JPH07278791A - Low resistance transparent conductive film - Google Patents

Low resistance transparent conductive film

Info

Publication number
JPH07278791A
JPH07278791A JP6076888A JP7688894A JPH07278791A JP H07278791 A JPH07278791 A JP H07278791A JP 6076888 A JP6076888 A JP 6076888A JP 7688894 A JP7688894 A JP 7688894A JP H07278791 A JPH07278791 A JP H07278791A
Authority
JP
Japan
Prior art keywords
transparent conductive
film
conductive film
added
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6076888A
Other languages
Japanese (ja)
Inventor
Kenichi Chiyabara
健一 茶原
Toshiyuki Ono
俊之 大野
Yuzo Kozono
裕三 小園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6076888A priority Critical patent/JPH07278791A/en
Publication of JPH07278791A publication Critical patent/JPH07278791A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To reduce specific resistance without lowering transmissivity by adding an oxide having the specific resistance equal to or below a specific value into a transparent conductive film consisting of a cation and oxygen. CONSTITUTION:The oxide having at least <=1X10<-4>OMEGAcm specific resistance is added into the transparent conductive film consisting of at least >=1 kind of cation and oxygen, e.g. consisting of indium, tin and oxygen. For example, at least one of Re, Os, Mo and W is added by 0.02-1.2at.% atomic concn. The transparent conductive film reduced in specific resistance without lowering the transmissivity of visible rays is formed. This low resistance transparent conductive film is preferably used for the electrode of solar battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置、あるい
は太陽電池用の透明電極として用いる透明導電膜に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film used as a transparent electrode for liquid crystal display devices or solar cells.

【0002】[0002]

【従来の技術】透明導電膜は、液晶表示装置、太陽電
池、防霜用ヒータ等の透明電極として広範囲に用れられ
ている。透明導電膜に要求される電気的・光学的特性
は、その適用分野、適用部分、成膜プロセス等によって
大きく変化する。特に、液晶表示装置では、その高精細
化、低消費電力化、大画面化が進み、透明導電膜の低抵
抗化、微細加工性の向上、成膜の大面積化が望まれてい
る。
2. Description of the Related Art Transparent conductive films are widely used as transparent electrodes for liquid crystal display devices, solar cells, anti-frost heaters and the like. The electrical and optical characteristics required for the transparent conductive film vary greatly depending on the application field, application part, film forming process and the like. In particular, in liquid crystal display devices, higher definition, lower power consumption, and larger screens are progressing, and there is a demand for lower resistance of transparent conductive films, improvement of fine workability, and larger area of film formation.

【0003】これまでに実用化され、研究の進んでいる
透明導電膜には、Snを添加したIn2O3(ITO)、SnO2、Alを
添加したZnO等がある。この中で、表示装置に使用され
るものは、比抵抗が低いこと及び加工性が良いという理
由でITO膜がほとんどである。ITOは約3.6eVのワイドバ
ンドギャップを持ち、酸素欠損あるいはドナーであるSn
ドープによって生じたドナー準位帯の電子をキャリアと
する縮退したn型半導体である。ITO膜の低抵抗化につ
いては,これまでに成膜方法,成膜条件に関する多くの
検討がなされている。そして、低抵抗が実現できるこ
と、安定した膜質が得られること、膜成長速度が速いこ
との理由で、DCマグネトロンスパッタ法が量産するため
に有効であることが知られている。ITO膜の特性は、膜
中のSn量、成膜時の基板温度、酸素ガス圧力等に依存
し、これらを最適化することで低抵抗化が進められてき
た。比抵抗ρ[Ωcm]は、キャリア密度n[個/cm3]、移動
度μ[cm2/V・sec]、電荷素量e=1.602×10~19[Coulomb]を
用いて、ρ=1/(neμ)で表され、一般的には比抵抗
1.7×10~4Ωcm、キャリア密度1.1×1021個/cm3、移動度
35cm2/V・sec程度のITO膜が得られている。
Transparent conductive films that have been put to practical use and are being studied so far include In 2 O 3 (ITO) containing Sn, SnO 2 and ZnO containing Al. Among them, most of those used for display devices are ITO films because of their low specific resistance and good workability. ITO has a wide bandgap of about 3.6 eV and is an oxygen deficiency or a donor Sn.
It is a degenerate n-type semiconductor that uses electrons in the donor level band generated by doping as carriers. To reduce the resistance of the ITO film, many studies have been made so far regarding the film forming method and film forming conditions. It is known that the DC magnetron sputtering method is effective for mass production because of its low resistance, stable film quality, and high film growth rate. The characteristics of the ITO film depend on the amount of Sn in the film, the substrate temperature during film formation, the oxygen gas pressure, etc., and optimizing these has led to lower resistance. The specific resistance ρ [Ωcm] is ρ = 1 using carrier density n [pieces / cm 3 ], mobility μ [cm 2 / V · sec], and elementary charge e = 1.602 × 10 to 19 [Coulomb]. It is expressed by / (neμ) and is generally the specific resistance.
1.7 × 10 to 4 Ωcm, carrier density 1.1 × 10 21 pieces / cm 3 , mobility
An ITO film of about 35 cm 2 / V · sec is obtained.

【0004】特に、低抵抗ITO膜としては、文献:シン
ソリッド フィルムズ 第226巻 104頁 1993年(Thin Soli
d Films Vol.226, p.104 (1993)) に基板温度300℃で比
抵抗1.3×10~4ΩcmのITO膜の成膜例が示されている。
In particular, as a low-resistance ITO film, reference is made by Shin:
Solid Films Vol. 226, p. 104 1993 (Thin Soli
d Films Vol.226, p.104 (1993)) shows an example of forming an ITO film having a specific resistance of 1.3 × 10 4 Ωcm at a substrate temperature of 300 ° C.

【0005】[0005]

【発明が解決しようとする課題】上述したように、液晶
表示装置向け透明導電膜ITOの低抵抗化の要求は、今後
益々高まり、比抵抗 1×10~4Ωcm以下のITO膜の量産が
望まれている。しかし、これまで種々の成膜方法で低抵
抗ITO膜の成膜が試され、さらに添加元素の探索等が行
われたにも関わらず、比抵抗は実験室レベルでも 1×10
~4Ωcm程度に限界があった。理論的な考察も進められ、
ITO膜の低抵抗化は、イオン化不純物散乱、粒界散乱等
による抵抗成分のために比抵抗 1×10~4Ωcm程度に限界
があると考えられるに至った。イオン化不純物散乱は、
キャリアのドナーとして、Inに対し10%程度含まれるSn
イオンによるものである。Snの量を増やせば、キャリア
数が増加し低抵抗化に効果があるが、これは同時にイオ
ン化不純物散乱を増加させ抵抗を増やす効果を持つ。つ
まり、ITOの添加元素Snの量には、抵抗を最小にするよ
うな最適値があることになる。粒界散乱は、ITO膜が多
結晶体であるために生じるものである。多結晶性を特徴
付けるパラメータには、結晶粒径、結晶粒の形状、配向
性、粒界への不純物の偏析等など多数存在する。これら
のパラメータは、基板温度や酸素ガス圧力といった膜の
成膜条件を変えることによって、独立に変化させること
ができず、お互いに関連し合いながら変化してしまう量
である。このため、ITO膜については粒界散乱の主たる
原因が不明であり、さらに抵抗に粒界散乱がどの程度効
果を及ぼすのかという点についても不明である。
As described above, the demand for lower resistance of the transparent conductive film ITO for liquid crystal display devices will increase more and more in the future, and the mass production of ITO film having a specific resistance of 1 × 10 to 4 Ωcm or less is desired. It is rare. However, despite the attempts to form low-resistance ITO films by various deposition methods and the search for additional elements, etc., the resistivity was 1 × 10 even at the laboratory level.
There was a limit of about 4 Ωcm. Theoretical consideration is also advanced,
It has been thought that there is a limit to the reduction of the resistance of the ITO film in the specific resistance of about 1 × 10 4 Ωcm due to the resistance component due to ionized impurity scattering, grain boundary scattering, and the like. Ionized impurity scattering is
Sn, which is about 10% of In as a carrier donor,
It is due to ions. Increasing the amount of Sn increases the number of carriers and is effective in lowering the resistance, but this also has the effect of increasing the scattering of ionized impurities and increasing the resistance. That is, the amount of the additive element Sn of ITO has an optimum value that minimizes the resistance. Grain boundary scattering occurs because the ITO film is a polycrystal. There are many parameters that characterize polycrystallinity, such as crystal grain size, crystal grain shape, orientation, and segregation of impurities at grain boundaries. These parameters are amounts that cannot be changed independently by changing the film forming conditions such as the substrate temperature and the oxygen gas pressure, but change while being related to each other. For this reason, the main cause of grain boundary scattering in the ITO film is unknown, and it is also unknown how the grain boundary scattering affects the resistance.

【0006】本発明の目的は、可視光域での透過率を損
なわずに低抵抗の透明導電膜を提供することにある。
An object of the present invention is to provide a transparent conductive film having a low resistance without impairing the transmittance in the visible light region.

【0007】本発明の目的は、高精細、低消費電力の液
晶表示装置、あるいは高い起電力の太陽電池を提供する
ことにある。
An object of the present invention is to provide a liquid crystal display device with high definition and low power consumption, or a solar cell with high electromotive force.

【0008】[0008]

【課題を解決するための手段】上記目的は、1種類以上
のカチオン及び酸素からなる透明導電膜に、比抵抗が少
なくとも1×10~4Ωcm以下である酸化物を添加した
ことにより達成される。 上記目的は、1種類以上のカ
チオン及び酸素からなる透明導電膜に、Re,Os,M
o,Wのうちの少なくとも1つを添加したことにより達
成される。
The above object is achieved by adding an oxide having a specific resistance of at least 1 × 10 4 Ωcm or less to a transparent conductive film composed of one or more kinds of cations and oxygen. . The above object is to provide a transparent conductive film composed of one or more kinds of cations and oxygen with Re, Os, M
It is achieved by adding at least one of o and W.

【0009】上記目的は、1種類以上のカチオン及び酸
素からなる複数の透明導電膜に、Re,Os,Mo,W
のうちの少なくとも1つを添加したことにより達成され
る。 上記目的は、インジウム及び酸素からなる透明導
電膜に、Reを前記インジウムに対する原子濃度として
2.0〜3.0atm%添加したことにより達成され
る。
The above object is to provide a plurality of transparent conductive films composed of one or more kinds of cations and oxygen to Re, Os, Mo, W.
Is achieved by adding at least one of The above object is achieved by adding Re to the transparent conductive film of indium and oxygen in an atomic concentration of 2.0 to 3.0 atm% with respect to the indium.

【0010】上記目的は、インジウム、錫及び酸素から
なる透明導電膜に、Re,Os,Mo,Wのうちの少な
くとも1つを前記インジウムに対する:@yd原子濃度
として0.02〜1.2atm%添加したことにより達
成される。
The above-mentioned object is to provide a transparent conductive film made of indium, tin, and oxygen, and at least one of Re, Os, Mo, and W with respect to the above indium as an @yd atomic concentration of 0.02 to 1.2 atm%. It is achieved by the addition.

【0011】[0011]

【作用】上記構成においてカチオンとは、In2O3膜ではI
nを意味し、In、Sn、Oから成るITO透明導電膜ではInとS
nの元素のうち多数含まれるInを意味する。添加金属の
Re,Os,Mo,W、例えばRe酸化物は室温でも10~5
Ωcm台の低比抵抗な物質で、比抵抗10~5Ωcm台のRe酸化
物がITO膜中に分散することで、可視光域での透過率を
損なわずに比抵抗1×10~4Ωcm以下を実現することがで
きる。
[Function] In the above structure, the cation is I in the In 2 O 3 film.
means n, and In and S in the ITO transparent conductive film composed of In, Sn, and O.
It means In, which is contained in a large number among the elements of n. Additive metals such as Re, Os, Mo, and W, such as Re oxide, are 10 to 5 even at room temperature.
It is a substance with low resistivity on the order of Ωcm, and Re oxide with resistivity on the order of 10 to 5 Ωcm is dispersed in the ITO film, so that the specific resistance is 1 × 10 to 4 Ωcm without impairing the transmittance in the visible light range. The following can be realized:

【0012】インジウム及び酸素からなる透明導電膜
に、Reをインジウムに対する原子濃度として2.0〜
3.0atm%添加することにより比抵抗を低減でき
る。
In a transparent conductive film made of indium and oxygen, Re has an atomic concentration of indium of 2.0 to
The specific resistance can be reduced by adding 3.0 atm%.

【0013】インジウム、錫及び酸素からなる透明導電
膜に、Re,Os,Mo,Wのうちの少なくとも1つを
前記インジウムに対する原子濃度として0.02〜1.
2atm%添加することにより比抵抗を低減できる。
At least one of Re, Os, Mo and W is added to the transparent conductive film of indium, tin and oxygen in an atomic concentration of 0.02-1.
The specific resistance can be reduced by adding 2 atm%.

【0014】また、In2O3膜ではReの添加により配向性
が変化し、(222)配向と(400)配向が混合した混合配向膜
となり、比抵抗と配向性には関連性があり最適な混合配
向条件下では比抵抗はより低くなる。
In addition, in the In 2 O 3 film, the orientation is changed by the addition of Re, and it becomes a mixed orientation film in which the (222) orientation and the (400) orientation are mixed, and there is a relation between the specific resistance and the orientation. The specific resistance is lower under various mixed orientation conditions.

【0015】そして、多結晶性のITO膜では、結晶粒界
部分に低比抵抗なRe酸化物が偏析することで粒界接合性
が向上し低抵抗化に効果がある。
In the polycrystalline ITO film, the segregation of Re oxide having a low specific resistance in the crystal grain boundary portion improves the grain boundary bondability and is effective in reducing the resistance.

【0016】添加金属元素は、原子価が4以上である高
価数金属元素であっても構わない。ITOでは、母材であ
る3価のInに対し、ドナーである4価のSnを添加すること
で、1個の電子がキャリアとして供給される。つまり、S
nより高価数の金属元素を添加することで、1個のドナー
から複数のキャリア電子が供給されることになる。例え
ばReは6価であり、1個のReから3個のキャリア電子が供
給され、総添加数を少なくできる。一般に、高価数金属
イオンはイオン半径が小さく、イオン化不純物散乱の度
合いが大きいが総添加数が少ないために全体としては低
抵抗化に効果がある。
The added metal element may be an expensive metal element having a valence of 4 or more. In ITO, one electron is supplied as a carrier by adding tetravalent Sn as a donor to trivalent In as a base material. That is, S
By adding a metal element that is more expensive than n, a plurality of carrier electrons will be supplied from one donor. For example, Re is hexavalent, and three carrier electrons are supplied from one Re, and the total number of additions can be reduced. Generally, high-priced metal ions have a small ionic radius and a large degree of ionized impurity scattering, but since the total number of added ions is small, they are effective in lowering the resistance as a whole.

【0017】以上の構成により、単に低比抵抗な物質を
添加して比抵抗を低下させるだけでなく、最適な混合配
向条件となるように添加濃度を定めることにより、比抵
抗を低下させることができる。
With the above structure, not only the substance having a low specific resistance is added to lower the specific resistance, but also the specific resistance is lowered by setting the addition concentration so as to obtain the optimum mixed orientation condition. it can.

【0018】[0018]

【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0019】本発明の低抵抗透明導電膜は、この実施例
に限定されるものではない。
The low resistance transparent conductive film of the present invention is not limited to this embodiment.

【0020】実施例1.両面研磨した約50mm径のコ
ーニング社#7059ガラスを基板とし、イオンビームスパ
ッタ方法で透明導電性In2O3膜を成膜した。スパッタガ
スには、Xe+O2の混合ガスを用い、基板温度は250℃とし
た。スパッタターゲットには、焼結密度65%のIn2O3ター
ゲットを用いた。ターゲットの表面に金属Reチップをタ
ーゲットボンドで貼り付け、Re添加In2O3膜を成膜し
た。In2O3膜中に含まれるRe量は、ターゲットの表面に
貼った金属Reチップの位置を変化させて増減させてい
る。
Example 1. A transparent conductive In 2 O 3 film was formed by an ion beam sputtering method using Corning's # 7059 glass having a diameter of about 50 mm polished on both sides as a substrate. A mixed gas of Xe + O 2 was used as the sputtering gas, and the substrate temperature was 250 ° C. An In 2 O 3 target having a sintered density of 65% was used as the sputter target. A metal Re chip was attached to the surface of the target with a target bond, and a Re-added In 2 O 3 film was formed. The amount of Re contained in the In 2 O 3 film is increased or decreased by changing the position of the metal Re chip attached to the surface of the target.

【0021】In2O3膜成膜条件の詳細を表1に示す。Table 1 shows the details of the In 2 O 3 film forming conditions.

【0022】[0022]

【表1】 [Table 1]

【0023】図1は本発明の実施例のRe添加In2O3膜の
添加Re濃度と比抵抗との関係を示す図表である。
FIG. 1 is a table showing the relationship between the added Re concentration and the specific resistance of the Re-added In 2 O 3 film according to the embodiment of the present invention.

【0024】添加Re濃度はInに対する原子%濃度であ
り、ICP分析により求めた値である。本図に示したよう
に、In2O3膜の比抵抗は0.8%のReの添加によっておよそ1
/10程度に低下し、添加Re濃度2.3%では比抵抗7.8×10~5
Ωcm となった。
The added Re concentration is an atomic% concentration with respect to In, and is a value obtained by ICP analysis. As shown in this figure, the resistivity of the In 2 O 3 film is about 1 by adding 0.8% Re.
/ 10 ×, and when added Re concentration 2.3%, specific resistance 7.8 × 10 ~ 5
Became Ωcm.

【0025】図2は本発明の実施例のRe添加In2O3膜の
透過光波長と透過率の関係を示す図表である。
FIG. 2 is a table showing the relationship between the transmitted light wavelength and the transmittance of the Re-doped In 2 O 3 film according to the example of the present invention.

【0026】透過率は、波長380-800nmの範囲で85%以上
であった。
The transmittance was 85% or more in the wavelength range of 380-800 nm.

【0027】また、Reの添加は、In2O3膜の表面形態、
配向性も変化させることが判明した。In2O3膜は、粒径
の揃った多結晶の表面形態を取るが、Reの添加により大
きい結晶粒と小さい結晶粒がそれぞれ島状に分布する表
面形態となった。X線回折により、成膜したIn2O3膜の
配向性を調べた。無添加のIn2O3膜は(222)単一配向膜で
あっがReを添加するにつれて、In2O3膜は(222)配向と(4
00)配向が混合した混合配向膜となり、添加Re濃度が6.2
%以上では再び(400)単一配向膜となった。In2O3膜の比
抵抗が1.3×10~4Ωcm以下となるのは、添加Re濃度が 1.
2-4.2% であり、(222)配向ピークと(400)配向ピークの
強度比が 3.2-0.28 の範囲であった。比抵抗と配向性に
は関連性があり、(222)配向と(400)配向の混合配向膜
で、比抵抗はより低くなった。
Further, the addition of Re is carried out by the surface morphology of the In 2 O 3 film,
It was also found to change the orientation. The In 2 O 3 film had a polycrystalline surface morphology with a uniform grain size, but the addition of Re resulted in a surface morphology in which larger and smaller crystal grains were distributed in islands. The orientation of the formed In 2 O 3 film was examined by X-ray diffraction. The In 2 O 3 film without addition is a (222) single-orientation film, but as Re is added, the In 2 O 3 film has a (222) orientation and (4)
00) A mixed orientation film with mixed orientations, with a Re concentration of 6.2
Above 400%, it became a (400) single orientation film again. The specific resistance of the In 2 O 3 film is 1.3 × 10 to 4 Ωcm or less when the added Re concentration is 1.
It was 2-4.2%, and the intensity ratio of the (222) orientation peak and the (400) orientation peak was in the range of 3.2-0.28. There was a relation between the resistivity and the orientation, and the resistivity was lower in the mixed orientation film of (222) orientation and (400) orientation.

【0028】実施例2.両面研磨した約50mm径のコ
ーニング社#7059ガラスを基板とし、イオンビームスパ
ッタ方法で透明導電性ITO膜を成膜した。スパッタガス
には、Xe+O2の混合ガスを用い、基板温度は250℃とし
た。スパッタターゲットには、焼結密度95%でSnO2の含
有率が異なる2種類のITO(SnO25wt%)ターゲット、ITO(S
nO210wt%)ターゲットを用いた。ターゲットの表面に金
属Reチップをターゲットボンドで貼り付け、Re添加ITO
膜を成膜した。ITO膜中に含まれるRe濃度は、ターゲッ
トの表面に貼った金属Reチップの位置を変化させて増減
させている。ITO膜成膜条件の詳細は表1と同じであ
る。
Example 2. A transparent conductive ITO film was formed by an ion beam sputtering method using Corning's # 7059 glass having a diameter of about 50 mm polished on both sides as a substrate. A mixed gas of Xe + O 2 was used as the sputtering gas, and the substrate temperature was 250 ° C. The sputter target consists of two types of ITO (SnO 2 5 wt%) targets with different densities of SnO 2 with a sintering density of 95%, and ITO (S
nO 2 10 wt% target was used. Attach a metal Re chip to the target surface with a target bond, and add Re to ITO
A film was formed. The concentration of Re contained in the ITO film is increased or decreased by changing the position of the metal Re chip attached to the surface of the target. The details of the ITO film forming conditions are the same as in Table 1.

【0029】図3は本発明の実施例のRe添加ITO膜のIn
に対する原子%濃度で表した添加Re濃度と比抵抗との関
係を示す図表である。
FIG. 3 shows In of the Re-added ITO film of the embodiment of the present invention.
5 is a chart showing the relationship between the added Re concentration and the specific resistance expressed in atomic% concentration with respect to.

【0030】添加Re濃度は0.2%以上で、ICP分析により
求めた。本図に示したように、ITO (SnO25wt%)ターゲッ
トを用い添加Re濃度を0.5、0.7%としたときに比抵抗
は、それぞれ7.1×10~5、7.5×10~5 Ωcm となった。IT
O(SnO210wt%)ターゲットを用いた場合は、添加Re濃度0.
3%で比抵抗が7.8×10~5 Ωcm となった。ITO(SnO25wt%)
ターゲットを用い、添加Re濃度が0.5%のITO膜の透過率
は、波長345ー800nmの範囲で85%以上であった。
The added Re concentration was 0.2% or more and was determined by ICP analysis. As shown in this figure, the specific resistance was 7.1 × 10 to 5 and 7.5 × 10 to 5 Ωcm when the added Re concentration was 0.5 and 0.7% using an ITO (SnO 2 5 wt%) target, respectively. . IT
When using an O (SnO 2 10 wt%) target, the added Re concentration is 0.
The specific resistance was 7.8 × 10 to 5 Ωcm at 3%. ITO (SnO 2 5wt%)
The transmittance of the ITO film with the added Re concentration of 0.5% using the target was 85% or more in the wavelength range of 345 to 800 nm.

【0031】実施例3.両面研磨した約50mm径のコ
ーニング社#7059ガラスを基板とし、イオンビームスパ
ッタ方法で透明導電性多層膜を成膜した。スパッタガス
には、Xe+O2の混合ガスを用い、基板温度は250℃とし
た。スパッタターゲットには、焼結密度95%のITO(SnO21
0wt%)ターゲット、金属Reターゲットの2種類を用いた。
本実施例で用いたイオンビームスパッタ装置は、4元回
転ターゲット式装置であり、真空を破らずにターゲット
部分を回転させるだけで多層膜を成膜できる。
Example 3. A transparent conductive multilayer film was formed by an ion beam sputtering method using Corning's # 7059 glass with a diameter of about 50 mm polished on both sides as a substrate. A mixed gas of Xe + O 2 was used as the sputtering gas, and the substrate temperature was 250 ° C. For the sputter target, ITO (SnO 2 1
0 wt%) target and metallic Re target were used.
The ion beam sputtering apparatus used in this example is a quaternary rotary target type apparatus, and a multilayer film can be formed simply by rotating the target portion without breaking the vacuum.

【0032】図4は本発明の実施例のITO層と酸化Re層
を積層した多層膜の断面図である。本図に示したよう
に、ガラス基板8上に、ITO層6と酸化Re層7を、順次5回
成膜を繰返して5層膜を成膜した。ITO層6、酸化Re層7の
成膜条件の詳細は表1と同じである。金属Reターゲット
を用いた成膜では、雰囲気ガスに酸素を用いているため
に酸化Re層ができる。ITO層6、酸化Re層7の膜厚はそれ
ぞれ600、100Åとし、総膜厚を2000Åとした。5層膜の
透過率は、波長370-800nmの範囲で85%以上であり、比抵
抗は 7.3×10~5 Ωcm となった。ITO層単独での比抵抗
は 1.7×10~4 Ωcmであり、本実施例のような多層化は
透明導電膜の低抵抗化に効果がある。多層膜の総数及び
各層の膜厚は、透過率を損なわない範囲で変化させるこ
とができる。
FIG. 4 is a sectional view of a multilayer film in which an ITO layer and an oxidized Re layer are laminated according to an embodiment of the present invention. As shown in this figure, on the glass substrate 8, the ITO layer 6 and the oxidized Re layer 7 were sequentially formed five times to form a five-layer film. The details of the film forming conditions for the ITO layer 6 and the oxidized Re layer 7 are the same as in Table 1. In the film formation using the metallic Re target, an oxidized Re layer is formed because oxygen is used as the atmospheric gas. The film thicknesses of the ITO layer 6 and the oxidized Re layer 7 were 600 and 100Å, respectively, and the total film thickness was 2000Å. The transmittance of the five-layer film was 85% or more in the wavelength range of 370 to 800 nm, and the specific resistance was 7.3 × 10 to 5 Ωcm. The specific resistance of the ITO layer alone is 1.7 × 10 4 Ωcm, and the multilayer structure as in this example is effective for lowering the resistance of the transparent conductive film. The total number of multilayer films and the film thickness of each layer can be changed within a range that does not impair the transmittance.

【0033】実施例4.300mm×400mm×1mmtのコーニン
グ社#7059ガラスを基板とし、DCマグネトロンスパッタ
方法で透明導電性ITO膜を成膜した。スパッタガスは、X
e+O2の混合ガスを用い、基板温度は250℃とした。スパ
ッタターゲットには、焼結密度95%のITO(SnO25wt%)ター
ゲットを用いた。ターゲットの表面に金属Reチップをタ
ーゲットボンドで貼り付け、Re添加ITO膜を成膜した。I
TO膜中に含まれるRe濃度は、ターゲットの表面に貼った
金属Reチップの位置を変化させて増減させている。
Example 4 A 300 mm × 400 mm × 1 mmt Corning # 7059 glass was used as a substrate to form a transparent conductive ITO film by the DC magnetron sputtering method. Sputter gas is X
A substrate temperature was set to 250 ° C. using a mixed gas of e + O 2 . An ITO (SnO 2 5 wt%) target with a sintering density of 95% was used as the sputter target. A metal Re chip was attached to the surface of the target with a target bond, and a Re-added ITO film was formed. I
The concentration of Re contained in the TO film is increased or decreased by changing the position of the metal Re chip attached to the surface of the target.

【0034】ITO膜成膜条件の詳細を表2に示す。Table 2 shows the details of the ITO film forming conditions.

【0035】[0035]

【表2】 [Table 2]

【0036】図5は本発明の実施例のRe添加ITO膜の添
加Re濃度と比抵抗との関係を示す図表である。
FIG. 5 is a chart showing the relationship between the added Re concentration and the specific resistance of the Re-added ITO film of the embodiment of the present invention.

【0037】本図はDCマグネトロンスパッタ法におい
て、金属Reチップ貼付ITO(SnO25wt%)ターゲットを用い
て成膜した、Re添加ITO膜の比抵抗と添加Re濃度の関係
を示したものである。添加Re濃度はICP分析により求め
たInに対する原子%濃度である。比抵抗は、添加Re濃度
が0.6%の場合7.9×10~5 Ωcm となった。添加Re濃度が
0.6%の場合のITO膜の透過率は、波長370-800nmの範囲で
85%以上であった。成膜したITO膜の膜厚、比抵抗、透過
率の面内分布は、それぞれ、3.7%、7.5%、3.0%であっ
た。
This figure shows the relationship between the specific resistance and the concentration of added Re of the Re-added ITO film formed by using the ITO (SnO 2 5 wt%) target with the metal Re chip attached thereto in the DC magnetron sputtering method. . The added Re concentration is an atomic% concentration with respect to In obtained by ICP analysis. The specific resistance was 7.9 × 10 to 5 Ωcm when the added Re concentration was 0.6%. The added Re concentration is
The transmittance of ITO film at 0.6% is in the range of wavelength 370-800nm.
It was 85% or more. The in-plane distributions of film thickness, specific resistance and transmittance of the formed ITO film were 3.7%, 7.5% and 3.0%, respectively.

【0038】なお、上記実施例1から実施例4における
スパッタガスには、Xe+O2に代えてAr+O2の混合ガスを用
いることができる。
As the sputtering gas in Examples 1 to 4, a mixed gas of Ar + O 2 can be used instead of Xe + O 2 .

【0039】実施例5.本実施例は、ITO(SnO25wt%)タ
ーゲットを用い、 Re, Os, Mo, W を添加濃度が0.01%
の桁の微量の場合も含めた例である。成膜の条件は実施
例2と同じである。
Example 5. In this example, an ITO (SnO 2 5 wt%) target was used, and Re, Os, Mo, and W were added at a concentration of 0.01%.
This is an example including a case of a small amount of. The conditions for film formation are the same as in Example 2.

【0040】各種添加金属の濃度とITO膜の比抵抗を表
3に示す。
Table 3 shows the concentrations of various added metals and the specific resistance of the ITO film.

【0041】[0041]

【表3】 [Table 3]

【0042】実施例6.液晶表示装置の代表的な表示技
術として、マトリクス表示がある。マトリクス表示は、
表示パネルを2次元的なマトリクス配列により細かく画
素分割し、任意の画像を表現する技術である。マトリク
ス表示には、さらにその画素部分の駆動技術の違いによ
って、単純マトリクス表示とアクティブマトリクス表示
がある。図6は本発明の低抵抗透明導電膜を透明電極と
して用いた液晶パネルの斜視図である。
Example 6. Matrix display is a typical display technique for liquid crystal display devices. The matrix display is
This is a technique for expressing an arbitrary image by finely dividing the display panel into pixels by a two-dimensional matrix arrangement. The matrix display is classified into a simple matrix display and an active matrix display depending on the difference in driving technology of the pixel portion. FIG. 6 is a perspective view of a liquid crystal panel using the low resistance transparent conductive film of the present invention as a transparent electrode.

【0043】本図に示すように単純マトリクス表示液晶
パネルは、上部ガラス基板3、ストライプ状にパターン
化された上部透明電極1、液晶4、上部透明電極1と交
差する方向にパターン化された下部透明電極2、そして
下部ガラス基板5で構成される。画素は上部透明電極1
と下部透明電極2の各交差エリアである。上下透明電極
間に電圧を印加することで、画素のエリアの液晶の配向
が変化して画像を表現する。上部透明電極1及び下部透
明電極2に実施例1から実施例5に述べた低抵抗透明導
電膜を用いて比抵抗が低下すれば電極幅を狭くでき、画
素のエリアを小さく出来るため高精細化が可能となる。
一方、アクティブマトリクス表示は、画素部分を薄膜ト
ランジスタ(TFT)あるいは薄膜ダイオードで駆動する技
術であるが実施例1から実施例5に述べた低抵抗透明導
電膜を、アクティブマトリクス表示液晶パネルに用いる
こともできる。
As shown in the figure, the simple matrix display liquid crystal panel includes an upper glass substrate 3, an upper transparent electrode 1 patterned in a stripe shape, a liquid crystal 4, and a lower portion patterned in a direction intersecting with the upper transparent electrode 1. It is composed of a transparent electrode 2 and a lower glass substrate 5. Pixel is upper transparent electrode 1
And the crossing areas of the lower transparent electrode 2. By applying a voltage between the upper and lower transparent electrodes, the orientation of the liquid crystal in the pixel area is changed to express an image. If the low resistance transparent conductive films described in Embodiments 1 to 5 are used for the upper transparent electrode 1 and the lower transparent electrode 2 and the specific resistance is lowered, the electrode width can be narrowed and the pixel area can be made small, thereby achieving high definition. Is possible.
On the other hand, active matrix display is a technique of driving a pixel portion with a thin film transistor (TFT) or a thin film diode, but the low resistance transparent conductive film described in Embodiments 1 to 5 may be used in an active matrix display liquid crystal panel. it can.

【0044】実施例7.本実施例は太陽電池の電極とし
て実施例1から実施例5に述べた低抵抗透明導電膜を用
いる例である。
Example 7. This example is an example in which the low-resistance transparent conductive film described in Examples 1 to 5 is used as an electrode of a solar cell.

【0045】図7は本発明の低抵抗透明導電膜を電極と
して用いた太陽電池の斜視図である。 本図に示すよう
に太陽電池は、正透明電極9、P型Si膜10、n型Si膜1
1、負電極12で構成される。太陽光13が、太陽電池
に照射されると、正透明電極9を太陽光13が透過し、
P型Si膜10、n型Si膜11の部分に電流が誘起され、正
透明電極9、負電極12を通して起電力が取り出され
る。正透明電極9に実施例1から実施例5に述べた低抵
抗透明導電膜を用いることにより、比抵抗が低下し取り
出し得る太陽電池の起電力が増加する。
FIG. 7 is a perspective view of a solar cell using the low resistance transparent conductive film of the present invention as an electrode. As shown in the figure, the solar cell has a transparent electrode 9, a P-type Si film 10, and an n-type Si film 1.
1 and the negative electrode 12. When the solar cell 13 is irradiated with the sunlight 13, the sunlight 13 passes through the regular transparent electrode 9,
A current is induced in the P-type Si film 10 and the n-type Si film 11, and an electromotive force is taken out through the positive transparent electrode 9 and the negative electrode 12. By using the low-resistance transparent conductive film described in Examples 1 to 5 for the positive transparent electrode 9, the specific resistance decreases and the electromotive force of the solar cell that can be taken out increases.

【0046】以上述べたように、種々の透明導電性膜に
添加金属元素として Re, Os, Mo, Wの少なくとも1つを
添加することで、可視光域での透過率を損なわずに比抵
抗を低下できる。特に、ITO膜の場合は、Re, Os, Mo, W
の少なくとも1つを添加することで、比抵抗8×10~5
Ωcm以下のITO膜を成膜することができる。このような
低抵抗透明導電膜を電極として用いれば、高精細、低消
費電力の液晶表示装置、あるいは高い起電力の太陽電池
が得られる。
As described above, by adding at least one of Re, Os, Mo, and W as an additive metal element to various transparent conductive films, the specific resistance can be maintained without impairing the transmittance in the visible light region. Can be reduced. Especially in the case of ITO film, Re, Os, Mo, W
The addition of at least one of the specific resistance 8 × 10 ~ 5
It is possible to form an ITO film of Ωcm or less. By using such a low resistance transparent conductive film as an electrode, a liquid crystal display device with high definition and low power consumption or a solar cell with high electromotive force can be obtained.

【0047】[0047]

【発明の効果】本発明によれば、透明導電膜にRe,O
s,Mo,Wのうちの少なくとも1つを添加することに
より、可視光域での透過率を損なわずに比抵抗を低下さ
せた透明導電膜を成膜することができる。
According to the present invention, the transparent conductive film is made of Re, O
By adding at least one of s, Mo, and W, it is possible to form a transparent conductive film having a reduced specific resistance without impairing the transmittance in the visible light region.

【0048】また、上記低抵抗透明導電膜を電極として
用いれば、高精細、低消費電力の液晶表示装置、あるい
は高い起電力の太陽電池を提供できる。
Further, by using the above-mentioned low resistance transparent conductive film as an electrode, it is possible to provide a liquid crystal display device with high definition and low power consumption, or a solar cell with high electromotive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のRe添加In2O3膜の添加Re濃度
と比抵抗との関係を示す図表である。
FIG. 1 is a chart showing the relationship between the added Re concentration and the specific resistance of a Re-added In 2 O 3 film according to an example of the present invention.

【図2】本発明の実施例のRe添加In2O3膜の透過光波長
と透過率の関係を示す図表である。
FIG. 2 is a table showing the relationship between the transmitted light wavelength and the transmittance of a Re-doped In 2 O 3 film according to an example of the present invention.

【図3】本発明の実施例のRe添加ITO膜の添加Re濃度と
比抵抗との関係を示す図表である。
FIG. 3 is a chart showing the relationship between the added Re concentration and the specific resistance of the Re-added ITO film of the example of the present invention.

【図4】本発明の実施例のITO層と酸化Re層を積層した
多層膜の断面図である。
FIG. 4 is a cross-sectional view of a multilayer film in which an ITO layer and an oxidized Re layer are laminated according to an example of the present invention.

【図5】本発明の実施例のRe添加ITO膜の添加Re濃度と
比抵抗との関係を示す図表である。
FIG. 5 is a chart showing the relationship between the added Re concentration and the specific resistance of the Re-added ITO film of the example of the present invention.

【図6】本発明の低抵抗透明導電膜を透明電極として用
いた液晶パネルの斜視図である。
FIG. 6 is a perspective view of a liquid crystal panel using the low resistance transparent conductive film of the present invention as a transparent electrode.

【図7】本発明の低抵抗透明導電膜を電極として用いた
太陽電池の斜視図である。
FIG. 7 is a perspective view of a solar cell using the low resistance transparent conductive film of the present invention as an electrode.

【符号の説明】[Explanation of symbols]

1 上部透明電極 2 下部透明電極 3 上部ガラス基板 4 液晶 5 下部ガラス基板 6 ITO層 7 酸化Re層 8 ガラス基板 9 正透明電極 10 P型Si膜 11 n型Si膜 12 負電極 13 太陽光 1 Upper Transparent Electrode 2 Lower Transparent Electrode 3 Upper Glass Substrate 4 Liquid Crystal 5 Lower Glass Substrate 6 ITO Layer 7 Oxide Re Layer 8 Glass Substrate 9 Positive Transparent Electrode 10 P-type Si Film 11 n-type Si Film 12 Negative Electrode 13 Sunlight

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/40 A 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 29/40 A 31/04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1種類以上のカチオン及び酸素からなる
透明導電膜に、比抵抗が少なくとも1×10~4Ωcm以
下である酸化物を添加したことを特徴とする低抵抗透明
導電膜。
1. A low-resistance transparent conductive film, comprising an oxide having a specific resistance of at least 1 × 10 4 Ωcm or less added to a transparent conductive film composed of one or more kinds of cations and oxygen.
【請求項2】 1種類以上のカチオン及び酸素からなる
透明導電膜に、Re,Os,Mo,Wのうちの少なくと
も1つを添加したことを特徴とする低抵抗透明導電膜。
2. A low-resistance transparent conductive film comprising at least one of Re, Os, Mo, and W added to a transparent conductive film composed of one or more kinds of cations and oxygen.
【請求項3】 1種類以上のカチオン及び酸素からなる
複数の透明導電膜に、Re,Os,Mo,Wのうちの少
なくとも1つを添加したことを特徴とする低抵抗透明導
電膜。
3. A low resistance transparent conductive film comprising at least one of Re, Os, Mo and W added to a plurality of transparent conductive films composed of one or more kinds of cations and oxygen.
【請求項4】 インジウム及び酸素からなる透明導電膜
に、Reを前記インジウムに対する原子濃度として2.
0〜3.0atm%添加したことを特徴とする低抵抗透
明導電膜。
4. A transparent conductive film made of indium and oxygen, wherein Re has an atomic concentration of indium of 2.
A low resistance transparent conductive film, which is characterized by adding 0 to 3.0 atm%.
【請求項5】 インジウム、錫及び酸素からなる透明導
電膜に、Re,Os,Mo,Wのうちの少なくとも1つ
を前記インジウムに対する原子濃度として0.02〜
1.2atm%添加したことを特徴とする低抵抗透明導
電膜。
5. A transparent conductive film made of indium, tin and oxygen, wherein at least one of Re, Os, Mo and W has an atomic concentration of 0.02 to the indium.
A low resistance transparent conductive film containing 1.2 atm%.
【請求項6】 請求項1から請求項5のうちの何れかの
請求項に記載の低抵抗透明導電膜を透明電極として用い
たことを特徴とする液晶表示装置。
6. A liquid crystal display device, wherein the low resistance transparent conductive film according to claim 1 is used as a transparent electrode.
【請求項7】 請求項1から請求項5のうちの何れかの
請求項に記載の低抵抗透明導電膜を電極として用いたこ
とを特徴とする太陽電池。
7. A solar cell using the low resistance transparent conductive film according to claim 1 as an electrode.
JP6076888A 1994-04-15 1994-04-15 Low resistance transparent conductive film Pending JPH07278791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6076888A JPH07278791A (en) 1994-04-15 1994-04-15 Low resistance transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6076888A JPH07278791A (en) 1994-04-15 1994-04-15 Low resistance transparent conductive film

Publications (1)

Publication Number Publication Date
JPH07278791A true JPH07278791A (en) 1995-10-24

Family

ID=13618183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6076888A Pending JPH07278791A (en) 1994-04-15 1994-04-15 Low resistance transparent conductive film

Country Status (1)

Country Link
JP (1) JPH07278791A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1881534A2 (en) 2006-07-20 2008-01-23 Sanyo Electric Co., Ltd. Solar cell module
US20080210551A1 (en) * 2002-05-30 2008-09-04 Yoshiyuki Abe Target for Transparent Conductive Thin Film, Transparent Conductive Thin Film and Manufacturing Method Thereof, Electrode Material for Display, and Organic Electroluminescence Element
JP2009108413A (en) * 2008-11-17 2009-05-21 Idemitsu Kosan Co Ltd Organic-electroluminescence element
JP2011018623A (en) * 2009-07-10 2011-01-27 Geomatec Co Ltd Transparent conducting film and manufacturing method therefor
WO2013183564A1 (en) * 2012-06-07 2013-12-12 日東電工株式会社 Transparent conductive film
US8963130B2 (en) 2010-12-30 2015-02-24 Samsung Display Co., Ltd. Transparent electrode and organic light emitting diode device including the transparent electrode and method of manufacturing the same
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080210551A1 (en) * 2002-05-30 2008-09-04 Yoshiyuki Abe Target for Transparent Conductive Thin Film, Transparent Conductive Thin Film and Manufacturing Method Thereof, Electrode Material for Display, and Organic Electroluminescence Element
EP1881534A2 (en) 2006-07-20 2008-01-23 Sanyo Electric Co., Ltd. Solar cell module
EP1881534A3 (en) * 2006-07-20 2009-02-25 Sanyo Electric Co., Ltd. Solar cell module
US7741558B2 (en) 2006-07-20 2010-06-22 Sanyo Electric Co., Ltd. Solar cell module
JP2009108413A (en) * 2008-11-17 2009-05-21 Idemitsu Kosan Co Ltd Organic-electroluminescence element
JP2011018623A (en) * 2009-07-10 2011-01-27 Geomatec Co Ltd Transparent conducting film and manufacturing method therefor
US8963130B2 (en) 2010-12-30 2015-02-24 Samsung Display Co., Ltd. Transparent electrode and organic light emitting diode device including the transparent electrode and method of manufacturing the same
JP2015506416A (en) * 2012-01-27 2015-03-02 ユーピー ケミカル カンパニー リミテッド Oxide film containing indium and method for producing the same
WO2013183564A1 (en) * 2012-06-07 2013-12-12 日東電工株式会社 Transparent conductive film
CN103999166A (en) * 2012-06-07 2014-08-20 日东电工株式会社 Transparent conductive film
JPWO2013183564A1 (en) * 2012-06-07 2016-01-28 日東電工株式会社 Transparent conductive film

Similar Documents

Publication Publication Date Title
US7998372B2 (en) Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel
US4798660A (en) Method for forming Cu In Se2 films
JP5376750B2 (en) Semiconductor thin film, manufacturing method thereof, thin film transistor, active matrix drive display panel
WO2010021106A1 (en) Semiconductor device, method for manufacturing semiconductor device, transistor substrate, light emitting device and display device
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
JPS62122011A (en) Transparent conducting film and manufacture of the same
JP2000026119A (en) Article having transparent electrically conductive oxide thin film and its manufacture
Isono et al. Highly conductive SnO2 thin films for flat‐panel displays
JP2002520877A (en) Collimated sputtering of semiconductors and other thin films
Hong et al. Texture analysis of Al-doped ZnO thin films prepared by in-line reactive MF magnetron sputtering
Sun et al. Synthesis and characterization of n-type NiO: Al thin films for fabrication of pn NiO homojunctions
JPH07262829A (en) Transparent conductive film and its forming method
JPH07278791A (en) Low resistance transparent conductive film
Matsubara et al. Sputtered polycrystalline MgZnO/Al reflective electrodes for enhanced light emission in AlGaN-based homojunction tunnel junction DUV-LED
US5473456A (en) Method for growing transparent conductive gallium-indium-oxide films by sputtering
Silva et al. High optoelectronic quality of AZO films grown by RF-magnetron sputtering for organic electronics applications
JP2528763B2 (en) Transparent electrically conductive oxide
CN101834009B (en) Low-indium doping amount zinc oxide transparent conducting film and preparation method thereof
Chen et al. Investigation of the properties of W-doped ZnO thin films with modulation power deposition by RF magnetron sputtering
JP3824289B2 (en) Transparent conductive thin film
JP4370868B2 (en) Oxide sintered body, sputtering target, and method for producing oxide transparent electrode film
JPH0877845A (en) Method of manufacturing and reforming film
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
JPH0950711A (en) Transparent conductive film