JPH07282823A - Manufacture of cell of cylindrical fuel cell - Google Patents

Manufacture of cell of cylindrical fuel cell

Info

Publication number
JPH07282823A
JPH07282823A JP6073025A JP7302594A JPH07282823A JP H07282823 A JPH07282823 A JP H07282823A JP 6073025 A JP6073025 A JP 6073025A JP 7302594 A JP7302594 A JP 7302594A JP H07282823 A JPH07282823 A JP H07282823A
Authority
JP
Japan
Prior art keywords
cylindrical
sheet
solid electrolyte
molded body
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6073025A
Other languages
Japanese (ja)
Inventor
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6073025A priority Critical patent/JPH07282823A/en
Publication of JPH07282823A publication Critical patent/JPH07282823A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To decrease the number of production processes to increase productivity by producing a cylindrical base molding, sheet-shaped moldings for an air electrode and a solid electrolyte, and a cylindrical stack in order, and baking them. CONSTITUTION:A sheet-shaped molding 12 for an air electrode and a sheet- shaped molding 13 for a solid electrolyte are wound around the surface of a cylindrical base molding 11 in order for stacking. The cylindrical molding 11 and a stack obtained by stacking the moldings 12, 13 on the molding 11 are baked together. Slurry made of powder for forming an interconnector 5 and a fuel electrode 4 is applied to the surface of the solid electrolyte, which is a cylindrical sinter of the cylindrical base, an air electrode, 2, and a solid electrolyte 3, in a screen printing process. A sheet-shaped molding 14 for a fuel electrode is stuck on the surface of the molding 13, or a sheet-shaped molding 15 for an interconnector is stuck on the surface of the molding 12. The cylindrical stack obtained is baked to simultaneously sinter each part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円筒型の燃料電池セル
を製造する方法の改良に関係する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for manufacturing a cylindrical fuel cell.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池セルは、
その作動温度が900〜1050℃と高温であるため、
発電効率が高く、第3世代の発電システムとして期待さ
れている。
2. Description of the Related Art Conventionally, solid oxide fuel cell units have been
Since its operating temperature is as high as 900 to 1050 ° C,
It has high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に、燃料電池には円筒型と平板型の2
種類が知られている。平板型燃料電池セルは、発電の単
位体積当り出力密度が高いという特長を有するが、実用
化に際してはガスシ−ル不完全性やセル内の温度分布の
不均一性などの問題がある。
Generally, there are two types of fuel cells, a cylindrical type and a flat type.
The type is known. The flat plate type fuel cell has a feature that the power density per unit volume of power generation is high, but when it is put into practical use, there are problems such as incomplete gas seal and uneven temperature distribution in the cell.

【0004】それに対して、円筒型燃料電池セルでは、
出力密度は低いものの、セルの機械的強度が高く、また
セル内の温度の均一性が保てるという特長がある。両形
状の固体電解質燃料電池セルとも、それぞれの特長を生
かして積極的に研究開発が進められている。
On the other hand, in the cylindrical fuel cell,
Although the power density is low, it has the advantages that the mechanical strength of the cell is high and that the temperature uniformity inside the cell can be maintained. Both types of solid electrolyte fuel cells are being actively researched and developed by taking advantage of their respective characteristics.

【0005】円筒型燃料電池の単セルは、図1に示すよ
うにCaO安定化ZrO2 からなる絶縁性の多孔質セラ
ミックからなる円筒状基体1の外周にLaMnO3 系材
料からなる多孔性の空気極2が形成され、この表面に、
例えばY2 3 含有の安定化ZrO2 固体電解質3が形
成され、さらに多孔性のNi−ジルコニア(Y2 3
有)などからなる燃料極4が略同心円状に形成される。
また、セル間を接続するためのLaCrO3 系材料など
からなるインターコネクタ5が空気極2と接続し、固体
電解質3を貫通し、燃料極4とは非接触の状態でセルの
表面に露出している。燃料電池のモジュ−ルは、上記構
成からなる複数の単セルがインターコネクタ5を介して
接続され、発電は、空気極側に空気(酸素)を、燃料極
側に燃料(水素)を流し900〜1050℃の温度で行
われる。
As shown in FIG. 1, a unit cell of a cylindrical fuel cell is constructed by laminating a LaMnO 3 -based material on the outer circumference of a cylindrical substrate 1 made of an insulating porous ceramic made of CaO-stabilized ZrO 2. Pole 2 is formed, and on this surface,
For example, the stabilized ZrO 2 solid electrolyte 3 containing Y 2 O 3 is formed, and the fuel electrode 4 made of porous Ni-zirconia (containing Y 2 O 3 ) is formed in a substantially concentric shape.
Further, an interconnector 5 made of a LaCrO 3 system material or the like for connecting the cells is connected to the air electrode 2, penetrates the solid electrolyte 3, and is exposed on the surface of the cell without being in contact with the fuel electrode 4. ing. In the fuel cell module, a plurality of single cells having the above-mentioned configuration are connected through an interconnector 5, and power generation is performed by flowing air (oxygen) to the air electrode side and flowing fuel (hydrogen) to the fuel electrode side. It is carried out at a temperature of 1050 ° C.

【0006】このような円筒状燃料電池セルは、例え
ば、絶縁性粉末を押出成形などの方法により円筒状に成
形後、焼成することにより多孔質セラミックスからなる
円筒状基体を作製した後、その基体の内周面や外周面に
スラリーコートを繰り返して空気極、固体電解質あるい
は燃料極を形成して焼成する方法、または前記円筒状基
体の表面に、電気化学的蒸着法(EVD法)やプラズマ
溶射法などにより空気極、固体電解質、燃料極を順次形
成する方法などが知られている。
Such a cylindrical fuel battery cell is manufactured, for example, by forming an insulating powder into a cylindrical shape by a method such as extrusion and then firing it to form a cylindrical base body made of porous ceramics. Of the air electrode, the solid electrolyte or the fuel electrode by repeating the slurry coating on the inner and outer peripheral surfaces of the electrode, and by performing the electrochemical deposition method (EVD method) or plasma spraying on the surface of the cylindrical substrate. A method of sequentially forming an air electrode, a solid electrolyte, and a fuel electrode by a method or the like is known.

【0007】[0007]

【発明が解決しようとする問題点】しかしながら、上記
従来の製造方法によれば、各層の形成数が多く、且つ工
程自体が複雑であるために製造に多大な時間を要し、ま
た多種多様の製造設備が必要となるなどの問題があり製
造コストも高く、量産化が難しいという問題があった。
However, according to the above-mentioned conventional manufacturing method, the number of layers to be formed is large and the process itself is complicated, so that it takes a lot of time to manufacture and various kinds of manufacturing methods are required. There are problems such as the need for manufacturing equipment, high manufacturing costs, and difficulty in mass production.

【0008】[0008]

【問題点を解決するための手段】本発明者は上記問題点
に対して検討を重ねた結果、電気絶縁性の円筒状基体用
成形体の表面に少なくとも空気極および固体電解質を形
成するシート状成形体を積層した積層物を作製し、この
積層物を同時に焼成することにより非常に簡単なプロセ
スで、且つ少ない工程数で円筒型燃料電池セルが作製で
きることを見いだし、本発明に至った。
As a result of repeated studies on the above-mentioned problems, the present inventor has found that at least an air electrode and a solid electrolyte are formed on the surface of a molded body for an electrically insulating cylindrical substrate. It was found that a cylindrical fuel battery cell can be produced by a very simple process and a small number of steps by producing a laminate in which molded bodies are laminated and firing the laminate at the same time, leading to the present invention.

【0009】即ち、本発明の円筒型燃料電池セルの製造
方法は、電気絶縁性円筒状基体の表面に、少なくとも空
気極および固体電解質を具備してなる円筒型燃料電池セ
ルを製造する方法であって、電気絶縁性の粉末により円
筒状基体用成形体を作製する工程と、空気極形成用粉末
および固体電解質形成用粉末によりそれぞれシート状成
形体を作製する工程と、前記円筒状基体用成形体の表面
に前記空気極および固体電解質のシート状成形体を巻き
付けて積層して円筒型積層物を作製する工程と、該円筒
型積層物を同時に焼成する工程とを具備することを特徴
とするものであり、また、他の方法として、電気絶縁体
粉末、空気極形成用粉末および固体電解質形成用粉末に
よりそれぞれシート状成形体を作製する工程と、作製し
たシート状成形体を円筒状基体、空気極および固体電解
質の順で積層した後に、該積層物を円筒型材などを用い
て円筒型積層物を作製する工程と、該円筒型積層物を同
時に焼成する工程とを具備することを特徴とするもので
ある。
That is, the method for producing a cylindrical fuel cell according to the present invention is a method for producing a cylindrical fuel cell having at least an air electrode and a solid electrolyte on the surface of an electrically insulating cylindrical substrate. And a step of producing a molded body for a cylindrical substrate with electrically insulating powder, a step of producing a sheet-shaped molded body with the powder for forming an air electrode and the powder for forming a solid electrolyte, and the molded body for a cylindrical substrate. And a step of wrapping the air electrode and the solid electrolyte sheet-shaped compact on the surface of the laminate to produce a cylindrical laminate, and firing the cylindrical laminate at the same time. In addition, as another method, a step of producing a sheet-shaped compact from an electric insulator powder, a powder for forming an air electrode and a powder for forming a solid electrolyte, and the produced sheet-shaped compact After laminating a cylindrical substrate, an air electrode, and a solid electrolyte in this order, a step of producing a cylindrical laminate using the cylindrical material or the like and a step of simultaneously firing the cylindrical laminate are provided. It is characterized by that.

【0010】以下、本発明を詳述する。本発明の第1の
方法によれば、まず円筒状基体を形成する粉末を用いて
円筒状基体用成形体(以下、円筒状成形体という場合も
ある。)を作製する。この円筒状成形体は、例えば、円
筒状基体形成用の絶縁性セラミック粉末を押出成形や、
静水圧成形(ラバープレス)などにより円筒状に成形す
る。さらに他の方法としては、ドクターブレード法など
により円筒状基体形成用粉末をシート状に成形した後、
そのシート状成形体を所定の円柱状支持体の表面に巻き
付けて端部を合わせ接合することによっても円筒状成形
体を作製することができる。この円筒状成形体の肉厚は
1〜3mmが適当である。
The present invention will be described in detail below. According to the first method of the present invention, first, a powder for forming a cylindrical substrate is used to produce a molded body for a cylindrical substrate (hereinafter, also referred to as a cylindrical molded body). This cylindrical molded body is, for example, by extrusion molding an insulating ceramic powder for forming a cylindrical substrate,
It is molded into a cylindrical shape by hydrostatic molding (rubber press). As still another method, after molding the cylindrical substrate-forming powder into a sheet by a doctor blade method or the like,
A cylindrical molded body can also be produced by winding the sheet-shaped molded body around the surface of a predetermined columnar support and joining the ends together. The wall thickness of this cylindrical molded body is suitably 1 to 3 mm.

【0011】この円筒状基体を形成する絶縁性セラミッ
ク粉末としてはZrO2 にCaOを10〜20モル%ま
たはY2 3 を5〜20モル%添加した材料の他、室温
から1000℃までの熱膨張係数が9〜11×10-6
℃で、空気極材料や固体電解質材料とほぼ同様な温度で
焼成可能なセラミック材料であれば、特に制限されるも
のでない。
As the insulating ceramic powder forming the cylindrical substrate, ZrO 2 containing 10 to 20 mol% of CaO or 5 to 20 mol% of Y 2 O 3 as well as heat from room temperature to 1000 ° C. Expansion coefficient is 9-11 × 10 -6 /
There is no particular limitation as long as it is a ceramic material that can be fired at a temperature of approximately the same temperature as the air electrode material or the solid electrolyte material.

【0012】次に、空気極を形成するシ−ト状成形体お
よび固体電解質を形成するシート状成形体を作製する。
これらのシート状成形体は、押出成形、静水圧成形(ラ
バープレス)、ドクターブレード法により作製される。
Next, a sheet-shaped molded body forming the air electrode and a sheet-shaped molded body forming the solid electrolyte are prepared.
These sheet-shaped molded products are produced by extrusion molding, hydrostatic molding (rubber press), and doctor blade method.

【0013】この空気極形成用粉末はLaMnO3 系組
成物からなり、具体的には、Laの15〜40%をC
a、Sr、Baなどのアルカリ土類元素やYおよび希土
類元素などにより置換した公知のLaMnO3 系組成物
などが使用可能できる。この場合、成形前の粉末は、前
記金属酸化物を所定の割合で混合したものを仮焼してな
るLaMnO3 系化合物粉末であることが望ましい。ま
た、固体電解質形成用粉末としては、Y2 3 、Yb2
3 などの安定化材を5〜20モル%の割合で固溶させ
た安定化ZrO2 粉末、あるいはZrの一部をCeで置
換したZrO2 粉末が用いられる。
The powder for forming the air electrode is composed of a LaMnO 3 type composition, and concretely, 15 to 40% of La is C.
It is possible to use a known LaMnO 3 -based composition substituted with an alkaline earth element such as a, Sr, or Ba or Y or a rare earth element. In this case, the powder before molding is preferably LaMnO 3 based compound powder obtained by calcining a mixture of the metal oxides in a predetermined ratio. Further, as the solid electrolyte forming powder, Y 2 O 3 , Yb 2
O stabilized material was dissolved in a proportion of 5 to 20 mol% stabilized ZrO 2 powder, such as 3 ZrO 2 powder or the part of Zr was replaced with Ce, it is used.

【0014】空気極用シート状成形体の厚みは50〜3
000μm、固体電解質用シート状成形体の厚みは10
〜300μmが適当である。また、肉厚の空気極を形成
する場合には100〜300μmのシート状成形体を複
数重ねてもよい。
The thickness of the sheet-like molded product for the air electrode is 50 to 3
000 μm, the thickness of the sheet-shaped molded body for solid electrolyte is 10
˜300 μm is suitable. Further, when forming a thick air electrode, a plurality of sheet-shaped compacts of 100 to 300 μm may be stacked.

【0015】次に、積層物の具体的な作製方法について
述べる。図2に示すように円筒状基体となる円筒状成形
体11の表面に、空気極用シート状成形体12、固体電
解質用シート状成形体13を順次巻き付けて積層圧着す
る。積層圧着は、円筒状成形体11とシート状成形体1
2との間およびシ−ト成形体12と13の間に所望によ
り水やセルロース、ポリビニルアルコール、アクリル樹
脂の溶液や有機溶媒などを接着材して介在させて接着
し、ローラ等で機械的に圧着させることが望ましい。
Next, a specific method for producing the laminate will be described. As shown in FIG. 2, an air electrode sheet-shaped molded body 12 and a solid electrolyte sheet-shaped molded body 13 are sequentially wound around the surface of a cylindrical molded body 11 serving as a cylindrical substrate and laminated and pressure-bonded. The laminated pressure bonding is performed by the cylindrical molded body 11 and the sheet-shaped molded body 1.
If desired, water, cellulose, polyvinyl alcohol, a solution of an acrylic resin, an organic solvent, or the like may be interposed between the sheet and the sheet molded bodies 12 and 13 with an adhesive to bond them mechanically with a roller or the like. It is desirable to crimp.

【0016】そして、上記のようにして得られた円筒状
成形体11とこれに積層されたシート状成形体12、1
3との積層物を同時に焼成する。具体的には大気中で1
300〜1600℃で3〜15時間程度焼成し固体電解
質が相対密度96%以上の緻密質になるように焼成す
る。なお、円筒状基体、空気極は相対密度が60〜75
%程度であれば充分である。
The cylindrical molded body 11 obtained as described above and the sheet-shaped molded bodies 12 and 1 laminated on the cylindrical molded body 11.
The laminate with 3 is fired at the same time. Specifically, 1 in the atmosphere
The solid electrolyte is baked at 300 to 1600 ° C. for about 3 to 15 hours so that the solid electrolyte has a relative density of 96% or more. The relative density of the cylindrical substrate and the air electrode is 60 to 75.
% Is sufficient.

【0017】燃料電池セルを作製する場合、上記のよう
にして得られた円筒状基体と空気極と固体電解質との円
筒型の一体焼結物の固体電解質の表面にインターコネク
タや燃料極を形成する粉末からなるスラリーをスクリー
ン印刷などにより塗布するか、あるいはそれらの形成用
粉末によりドクターブレード法などによりシート状成形
体を作製してこれを円筒型の一体焼結体の固体電解質の
表面に積層圧着した後、酸化性雰囲気中で1200〜1
400℃で2〜5時間焼成して燃料極を形成することに
より形成することができる。
When producing a fuel cell, an interconnector and a fuel electrode are formed on the surface of the solid electrolyte of the cylindrical integrally sintered product of the cylindrical substrate, the air electrode and the solid electrolyte obtained as described above. The slurry consisting of the powder to be applied is applied by screen printing or the like, or a sheet-shaped molded body is prepared by the doctor blade method using the powder for forming them and laminated on the surface of the solid electrolyte of the cylindrical integrally sintered body. After crimping, 1200 to 1 in oxidizing atmosphere
It can be formed by firing at 400 ° C. for 2 to 5 hours to form a fuel electrode.

【0018】その他、円筒状基体、空気極、固体電解質
に加え、燃料極やインターコネクタを同時に焼成するこ
ともできる。その場合には、燃料極を形成するシート状
成形体またはインターコネクタを形成するシ−ト状成形
体を空気極用シート状成形体を作製するのと同様な方法
により作製する。その時に燃料極用シート状成形体を形
成するための粉末としては、Y2 3 を含有するZrO
2 粉末とNi粉末あるいはNiO粉末との混合物が好適
である。一方、インターコネクタ用シート状成形体を形
成する粉末としては、公知のLaCrO3 系組成物が用
いられる他、特願平5−271884号、特願平6−2
7806号にて提案されるようなペロブスカイト型組成
に対して過剰に周期律表第2a族や第3a族元素を含有
するLaCrO3 系組成物も用いることができる。
In addition to the cylindrical substrate, the air electrode and the solid electrolyte, the fuel electrode and the interconnector can be simultaneously fired. In that case, a sheet-shaped molded body forming a fuel electrode or a sheet-shaped molded body forming an interconnector is manufactured by the same method as that for manufacturing a sheet-shaped molded body for an air electrode. At that time, ZrO containing Y 2 O 3 was used as the powder for forming the sheet-like molded body for fuel electrode.
A mixture of 2 powders with Ni powder or NiO powder is preferred. On the other hand, as a powder for forming a sheet-shaped molded body for an interconnector, a known LaCrO 3 based composition is used, as well as Japanese Patent Application Nos. 5-271884 and 6-2.
It is also possible to use a LaCrO 3 based composition containing elements of Group 2a and Group 3a of the periodic table in excess of the perovskite type composition as proposed in Japanese Patent No. 7806.

【0019】そして、燃料極用シート状成形体14を図
2に示すように固体電解質用シート状成形体13の表面
に、あるいはインターコネクタ用シート状成形体15を
図2に示すように空気極用シート状成形体12の表面に
接着する。接着方法としては、あらかじめシート状成形
体12または13の表面の所定箇所に燃料極用シート状
成形体14あるいはインターコネクタ用シート状成形体
15を接着した後、それを円筒状成形体11に巻き付け
るか、あるいは固体電解質用シート状成形体13や空気
極用シート状成形体12を巻き付けた後接着することも
可能である。
Then, the sheet-shaped molded body 14 for the fuel electrode is formed on the surface of the sheet-shaped molded body 13 for the solid electrolyte as shown in FIG. 2, or the sheet-shaped molded body 15 for the interconnector is formed as the air electrode as shown in FIG. It is adhered to the surface of the sheet-like molded body 12. As the bonding method, the fuel electrode sheet-shaped molded body 14 or the interconnector sheet-shaped molded body 15 is bonded to a predetermined position on the surface of the sheet-shaped molded body 12 or 13 in advance, and then it is wound around the cylindrical molded body 11. Alternatively, the solid electrolyte sheet-shaped molded body 13 or the air electrode sheet-shaped molded body 12 may be wound and adhered.

【0020】そして、上記のようにして作製した円筒型
積層物を1300〜1500℃の酸化性雰囲気中で焼成
することにより、円筒状基体、空気極、固体電解質、燃
料極および/またはインターコネクタを同時に焼結させ
ることができる。この場合、燃料極の相対密度が80〜
100%、インターコネクタは相対密度96%以上にな
るように制御することが必要である。
Then, the cylindrical laminate produced as described above is fired in an oxidizing atmosphere at 1300 to 1500 ° C. to obtain a cylindrical substrate, an air electrode, a solid electrolyte, a fuel electrode and / or an interconnector. It can be sintered at the same time. In this case, the relative density of the fuel electrode is 80-
It is necessary to control 100% and the interconnector to have a relative density of 96% or more.

【0021】なお、インターコネクタ用シート状成形体
の接着位置としては、図2に示したように、円筒体の長
手方向に接着するのが一般的であるが、他の形態として
図3に示すような場合もある。即ち、図3から明らかな
ように、円筒状基体となる円筒状成形体11表面に、空
気極用シート状成形体12と固体電解質用シート状成形
体13を接着し、場合によってはさらにその上に燃料極
形成用シート状成形体14を設置し単セルと成るべき要
素を円筒状成形体11に一定の間隔をおいて形成する。
そして、円筒体のその単セル間で空気極用シ−ト状成形
体の端面と燃料極の端面とをインターコネクタ用シート
状成形体15で接合する。この場合、単一のセル内で空
気極と燃料極が接触しないようにすることが必要であ
り、例えば図3に示すように空気極用シート状成形体1
2の一端面を固体電解質用シート状成形体により完全に
覆うように配置すればよい。
As a bonding position of the sheet-shaped molded body for interconnector, as shown in FIG. 2, it is generally bonded in the longitudinal direction of the cylindrical body, but as another form, it is shown in FIG. There are cases like this. That is, as is apparent from FIG. 3, the air electrode sheet shaped body 12 and the solid electrolyte sheet shaped body 13 are adhered to the surface of the cylindrical shaped body 11 serving as a cylindrical substrate, and in some cases, further thereon. The sheet-shaped molded body 14 for forming the fuel electrode is installed in the above, and the elements to be a single cell are formed in the cylindrical molded body 11 at regular intervals.
Then, between the unit cells of the cylindrical body, the end surface of the sheet-like molded body for the air electrode and the end surface of the fuel electrode are joined by the sheet-shaped molded body for interconnector 15. In this case, it is necessary to prevent the air electrode and the fuel electrode from coming into contact with each other in a single cell. For example, as shown in FIG.
The one end surface of 2 may be arranged so as to be completely covered with the sheet-shaped molded body for solid electrolyte.

【0022】次に、本発明の製造方法における第2の方
法について説明する。この方法によれば、まず、絶縁性
の円筒状基体を形成する粉末、固体電解質形成用粉末、
空気極形成用粉末により周知の押出法、ドクターブレー
ド法などによりそれぞれシート状成形体を作製する。そ
の後、そのシート状成形体を所定の位置関係になるよう
に円筒状基体、空気極、固体電解質の順で積層圧着して
積層物を得る。この時の積層圧着は、前述したように所
定の接着剤などを用いるのがよい。
Next, the second method in the manufacturing method of the present invention will be described. According to this method, first, a powder for forming an insulating cylindrical substrate, a solid electrolyte forming powder,
Sheet-shaped compacts are produced by the well-known extrusion method, doctor blade method, etc., using the powder for forming the air electrode. Then, the sheet-shaped molded body is laminated and pressure-bonded in order of a cylindrical substrate, an air electrode, and a solid electrolyte so as to have a predetermined positional relationship, to obtain a laminate. At this time, it is preferable to use a predetermined adhesive or the like for the lamination pressure bonding as described above.

【0023】そして、このようにして得られた積層物に
より円筒型積層物を作製する。具体的には図4に示すよ
うに任意の円筒状支持体16を成形用治具として用い、
この表面に円筒状基体用シート状成形体17、空気極用
シート状成形体18と固体電解質用シート状成形体19
との積層物を、円筒状基体用シート状成形体17、空気
極用シート状成形体18、固体電解質用シ−ト状成形体
19のそれぞれの端部同士が当接するか、あるいは端部
がわずかに重ね合うように巻き付け固定し円筒型積層物
を作製する。その後、上記円筒型積層物から円筒状支持
体16を抜き取り、円筒型積層物を得る。
Then, a cylindrical laminate is prepared from the laminate thus obtained. Specifically, as shown in FIG. 4, an arbitrary cylindrical support 16 is used as a molding jig,
On this surface, a sheet-shaped compact 17 for a cylindrical substrate, a sheet-shaped compact 18 for an air electrode, and a sheet-shaped compact 19 for a solid electrolyte are formed.
Of the sheet-like molded body 17 for a cylindrical substrate, the sheet-shaped molded body 18 for an air electrode, and the sheet-shaped molded body 19 for a solid electrolyte contact each other, or the end portions It is wound and fixed so as to slightly overlap with each other to prepare a cylindrical laminate. Then, the cylindrical support 16 is extracted from the cylindrical laminate to obtain a cylindrical laminate.

【0024】上記のようにして得られた円筒型積層物を
前述と同様な条件、即ち、大気などの酸化性雰囲気中で
1300〜1600℃で3〜15時間程度焼成すること
により円筒状基体、空気極および固体電解質とを同時焼
成によって形成することができる。
The cylindrical laminate obtained as described above is fired at 1300 to 1600 ° C. for about 3 to 15 hours under the same conditions as described above, that is, in an oxidizing atmosphere such as the air, to obtain a cylindrical substrate, The air electrode and the solid electrolyte can be formed by co-firing.

【0025】さらに、上記第2の方法においても、上記
空気極および固体電解質に加え、燃料極および/または
インターコネクタを同時に焼成することができる。その
場合には、図4に示すように、燃料極形成用粉末あるい
はインターコネクタ形成用粉末を用いて押出成形やドク
ターブレード法により燃料極用シート状成形体20、イ
ンターコネクタ用シート状成形体21を作製した後、そ
れをシート状の円筒状基体、空気極、固体電解質の各成
形体とともに所定の箇所に積層して積層物を得る。そし
てその積層物を用いて前述したようにして円筒型積層物
を作製した後、大気などの酸化性雰囲気中で1300〜
1600℃で3〜15時間程度焼成することにより円筒
状基体、空気極、固体電解質、燃料極および/またはイ
ンターコネクタを同時に焼成し形成することができる。
Furthermore, also in the second method, the fuel electrode and / or the interconnector can be simultaneously fired in addition to the air electrode and the solid electrolyte. In that case, as shown in FIG. 4, a fuel electrode sheet-shaped compact 20 and an interconnector sheet-shaped compact 21 are formed by extrusion molding or a doctor blade method using the fuel electrode-forming powder or the interconnector-forming powder. After the above is prepared, it is laminated together with each of the sheet-shaped cylindrical substrate, the air electrode, and the solid electrolyte molded body at a predetermined position to obtain a laminate. Then, after using the laminate to produce a cylindrical laminate as described above, 1300 to 1300 are formed in an oxidizing atmosphere such as air.
By firing at 1600 ° C. for about 3 to 15 hours, the cylindrical substrate, the air electrode, the solid electrolyte, the fuel electrode and / or the interconnector can be fired and formed at the same time.

【0026】また、第2の方法は、図3で説明したよう
な構造からなる燃料電池の製造に対してももちろん適用
することは可能である。
The second method can also be applied to the manufacture of the fuel cell having the structure described with reference to FIG.

【0027】なお、これまで述べてきた燃料電池セル
は、円筒状基体外周に空気極、固体電解質および燃料極
が順次積層された単セルからなるものであるが、本発明
の製造方法は、図1乃至図3に示されるような基本的な
構造に対して、円筒状基体外周に燃料極、固体電解質お
よび空気極を順次積層した構造からなる燃料電池セルに
対しても適用できる。この場合、インターコネクタは燃
料極と固体電解質に接するが、空気極には接しないよう
に設置される。
The fuel cell described so far is a single cell in which an air electrode, a solid electrolyte and a fuel electrode are sequentially laminated on the outer circumference of a cylindrical substrate. In addition to the basic structure shown in FIGS. 1 to 3, the present invention can be applied to a fuel cell having a structure in which a fuel electrode, a solid electrolyte and an air electrode are sequentially laminated on the outer circumference of a cylindrical substrate. In this case, the interconnector is installed so as to contact the fuel electrode and the solid electrolyte but not the air electrode.

【0028】本発明によれば、上記の方法において焼成
工程を極力削減することがよく、特に円筒状基体、空気
極、固体電解質、燃料極およびインターコネクタを同時
に焼成するのが、製造工程を大幅に削減できることから
特に望ましい。
According to the present invention, it is preferable to reduce the firing step in the above method as much as possible. In particular, firing the cylindrical substrate, the air electrode, the solid electrolyte, the fuel electrode and the interconnector at the same time greatly reduces the manufacturing process. It is especially desirable because it can be reduced to

【0029】[0029]

【作用】本発明によれば、空気極を押出成形法などによ
る円筒状成形体、あるいはドクターブレード法などによ
りシート状成形体となし、また固体電解質をドクターブ
レード法などによりシート状成形体となし、これらを電
気絶縁性の円筒状基体用成形体とともに積層して円筒状
の積層成形体を作製して、これを同時焼成することによ
り、各層を個別に焼成する必要がなく、燃料電池セルの
製造工程を大幅に削減することができる。しかも、かか
る方法によれば、ドクターブレード法や押し出し成形法
などの周知の方法により、格別に複雑な成形装置などを
使用することなく容易に作製することができる。また、
かかる発明に基づき、燃料極やインターコネクタをも同
時に焼成することができる。
According to the present invention, the air electrode is formed into a cylindrical molded body by an extrusion molding method or the like, or a sheet-shaped molded body by a doctor blade method, or the solid electrolyte is formed into a sheet-shaped molded body by a doctor blade method or the like. By laminating these together with the electrically insulating cylindrical substrate molded body to produce a cylindrical laminated molded body, and co-firing this, it is not necessary to separately calcine each layer, and thus the fuel cell The manufacturing process can be significantly reduced. Moreover, according to such a method, it can be easily manufactured by a known method such as a doctor blade method or an extrusion molding method without using a particularly complicated molding apparatus. Also,
Based on this invention, the fuel electrode and the interconnector can be simultaneously fired.

【0030】従って、燃料電池セルの製造における工程
数を格段に削減することができるとともに量産性を高め
ることができることから、燃料電池の製造コストを大幅
に低減することができ、製品のローコスト化を図ること
ができる。
Therefore, the number of steps in the production of the fuel cell can be significantly reduced and the mass productivity can be improved, so that the production cost of the fuel cell can be significantly reduced and the production cost can be reduced. Can be planned.

【0031】[0031]

【実施例】【Example】

実施例1 円筒状基体を形成する粉末として市販の15モル%Ca
Oを添加したCaO安定化ZrO2 粉末を準備した。空
気極を形成する粉末としてはLa2 3 、MnO2 、C
aCO3 の粉末をLa0.8 Ca0.2 MnO3 となるよう
に秤量混合した後に1500℃で3時間仮焼し粉砕して
固溶体粉末を得た。また、固体電解質を形成する粉末と
してY2 3 を10モル%の割合で含有する市販の共沈
法により作製したY2 3 安定化ZrO2 粉末を準備し
た。さらに、燃料極を形成する粉末としてNiO粉末と
ZrO2 (10モル%Y2 3 含有)粉末を重量比で7
0:30の割合で混合したものを、またインターコネク
タを形成する粉末としてLa0.80Ca0.21CrO3 から
なる化合物粉末を準備した。
Example 1 Commercially available 15 mol% Ca as a powder forming a cylindrical substrate
A CaO-stabilized ZrO 2 powder containing O was prepared. The powder forming the air electrode is La 2 O 3 , MnO 2 , C
The aCO 3 powder was weighed and mixed so as to be La 0.8 Ca 0.2 MnO 3 and then calcined at 1500 ° C. for 3 hours and ground to obtain a solid solution powder. In addition, a Y 2 O 3 -stabilized ZrO 2 powder prepared by a commercial coprecipitation method containing Y 2 O 3 at a ratio of 10 mol% was prepared as a powder forming a solid electrolyte. Further, NiO powder and ZrO 2 (containing 10 mol% Y 2 O 3 ) powder as a powder for forming the fuel electrode were mixed in a weight ratio of 7
A mixture of 0:30 was prepared, and a compound powder of La 0.80 Ca 0.21 CrO 3 was prepared as a powder for forming an interconnector.

【0032】まず、上記CaO安定化ZrO2 粉末にバ
インダ−を添加し押出成形法により外径18mm、内径
13mmの円筒状基体用成形体を得た。次に、上記La
0.8Ca0.2 MnO3 粉末にバインダ−を添加し、押出
成形法により厚み2mmの空気極用シート状成形体を作
製した。また、Y2 3 安定化ZrO2 粉末、NiO−
ZrO2 (Y2 3 含有)混合粉末およびLa0.80Ca
0.21CrO3 粉末をそれぞれ水を溶媒としてスラリーを
作製し、ドクタ−ブレ−ド法によりそれぞれ厚み200
μmの固体電解質用シート状成形体と、厚み50μmの
NiO/ZrO2 およびLa0.80Ca0.21CrO3 のシ
−トをそれぞれ作製した。
First, a binder was added to the above CaO-stabilized ZrO 2 powder, and a molded body for a cylindrical substrate having an outer diameter of 18 mm and an inner diameter of 13 mm was obtained by an extrusion molding method. Next, the above La
A binder was added to 0.8 Ca 0.2 MnO 3 powder, and a sheet-shaped molded product for air electrode having a thickness of 2 mm was produced by an extrusion molding method. In addition, Y 2 O 3 stabilized ZrO 2 powder, NiO-
ZrO 2 (containing Y 2 O 3 ) mixed powder and La 0.80 Ca
A slurry of 0.21 CrO 3 powder was prepared using water as a solvent, and the slurry was made to a thickness of 200 by the doctor blade method.
A sheet-shaped compact for a solid electrolyte having a thickness of 50 μm and a sheet of NiO / ZrO 2 and La 0.80 Ca 0.21 CrO 3 having a thickness of 50 μm were prepared.

【0033】その後、CaO安定化ZrO2 円筒状成形
体表面にアクリル樹脂からなる接着剤を介在させなが
ら、空気極用シート状成形体、固体電解質用シート状成
形体、燃料極用シート状成形体、インターコネクタ用シ
ート状成形体を図2のようにして接着させ円筒型積層物
に作製した。そして、その円筒型積層物を1500℃で
5時間で焼成を行った。
Then, a sheet-shaped molded body for air electrode, a sheet-shaped molded body for solid electrolyte, a sheet-shaped molded body for fuel electrode, with an adhesive made of an acrylic resin interposed on the surface of the CaO-stabilized ZrO 2 cylindrical molded body. The sheet-shaped molded product for interconnector was adhered as shown in FIG. 2 to prepare a cylindrical laminate. Then, the cylindrical laminate was fired at 1500 ° C. for 5 hours.

【0034】その結果、相対密度が68%の円筒状基体
と、相対密度70%の空気極と、相対密度が99%の固
体電解質、相対密度が95%の燃料極、相対密度が98
%のインターコネクタを有する燃料電池セルを作製する
ことができた。
As a result, a cylindrical substrate having a relative density of 68%, an air electrode having a relative density of 70%, a solid electrolyte having a relative density of 99%, a fuel electrode having a relative density of 95%, and a relative density of 98.
A fuel cell having an interconnector of 10% could be produced.

【0035】この様にして得られた燃料電池セルの内側
に酸素ガスを外側に水素ガスを流し1000℃で発電試
験を行った結果、0.31W/cm2 の出力密度を得
た。
As a result of conducting a power generation test at 1000 ° C. by flowing oxygen gas inside and hydrogen gas outside, the power density of 0.31 W / cm 2 was obtained.

【0036】実施例2 実施例1のCaO安定化ZrO2 粉末にバインダーを添
加し、押出成形法により厚み3mmの円筒状基体用シー
ト状成形体を作製した。図3に示すように円筒状基体用
シート状成形体上に実施例1で作製した空気極用シート
状成形体、固体電解質用シート状成形体を接着し、さら
に空気極と接するようにインターコネクタ用シート状成
形体を、また固体電解質用シ−ト状成形体に接するよう
に燃料極用シ−ト状成形体を接着して積層物を作製し
た。これを成形用治具としてステンレス円筒管に巻き付
け円筒状基体と空気極とのシ−ト状成形体の両端面が接
するようにそれぞれ接着し円筒型積層物を作製した。
Example 2 A binder was added to the CaO-stabilized ZrO 2 powder of Example 1 and a sheet-shaped molded body for a cylindrical substrate having a thickness of 3 mm was prepared by an extrusion molding method. As shown in FIG. 3, the air electrode sheet-shaped body and the solid electrolyte sheet-shaped body produced in Example 1 were bonded onto the cylindrical substrate sheet-shaped body, and the interconnector was further contacted with the air electrode. The sheet-shaped molded body for fuel cell and the sheet-shaped molded body for fuel electrode were bonded so as to be in contact with the sheet-shaped molded body for solid electrolyte to prepare a laminate. This was wound around a stainless steel cylindrical tube as a molding jig and bonded so that both ends of the sheet-shaped molded body of the cylindrical substrate and the air electrode were in contact with each other to produce a cylindrical laminate.

【0037】これを、1500℃で5時間焼成を行った
結果、円筒状基体および空気極の相対密度はそれぞれ6
7%および71%であった。また、固体電解質およびイ
ンターコネクタの相対密度はそれぞれ99%および99
%で緻密質であった。この様にして得られた燃料電池セ
ルの内側に酸素ガスを外側に水素ガスを流し1000℃
で発電試験を行った結果、0.28W/cm2 の出力密
度が得られた。
As a result of calcining this at 1500 ° C. for 5 hours, the relative densities of the cylindrical substrate and the air electrode were each 6
7% and 71%. The relative densities of the solid electrolyte and the interconnector are 99% and 99, respectively.
It was a dense quality in%. The oxygen gas was flown inside the fuel cell thus obtained, and the hydrogen gas was flowed outside, and the temperature was 1000 ° C.
As a result of the power generation test, a power density of 0.28 W / cm 2 was obtained.

【0038】実施例3 実施例1に示したCaO安定化ZrO2 の円筒状の成形
体を用い、同様に実施例1で作製した燃料極用シ−ト状
成形体を積層した固体電解質用シ−ト状成形体を幅30
mmのシートに切断し、図4のように円筒状成形体に両
端が接するように巻き付け積層物を作製した。この際、
この積層物の間隔を10mmとし、さらに相接する積層
物間においてインターコネクタ用シート状成形体の一端
を空気極用シ−ト状成形体に、他端を隣接する積層物の
燃料極用シ−ト状成形体に接するように巻き付け圧着し
た。この際、空気極とインターコネクタの間にAl2
3を塗布し絶縁体を構成した。
Example 3 The CaO-stabilized ZrO 2 cylindrical molded body shown in Example 1 was used to stack the fuel electrode sheet-shaped molded body prepared in Example 1 in the same manner as the solid electrolyte sheet. -The width of the shaped body is 30
The sheet was cut into a sheet having a size of mm, and a laminated body was prepared by winding so that both ends were in contact with the cylindrical molded body as shown in FIG. On this occasion,
The distance between the laminates is set to 10 mm, and between the laminates that are in contact with each other, one end of the sheet-like molded product for an interconnector is a sheet-shaped molded product for an air electrode and the other end is a sheet for a fuel electrode of an adjacent laminate. -It was wound and crimped so as to come into contact with the dovetail shaped body. At this time, Al 2 O was placed between the air electrode and the interconnector.
3 was applied to form an insulator.

【0039】このようにして作製した積層物を1520
℃で4時間大気中で焼成した。その結果、円筒状基体お
よび空気極の相対密度はそれぞれ69%および71%で
あった。また、固体電解質、燃料極およびインターコネ
クタの相対密度はそれぞれ99%、90%および99%
で緻密質であった。この様にして得られた燃料電池セル
の内側に酸素ガスを外側に水素ガスを流し1000℃で
発電試験を行った結果、0.33W/cm2 の出力密度
を示した。
The laminate produced in this manner was used for 1520
Firing was performed in the air at 4 ° C. for 4 hours. As a result, the relative densities of the cylindrical substrate and the air electrode were 69% and 71%, respectively. The relative densities of the solid electrolyte, fuel electrode and interconnector are 99%, 90% and 99%, respectively.
It was a fine quality. As a result of conducting a power generation test at 1000 ° C. by flowing oxygen gas inside and hydrogen gas outside, the power density of 0.33 W / cm 2 was obtained.

【0040】[0040]

【発明の効果】以上詳述したように、本発明によれば、
従来と同等以上の性能を有する燃料電池セルの製造工程
数を格段に削減できるとともに量産性を向上させること
ができる。また、それに伴い、製造コストを大幅に提言
することができ、製品の低コスト化を図ることが出来
る。
As described in detail above, according to the present invention,
It is possible to significantly reduce the number of manufacturing steps of a fuel cell having performance equal to or higher than that of a conventional one and improve mass productivity. Further, along with this, it is possible to make a large proposal on the manufacturing cost, and it is possible to reduce the cost of the product.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型燃料電池セルの構造を示す図である。FIG. 1 is a diagram showing a structure of a cylindrical fuel cell unit.

【図2】本発明における製造方法の一例を説明するため
の図である。
FIG. 2 is a diagram for explaining an example of a manufacturing method in the present invention.

【図3】本発明における製造方法の他の例を説明するた
めの図である。
FIG. 3 is a diagram for explaining another example of the manufacturing method in the present invention.

【図4】本発明における製造方法のさらに他の例を説明
するための図である。
FIG. 4 is a diagram for explaining still another example of the manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

1 円筒状基体 2 空気極 3 固体電解質 4 燃料極 5 インターコネクタ 11,円筒状成形体 12,18 空気極用シート状成形体 13,19 固体電解質用シート状成形体 14,20 燃料極用シート状成形体 15,21 インターコネクタ用シート状成形体 17 円筒状基体用シート状成形体 DESCRIPTION OF SYMBOLS 1 Cylindrical substrate 2 Air electrode 3 Solid electrolyte 4 Fuel electrode 5 Interconnector 11, Cylindrical shaped body 12,18 Air electrode sheet shaped body 13,19 Solid electrolyte sheet shaped body 14,20 Fuel electrode sheet shaped Molded body 15,21 Sheet-shaped molded body for interconnector 17 Sheet-shaped molded body for cylindrical substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁性円筒状基体の表面に、少なくと
も空気極および固体電解質を具備してなる円筒型燃料電
池セルを製造する方法であって、電気絶縁性の粉末によ
り円筒状基体用成形体を作製する工程と、空気極形成用
粉末および固体電解質形成用粉末によりそれぞれシート
状成形体を作製する工程と、前記円筒状基体用成形体の
表面に前記空気極用および固体電解質用シート状成形体
を巻き付けて積層して円筒型積層物を作製する工程と、
該円筒型積層物を同時に焼成する工程とを具備すること
を特徴とする円筒型燃料電池セルの製造方法。
1. A method for producing a cylindrical fuel cell, comprising a surface of an electrically insulating cylindrical substrate and at least an air electrode and a solid electrolyte, wherein the electrically insulating powder is used to form the cylindrical substrate. A step of producing a body, a step of producing a sheet-shaped molded body from the powder for forming an air electrode and a powder for forming a solid electrolyte, and a sheet-like body for forming the air electrode and the solid electrolyte on the surface of the cylindrical base body molded body. A step of forming a cylindrical laminate by winding and laminating the molded body,
And a step of simultaneously firing the cylindrical laminate, the method for producing a cylindrical fuel cell.
【請求項2】電気絶縁性円筒状基体の表面に、少なくと
も空気極および固体電解質を具備してなる円筒型燃料電
池セルを製造する方法であって、円筒状基体形成用粉
末、空気極形成用粉末および固体電解質形成用粉末によ
りそれぞれシート状成形体を作製する工程と、これらの
シート状成形体を円筒状基体、空気極、固体電解質の順
で積層した後に該積層物により円筒型積層物を作製する
工程と、該円筒型積層物を同時に焼成する工程とを具備
することを特徴とする円筒型燃料電池セルの製造方法。
2. A method for producing a cylindrical fuel cell, which comprises at least an air electrode and a solid electrolyte on the surface of an electrically insulating cylindrical substrate, which comprises a powder for forming a cylindrical substrate and an air electrode. A step of producing a sheet-shaped molded body from the powder and the powder for forming a solid electrolyte, and stacking these sheet-shaped molded bodies in the order of a cylindrical substrate, an air electrode, and a solid electrolyte, and then forming a cylindrical laminate by the laminated body. A method of manufacturing a cylindrical fuel cell, comprising a step of producing and a step of simultaneously firing the cylindrical laminate.
JP6073025A 1994-04-12 1994-04-12 Manufacture of cell of cylindrical fuel cell Pending JPH07282823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6073025A JPH07282823A (en) 1994-04-12 1994-04-12 Manufacture of cell of cylindrical fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6073025A JPH07282823A (en) 1994-04-12 1994-04-12 Manufacture of cell of cylindrical fuel cell

Publications (1)

Publication Number Publication Date
JPH07282823A true JPH07282823A (en) 1995-10-27

Family

ID=13506397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6073025A Pending JPH07282823A (en) 1994-04-12 1994-04-12 Manufacture of cell of cylindrical fuel cell

Country Status (1)

Country Link
JP (1) JPH07282823A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507545A (en) * 2001-10-20 2005-03-17 ザ、ユニバーシティー、コート、オブ、ザ、ユニバーシティー、オブ、セント、アンドルーズ Improvements in fuel cells and related equipment
JP2005228740A (en) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp Manufacturing method of solid oxide fuel cell
US7264899B2 (en) 2002-08-28 2007-09-04 Shinko Electric Industries Co., Ltd. Fuel cell
JP2011060748A (en) * 2009-09-10 2011-03-24 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell, and solid oxide fuel cell bundle
WO2012085887A2 (en) * 2010-12-23 2012-06-28 Garal Pty Ltd Fuel cell and electrolyser structure
JP2014007061A (en) * 2012-06-25 2014-01-16 Konica Minolta Inc Method of manufacturing solid oxide fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507545A (en) * 2001-10-20 2005-03-17 ザ、ユニバーシティー、コート、オブ、ザ、ユニバーシティー、オブ、セント、アンドルーズ Improvements in fuel cells and related equipment
US7264899B2 (en) 2002-08-28 2007-09-04 Shinko Electric Industries Co., Ltd. Fuel cell
JP2005228740A (en) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp Manufacturing method of solid oxide fuel cell
JP2011060748A (en) * 2009-09-10 2011-03-24 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell, and solid oxide fuel cell bundle
WO2012085887A2 (en) * 2010-12-23 2012-06-28 Garal Pty Ltd Fuel cell and electrolyser structure
WO2012085887A3 (en) * 2010-12-23 2012-11-22 Garal Pty Ltd Fuel cell and electrolyser structure
JP2014007061A (en) * 2012-06-25 2014-01-16 Konica Minolta Inc Method of manufacturing solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US5589017A (en) Preparation of a solid oxide fuel cell having thin electrolyte and interconnect layers
KR101083701B1 (en) Reversible Solid Oxide Fuel Cell Stack and Method for Preparing Same
US8192888B2 (en) Two layer electrolyte supported fuel cell stack
RU2310952C2 (en) Tubular cell (alternatives), tubular-cell battery with current passage over generating line, and method for its manufacture
US20070054169A1 (en) Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JP2008538449A5 (en)
JPH0950812A (en) Electrode substrate for solid electrolytic fuel cell and its production
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
JP7261562B2 (en) Fuel cell, fuel cell stack, and method of making same
JP3434883B2 (en) Method for manufacturing fuel cell
JPH07282823A (en) Manufacture of cell of cylindrical fuel cell
JP2002015754A (en) Solid electrolyte fuel cell and its manufacturing method
JP3339998B2 (en) Cylindrical fuel cell
JPH09180732A (en) Solid electrolyte fuel cell board and method for manufacturing cell using the board
JP3342610B2 (en) Solid oxide fuel cell
JPH07111157A (en) Manufacture of fuel cell cell
JP3217695B2 (en) Cylindrical fuel cell
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JP3342611B2 (en) Manufacturing method of cylindrical fuel cell
JP3358640B2 (en) Manufacturing method of electrode substrate
JP3677387B2 (en) Solid oxide fuel cell
JP3238086B2 (en) Solid oxide fuel cell
JPH0969367A (en) Manufacture of cylindrical fuel cell
JP3686788B2 (en) Method for manufacturing cylindrical solid oxide fuel cell
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same