
顔を出した状態、の二通りがある。高分子マトリックス
中に微粒子が高充填されている場合、またはこれらが互
いに非接着性の材料の場合は、(以下図1により説明す
る)高分子マトリックス3は微粒子2を固定した状態に
ありながら、微粒子の周囲にはミクロな空隙5が存在
し、特に流体圧力がかかった状態では空隙5が0.1 〜0.
5 μm 程度に広がり空隙5を透過水が通過することがで
きるが、数μm 以上の活性汚泥が通過するには小さいの
で、分離膜として機能することができる。排水処理の固
液分離の場合の流体圧力(水圧)は調査の結果、1〜2
kgf /cm2 の範囲である。
In the present invention, when the film is thick, most of the fine particles are in the polymer matrix 3 as shown in FIGS. 1 and 4, and when the film is thin, as shown in FIGS. 2 and 5. There are two ways, most of the fine particles are exposed from the surface of the polymer matrix. When the polymer matrix is highly filled with fine particles or when these are non-adhesive materials to each other, the polymer matrix 3 (described below with reference to FIG. 1) holds the fine particles 2 in a fixed state, There are microscopic voids 5 around the fine particles, and the voids 5 are 0.1 to 0 when the fluid pressure is applied.
The permeated water can pass through the voids 5 to a size of about 5 μm, but the activated sludge of several μm or more is too small to pass through, so that it can function as a separation membrane. The fluid pressure (water pressure) in the case of solid-liquid separation for wastewater treatment was found to be 1-2.
It is in the range of kgf / cm 2 .

【0013】本発明の多孔質支持体としては、多孔質セ
ラミックス、多孔質金属、多孔質高分子フィルム、不織
布等が上げられるが、連続作業性の点から多孔質高分子
フィルムまたは不織布の使用が好ましい。この多孔質高
分子フィルムとしては、ポリエチレン、ポリプロピレ
ン、ポリアミド、ポリエチレンテレフタレ−ト、ポリフ
ェニレンサルファイト、ポリエ−テルエ−テルケトン、
ポリテトラフルオロエチレン等の結晶性高分子フィルム
を加熱または可塑剤添加により可塑化状態とし、一軸ま
たは二軸方向に延伸し、結晶ラメラ部を中心として非晶
質部分を押し広げて細孔を形成したものが挙げられる。
このフィルムの細孔は小さ過ぎると目詰まりの原因とな
り、大き過ぎると表面に形成する高分子複合膜中の微粒
子が、細孔の中に落ち込んで孔を閉塞するので、直径0.
05〜10μm の範囲とすることが望ましい。
As the porous support of the present invention, porous ceramics, porous metals, porous polymer films, non-woven fabrics and the like can be mentioned. From the viewpoint of continuous workability, use of the porous polymer film or non-woven fabric is preferred. preferable. Examples of the porous polymer film include polyethylene, polypropylene, polyamide, polyethylene terephthalate, polyphenylene sulphite, polyether ether ketone,
A crystalline polymer film such as polytetrafluoroethylene is heated or added with a plasticizer to put it in a plasticized state, stretched uniaxially or biaxially, and expands the amorphous part around the crystalline lamella part to form pores. The ones that have been done are listed.
If the pores of this film are too small, it will cause clogging, and if they are too large, the fine particles in the polymer composite film that form on the surface will fall into the pores and close the pores.
The range of 05-10 μm is desirable.

【0014】また不織布としては、天然繊維または合成
繊維の短繊維あるいは長繊維からなるものがあるが、ポ
リエチレン、ポリプロピレン、ポリアミド、ポリエチレ
ンテレフタレ−ト、ポリフェニレンサルファイト、芳香
族ポリアミド等の合成繊維の短繊維または長繊維からな
るものが望ましい。不織布の製造方法は、湿式法と乾式
法がある。湿式法は短繊維をポリエチレンオキサイド、
ポリアクリルアミド等の水溶液に分散して抄紙し、バイ
ンダ−液浸漬、または熱プレスヒ−トシ−ルしてシ−ト
状にする方法である。乾式法は水溶液を用いない方法
で、メルトブロ−法、スパンボンド法、ニ−ドルパンチ
法、サ−マルボンド法、レジンボンド法等があるが、メ
ルトブロ−法について説明すると、細い口金から、高温
の空気流とともに樹脂を糸状に噴射しこれをコンベアに
受けて自己溶融接着してシ−ト状にする方法である。水
の濾過には、湿式法不織布、メルトブロ−法不織布、ス
パンボンド法不織布、サ−マルボンド法不織布の使用が
望ましいが、緻密性の点から、湿式法不織布、メルトブ
ロ−法不織布の使用が特に好ましい。なお不織布の緻密
性すなわち密度は、これが小さいと、繊維網目間の隙間
が大き過ぎ、高分子複合膜を形成するとき、孔が明く不
都合や、機械的強度に劣る不都合があるので、密度0.3g
/cm3以上とするのが好ましい。これら多孔質支持体の厚
さは、これが厚過ぎると濾過抵抗が大きくなり、薄過ぎ
ると機械的強度が小さく破れやすいため0.01〜1mmの範
囲、さらには現行のMF膜同様に0.1 〜0.3 mmの範囲と
するのが好ましい。
Nonwoven fabrics include those made of short fibers or long fibers of natural fibers or synthetic fibers, and synthetic fibers such as polyethylene, polypropylene, polyamide, polyethylene terephthalate, polyphenylene sulphite and aromatic polyamide. Those composed of short fibers or long fibers are desirable. There are a wet method and a dry method as a method for manufacturing a nonwoven fabric. In the wet method, short fibers are polyethylene oxide,
It is a method in which it is dispersed in an aqueous solution of polyacrylamide or the like to make a paper, which is then immersed in a binder solution or heat-pressed to form a sheet. The dry method is a method that does not use an aqueous solution, and includes a melt blow method, a spun bond method, a needle punch method, a thermal bond method, and a resin bond method.The melt blow method is described below. This is a method in which the resin is jetted in the form of threads along with the flow and is received by a conveyor and self-melted and adhered to form a sheet. For the filtration of water, it is preferable to use a wet method nonwoven fabric, a melt blow method nonwoven fabric, a spunbond method nonwoven fabric, or a thermal bond method nonwoven fabric, but from the viewpoint of compactness, the use of a wet method nonwoven fabric or a melt blow method nonwoven fabric is particularly preferable. . Note that the denseness, that is, the density of the nonwoven fabric, if this is small, the gap between the fiber networks is too large, and when forming the polymer composite film, there is a disadvantage that the pores are open and the mechanical strength is inferior. g
/ cm 3 or more is preferable. The thickness of these porous supports is in the range of 0.01 to 1 mm because if they are too thick, the filtration resistance becomes large, and if they are too thin, the mechanical strength is small and they are easily broken. It is preferably in the range.

【0015】[0015]

【実施例】実施例により本発明を説明する。 (実施例1)飽和ポリエステル樹脂・スタフィックスP
−LC〔富士写真フィルム(株)製商品名〕100 重量部
をキシレン溶媒700 重量部に溶解し、この中に50%粒径
5μm のシリコ−ンゴム球状粒子・KMP−594 〔信越
化学工業(株)製商品名〕200 重量部を加え攪拌混合し
て、微粒子充填高分子溶液を調製した。この溶液の固形
分含量は27.2%である。次にポリエチレンテレフタレ−
ト100%で作られた、厚さ142 μm (坪量103.2g/m2 )、
密度0.726g/cm3 の湿式法不織布・05-TH −100H〔広瀬
製紙(株)製商品名〕の表面に、3本リバ−スロ−ルコ
−タ−を用いて、この前記溶液をウエット状態で、厚さ
50μm に塗布し、100 ℃で10分間乾燥して高分子マトリ
ックスの膜厚を測定したところ、最大膜厚は15μm であ
り、不織布の繊維網目の空間は完全に樹脂膜で埋められ
た状態であった。この膜を試験治具にセットして、JI
S−K3835(精密濾過膜エレメントの細菌捕捉性能試験
方法)により、直径0.234μm の試験菌・シュ−ドモナ
ス デミニュ−タIFO14213 の捕捉性能、すなわちL
TV(対数減少値)=log10 〔(膜に負荷した試験菌の
総数)/(膜を通過して捕捉計数された試験菌の総
数)〕を測定計算したところ、LRV≧105 であり、か
つこの測定条件の流量2〜4ml/cm2・分、差圧2.1 kgf/
cm2 の通液を十分満足するものであた。
The present invention will be described with reference to examples. (Example 1) Saturated polyester resin, Stafix P
-LC [Fuji Photo Film Co., Ltd.] 100 parts by weight is dissolved in 700 parts by weight of xylene solvent, and 50% particle diameter of 5 μm silicone rubber spherical particles KMP-594 [Shin-Etsu Chemical Co., Ltd. ) Trade name] 200 parts by weight were added and mixed by stirring to prepare a polymer solution filled with fine particles. The solid content of this solution is 27.2%. Next, polyethylene terephthalate
Made with 100% thickness, 142 μm thickness (basis weight 103.2 g / m 2 ),
A wet process non-woven fabric having a density of 0.726 g / cm 3 · 05-TH -100H [trade name of Hirose Paper Co., Ltd.], using a three-roller roll coater, the solution was wet. And the thickness
When the thickness of the polymer matrix was measured by applying it to 50 μm and drying at 100 ° C for 10 minutes, the maximum thickness was 15 μm, and the space of the fiber mesh of the non-woven fabric was completely filled with the resin film. It was Set this film on the test jig and
According to S-K3835 (Testing method for bacteria capturing performance of microfiltration membrane element), the capturing performance of Pseudomonas deminator IFO 14213, a test bacterium with a diameter of 0.234 μm,
TV (logarithmic reduction value) = log 10 [(total number of test bacteria loaded on the membrane) / (total number of test bacteria captured and counted through the membrane)] was calculated and calculated, and LRV ≧ 10 5 , Moreover, the flow rate under these measurement conditions is 2-4 ml / cm 2 · min, the differential pressure is 2.1 kgf /
It was sufficient to pass the cm 2 solution.

【0016】(実施例2)実施例1と同様の樹脂100 重
量部をキシレン溶媒700 重量部に溶解し、この中に50%
粒径3μm のポリテトラフルオロエチレン粒子・KTL
−8〔(株)喜多村製商品名〕300 重量部を加え攪拌混
合して、微粒子充填高分子溶液を調製した。この溶液の
固形分含量は27.2%である。次に延伸法で微細孔(孔径
2μm )を形成した多孔質ポリエチレンフィルム・ブレ
スロンR BRN1050-E50B 〔日東電工(株)製商品名〕
の表面にグラビアコ−タ−を用いてこの溶液をウエット
状態で15μm の厚さに塗布し、100 ℃、10分間乾燥して
膜厚を測定したところ、高分子マトリックスの膜厚は約
4μm で、球状粒子のほとんどが膜面から約1μm 突出
した状態になっていた。この膜を試験治具にセットし
て、JIS−K3835(精密濾過膜エレメントの細菌捕捉
性能試験方法)により、直径0.234 μm の試験菌・シュ
−ドモナス デミニュ−タIFO14213 の捕捉性能、す
なわちLTV(対数減少値)=log10 〔(膜に負荷した
試験菌の総数)/(膜を通過して捕捉計数された試験菌
の総数)〕を測定計算したところ、LRV≧105 であ
り、かつこの測定条件の流量2〜4ml/cm2・分、差圧2.
1 kgf/cm2 の通液を十分満足するものであた。
(Example 2) 100 parts by weight of the same resin as in Example 1 was dissolved in 700 parts by weight of xylene solvent, and 50% thereof was added.
Polytetrafluoroethylene particles with a particle size of 3 μm · KTL
-8 [Product name of Kitamura Co., Ltd.] (300 parts by weight) was added and mixed with stirring to prepare a fine particle-filled polymer solution. The solid content of this solution is 27.2%. Then micropores were formed (pore size 2 [mu] m) porous polyethylene film Buresuron R BRN1050-E50B a stretching method [Nitto Denko Corporation, trade name]
Using a gravure coater, this solution was applied to the surface of the solution in a wet state to a thickness of 15 μm, dried at 100 ° C. for 10 minutes, and the film thickness was measured. The film thickness of the polymer matrix was about 4 μm. Most of the spherical particles were projected from the film surface by about 1 μm. This membrane is set on a test jig, and according to JIS-K3835 (a method for testing the bacteria-trapping performance of microfiltration membrane elements), the trapping performance of a test bacterium, Pseudomonas deminator IFO14213 with a diameter of 0.234 μm, that is, LTV Reduction value) = log 10 [(total number of test bacteria loaded on the membrane) / (total number of test bacteria captured and counted through the membrane)] was calculated and found to be LRV ≧ 10 5 , and this measurement Conditional flow rate 2-4 ml / cm 2 · min, differential pressure 2.
It was sufficient to pass 1 kgf / cm 2 of liquid.

【0017】[0017]

【発明の効果】本発明の微孔性膜は、シリコ−ン粒子、
フッソ樹脂粒子等の一般の高分子マトリックスが接着し
ない微粒子を充填した高分子複合膜で市販のMF膜と同
等の濾過機能を持ち、かつ安価なため、膜分離による排
水処理に使用した場合極めて有用な固液分離膜を提供で
きる。
The microporous membrane of the present invention comprises silicone particles,
It is a polymer composite membrane filled with fine particles that do not adhere to general polymer matrices such as fluorine resin particles. It has the same filtering function as a commercially available MF membrane and is inexpensive, so it is extremely useful when used for wastewater treatment by membrane separation. It is possible to provide a solid-liquid separation membrane.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の微孔性膜単独の一例の縦断面図を示
す。
FIG. 1 shows a longitudinal sectional view of an example of a microporous membrane alone of the present invention.

【図2】 本発明の微孔性膜単独の他の一例の縦断面図
を示す。
FIG. 2 shows a vertical cross-sectional view of another example of the microporous membrane alone of the present invention.

【図3】 膜分離法による排水処理工程の略図を示す。FIG. 3 shows a schematic diagram of a wastewater treatment process by a membrane separation method.

【図4】 本発明の微孔性膜を多孔質支持体上に形成し
た例の縦断面図を示す。
FIG. 4 shows a longitudinal sectional view of an example in which the microporous membrane of the present invention is formed on a porous support.

【図5】 本発明の微孔性膜を多孔質支持体上に形成し
た他の例の縦断面図を示す。
FIG. 5 shows a vertical cross-sectional view of another example in which the microporous membrane of the present invention is formed on a porous support.

【符号の説明】[Explanation of symbols]

1 本発明の微孔性膜、 7 固液分離膜、
2 微粒子、 8 透過水、3
高分子マトリックス、 9 濃縮水、4 多孔
質支持体、 10 循環槽、5 空隙
11 攪拌羽根、6 活性汚泥混
合水、
1 microporous membrane of the present invention, 7 solid-liquid separation membrane,
2 fine particles, 8 permeated water, 3
Polymer matrix, 9 concentrated water, 4 porous support, 10 circulation tank, 5 voids
11 stirring blades, 6 activated sludge mixed water,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子マトリックスと微粒子とからなる
高分子複合膜であって、高分子マトリックスと微粒子間
に、少なくとも流体圧力がかかった状態で、空隙を有す
ることを特徴とする微孔性膜。
1. A microporous membrane comprising a polymer matrix and fine particles, characterized by having voids between the polymer matrix and the fine particles at least under a fluid pressure. .
【請求項2】 高分子マトリックスと微粒子とが互いに
非接着性の物質からなることを特徴とする請求項1記載
の微孔性膜。
2. The microporous membrane according to claim 1, wherein the polymer matrix and the fine particles are made of non-adhesive substances.
【請求項3】 微孔性膜が多孔質支持体上に形成されて
なることを特徴とする請求項1乃至2記載の微孔性膜。
3. The microporous membrane according to claim 1 or 2, wherein the microporous membrane is formed on a porous support.
JP8673894A 1994-04-25 1994-04-25 Microporous membrane Pending JPH07289864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8673894A JPH07289864A (en) 1994-04-25 1994-04-25 Microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8673894A JPH07289864A (en) 1994-04-25 1994-04-25 Microporous membrane

Publications (1)

Publication Number Publication Date
JPH07289864A true JPH07289864A (en) 1995-11-07

Family

ID=13895162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8673894A Pending JPH07289864A (en) 1994-04-25 1994-04-25 Microporous membrane

Country Status (1)

Country Link
JP (1) JPH07289864A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081798A1 (en) * 2006-12-28 2008-07-10 Shin-Etsu Polymer Co., Ltd. Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system
JP2008178862A (en) * 2006-12-28 2008-08-07 Shin Etsu Polymer Co Ltd Selectively permeable material and air conditioning system
WO2008140123A1 (en) * 2007-05-14 2008-11-20 Sumitomo Chemical Company, Limited Process for producing porous film
US8313865B2 (en) 2007-03-23 2012-11-20 Sumitomo Chemical Company, Limited Separator
US8323837B2 (en) 2007-03-23 2012-12-04 Sumitomo Chemical Company, Limited Porous film
JP2015003322A (en) * 2013-06-21 2015-01-08 ポール・コーポレーションPallCorporation Membrane and method for treating fluids including organic phase

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081798A1 (en) * 2006-12-28 2008-07-10 Shin-Etsu Polymer Co., Ltd. Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system
JP2008178862A (en) * 2006-12-28 2008-08-07 Shin Etsu Polymer Co Ltd Selectively permeable material and air conditioning system
US8394181B2 (en) 2006-12-28 2013-03-12 Shin-Etsu Polymer Co., Ltd. Selectively permeable material, method for producing selectively permeable membrane structure, selectively permeable membrane structure, and air conditioning system
US8313865B2 (en) 2007-03-23 2012-11-20 Sumitomo Chemical Company, Limited Separator
US8323837B2 (en) 2007-03-23 2012-12-04 Sumitomo Chemical Company, Limited Porous film
WO2008140123A1 (en) * 2007-05-14 2008-11-20 Sumitomo Chemical Company, Limited Process for producing porous film
JP2015003322A (en) * 2013-06-21 2015-01-08 ポール・コーポレーションPallCorporation Membrane and method for treating fluids including organic phase

Similar Documents

Publication Publication Date Title
Ladewig et al. Fundamentals of membrane bioreactors
CA2432046C (en) Separation membrane, separation membrane element, separation membrane module, sewage treatment apparatus, and method for making the separation membrane
US6808628B2 (en) Membrane bioreactor using non-woven fabric filtration
WO2003106545A1 (en) Porous membrane and method of manufacturing the porous membrane
TW200906477A (en) Flat film element for filtration and flat film filtrating modules
JP2000157846A (en) Hollow fiber membrane cartridge
JPS6322842B2 (en)
EP3023138A1 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
JP2005111326A (en) Liquid separation membrane and its use
JP2961629B2 (en) Manufacturing method of microfiltration membrane
FR2775911A1 (en) Sludge separation by filtration from biologically treated effluent
JP2015157278A (en) Hollow fiber membrane for ultrafiltration
JPH07289864A (en) Microporous membrane
WO1992017408A1 (en) Process for treating waste washing water used for impregnation
CN107715697A (en) A kind of hollow fiber film assembly being used in membrane chemical reactor
Ciobanu et al. Use of SAPO-5 zeolite–filled polyurethane membranes in wastewater treatment
JP2015110212A (en) Hollow fiber membrane for microfiltration
CN207546240U (en) A kind of hollow fiber film assembly in membrane chemical reactor
KR20180114820A (en) Antifouling Hollow fiber membrane module, Method for preparing the same and Uses thereof
CN210410244U (en) Aminated graphene oxide and graphite-phase carbon nitride composite modified film
JPH08332483A (en) Treatment of waste water
JP2000070685A (en) Metbod for washing solid-liquid separation membrane
JP3151817B2 (en) Composite porous membrane
JP2001252538A (en) Reverse osmosis composite membrane
JP2002320828A (en) Filter membrane system solid-liquid separator and waste water treatment equipment with the same