JPH07278412A - Epoxy resin composition, prepreg and fiber reinforced plastic - Google Patents

Epoxy resin composition, prepreg and fiber reinforced plastic

Info

Publication number
JPH07278412A
JPH07278412A JP7028372A JP2837295A JPH07278412A JP H07278412 A JPH07278412 A JP H07278412A JP 7028372 A JP7028372 A JP 7028372A JP 2837295 A JP2837295 A JP 2837295A JP H07278412 A JPH07278412 A JP H07278412A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
prepreg
weight
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7028372A
Other languages
Japanese (ja)
Inventor
Junko Tamai
順子 玉井
Atsushi Ozaki
篤 尾崎
Hajime Kishi
肇 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7028372A priority Critical patent/JPH07278412A/en
Publication of JPH07278412A publication Critical patent/JPH07278412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain the an epoxy resin composition which can give a cured product excellent in toughness by mixing an epoxy resin with a curing agent, a specified aromatic thermoplastic resin and a thermoplastic resin having a functional group reactive with epoxy, being soluble in the epoxy resin and having a specified numberaverage molecular weight. CONSTITUTION:An epoxy resin (A) (e.g. bisphenol A derived epoxy resin) is mixed with an aromatic thermoplastic resin (e.g. polyetherimide) having an average molecular weight of 10000 or above, and a glass transition temperature of 150 deg.C or above and being soluble in component A and a thermoplastic resin (D) (e.g. siloxane polyimide) having a number-average molecular weight of 2000-20000 and being soluble in component A, and further mixed with a curing agent (B) (e.g. dicyandiamide), and the obtained mixture is melt-kneaded to obtain the objective composition containing 4-25wt.% component C and 0.5-10wt.% component D. A release paper coated with a melt of this composition is laminated with a reinforcing fiber (e.g. carbon fiber) to form a prepreg, and this prepreg is heated to form the objective fiber-reinforced plastic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高靭性、高弾性率、さ
らには耐熱性、耐熱分解性、耐溶剤性、低吸水性に優れ
た樹脂硬化物を与えるエポキシ樹脂組成物、それをマト
ッリクス樹脂とするとするプリプレグおよび繊維強化プ
ラスチックに関する。
FIELD OF THE INVENTION The present invention relates to an epoxy resin composition which gives a cured resin excellent in high toughness, high elastic modulus, heat resistance, thermal decomposition resistance, solvent resistance and low water absorption, and Matricex The present invention relates to a prepreg and a fiber reinforced plastic that are made of resin.

【0002】[0002]

【従来の技術】エポキシ樹脂はその優れた力学的特性、
耐薬品性などを生かし、成形、積層、接着剤、封止剤な
ど各種産業分野に広く使用されている。特に強化繊維と
マトッリクス樹脂を必須の構成要素とする繊維強化複合
材料にはエポキシ樹脂が多く使われている。しかしなが
ら一方において、エポキシ樹脂は脆いという欠点を有し
ており、硬化物の耐衝撃性が悪いなどの問題点を有して
いる。特に、航空機、自動車等の構造材料に用いる場
合、耐衝撃性が悪いことは大きな問題である。
2. Description of the Related Art Epoxy resins have excellent mechanical properties,
Utilizing its chemical resistance, it is widely used in various industrial fields such as molding, lamination, adhesives and sealants. In particular, epoxy resins are often used in fiber-reinforced composite materials that have reinforced fibers and Matricex resin as essential components. On the other hand, however, the epoxy resin has a drawback that it is brittle and has a problem that the cured product has poor impact resistance. In particular, when it is used as a structural material for airplanes, automobiles, etc., poor impact resistance is a serious problem.

【0003】これらエポキシ樹脂の欠点、特に脆さを改
良するために以下の様々な試みがなされてきた。
Various attempts have been made to improve the drawbacks of these epoxy resins, especially the brittleness thereof.

【0004】ディアマントらが第29回ナショナル・
サンペ・シンポジウム(1984)の第422-436 頁に記してい
るように、末端官能基を有するゴム状ポリマー(例えば
カルボキシル基末端ブタジエン・アクリロニトリルゴ
ム)をエポキシに加えることにより樹脂靭性が向上す
る。しかし、弾性率(特に高温での弾性率)の低下が大
きいといった欠点を有する。
Diamant et al. 29th National
As described on pages 422-436 of Sampe Symposium (1984), addition of a rubbery polymer having terminal functional groups (eg, carboxyl group terminated butadiene acrylonitrile rubber) to epoxy improves resin toughness. However, it has a drawback that the elastic modulus (particularly, the elastic modulus at high temperature) is greatly reduced.

【0005】高架橋密度のエポキシ樹脂を高靭性化す
る試みとして熱可塑性樹脂をエポキシ樹脂組成物に加え
ることが行なわれてきた。ポリマー第30巻第 213頁 (19
89)においてシー・ビー・バックナルらがポリエーテル
イミドを改質剤として検討している。硬化樹脂はミクロ
相分離構造をとり、ポリエーテルイミドの添加量が増え
るにつれ、ポリエーテルイミドがドメインを形成するモ
ルホロジーからポリエーテルイミドが連続相を形成する
モルホロジーへと変化し、添加量が増えるに従い硬化樹
脂の靭性が向上すると述べている。しかし、ポリエーテ
ルイミドの相が容易に塩化メチレンによって溶かされる
ことが記載されているように、耐溶剤性に劣るという欠
点がある。また、高分子量の熱可塑性樹脂を添加するた
めに組成物の粘度が著しく高くなり、作業性が大きく低
下するという欠点もある。
Thermoplastic resins have been added to epoxy resin compositions in an attempt to increase the toughness of high crosslink density epoxy resins. Polymer Vol. 30, p. 213 (19
In 89), CB Bucknall et al. Are studying polyetherimide as a modifier. The cured resin has a microphase-separated structure, and as the amount of polyetherimide added increases, the morphology in which polyetherimide forms a domain changes from the morphology in which polyetherimide forms a continuous phase, and as the amount added increases. It states that the toughness of the cured resin is improved. However, as described that the phase of polyetherimide is easily dissolved by methylene chloride, it has a drawback of poor solvent resistance. In addition, there is a drawback that the viscosity of the composition becomes extremely high because of the addition of the high molecular weight thermoplastic resin, and the workability is significantly reduced.

【0006】末端にエポキシと反応する官能基を有
し、また多量に添加できるようオリゴマ領域の分子量を
有する熱可塑性樹脂を改質剤とする試みもなされた。例
えば米国特許第4656208号明細書および特開昭6
1−228016号においてエポキシ反応性の官能基を
末端に有するポリスルホンオリゴマーをエポキシ樹脂組
成物に加える検討がなされている。硬化樹脂はミクロ相
分離構造(海島構造)をとり、連続相にはポリスルホン
が高濃度に存在し、高い靭性を発現すると述べられてい
る。しかし、この系も耐溶剤性に劣るという欠点があ
る。欧州特許公開第0311349号明細書(1989)にお
いてもやはりアミン末端ポリアリルスルホンをエポキシ
樹脂組成物に加える検討がなされている。ポリアリルス
ルホンの骨格構造によって均一構造のもの、ポリアリル
スルホン相とエポキシ樹脂相に相分離し両相が連続構造
であるもの、連続相がポリアリルスルホンで島相がエポ
キシ相であるものと変化するとしている。そして、ポリ
アリルスルホン相とエポキシ樹脂相が両相とも連続構造
であるときに最も靭性が高くなると述べている。しか
し、ポリスルホン系の改質剤を用いた場合、エポキシ樹
脂の耐熱性を改善するには至らず、選択するエポキシ樹
脂によってはその耐熱性が低下することになる。また、
硬化条件に対して、諸物性が不安定であるといった欠点
を有している。
Attempts have also been made to use as a modifier a thermoplastic resin having a functional group capable of reacting with epoxy at the terminal and having a molecular weight in the oligomer region so that a large amount can be added. For example, U.S. Pat.
In No. 1-228016, studies are being made to add a polysulfone oligomer having an epoxy-reactive functional group at the end to an epoxy resin composition. It is stated that the cured resin has a microphase-separated structure (sea-island structure), and polysulfone is present in a high concentration in the continuous phase, and exhibits high toughness. However, this system also has the drawback of being poor in solvent resistance. European Patent Publication No. 031349 (1989) also considers adding an amine-terminated polyallylsulfone to an epoxy resin composition. The structure varies depending on the skeleton structure of polyallyl sulfone, that is, the polyallyl sulfone phase and the epoxy resin phase are separated and both phases are continuous structure, and the continuous phase is polyallyl sulfone and the island phase is epoxy phase. I'm supposed to. It is stated that the toughness is highest when both the polyallylsulfone phase and the epoxy resin phase have a continuous structure. However, when a polysulfone-based modifier is used, the heat resistance of the epoxy resin cannot be improved, and the heat resistance is lowered depending on the selected epoxy resin. Also,
It has the drawback that its physical properties are unstable with respect to the curing conditions.

【0007】特開平2−20913号において末端に
エポキシと反応する官能基を有するポリスルホン、ポリ
エーテルスルホンまたは相当する共重合体と、その共重
合体を構成するのと同じ単位からなる高分子乳化剤をエ
ポキシ樹脂組成物に添加する検討がなされている。乳化
剤が相安定剤及び相媒体として作用し、それにより樹脂
の構成及び硬化条件における変動に対して安定的である
エポキシ樹脂組成物が得られると述べている。しかし、
ポリスルホンを改質剤に用いた場合、ポリスルホンを2
5重量%添加したにもかかわらず、樹脂靭性KICは1.4M
Pa (m)1/2 程度であり十分とはいえない(弾性率3.6GPa
とするとGIC=560J/m2 と換算される)。
In JP-A-2-20913, a polysulfone, a polyether sulfone or a corresponding copolymer having a functional group capable of reacting with an epoxy group at the terminal and a polymer emulsifier composed of the same units as that constituting the copolymer are used. Studies have been made to add it to an epoxy resin composition. It is stated that the emulsifier acts as a phase stabilizer and phase medium, resulting in an epoxy resin composition that is stable to variations in the resin composition and curing conditions. But,
When polysulfone is used as a modifier,
Despite addition of 5% by weight, resin toughness K IC is 1.4M
Pa (m) 1/2 is not enough and is not sufficient (modulus of elasticity 3.6 GPa
Then, it is converted into G IC = 560 J / m 2. )

【0008】[0008]

【発明が解決しようとする課題】上記、従来技術の項に
記したとおり、これらの手法は、その靭性改良効果がい
まだ不十分であったり、靭性改良のため、耐熱性、耐溶
剤性、作業性その他の特性を犠牲にするなど、それぞれ
に欠点を有している。
As described above in the section of the prior art, these methods are still insufficient in the effect of improving the toughness, and in order to improve the toughness, heat resistance, solvent resistance, workability and workability are improved. Each has its own drawbacks, such as sacrificing sex and other characteristics.

【0009】本発明は卓越した高靭性を有し、同時に高
弾性率、低吸水性、高耐熱性、高耐熱分解性、耐溶剤性
を併せもち、それら諸物性の安定性が高い硬化物を与え
るエポキシ樹脂組成物を提供せんとするものである。
The present invention provides a cured product having excellent high toughness, high elastic modulus, low water absorption, high heat resistance, high thermal decomposition resistance and solvent resistance, and high stability in various physical properties. An epoxy resin composition to be provided is provided.

【0010】[0010]

【課題を解決するための手段】本発明のエポキシ樹脂組
成物は上記目的を達成するため、次の構成を有する。す
なわち、次の構成成分からなり、[C]を4 〜25重量
%、[D]を0.5 〜10重量%含有することを特徴とする
エポキシ樹脂組成物である。
The epoxy resin composition of the present invention has the following constitution in order to achieve the above object. That is, an epoxy resin composition comprising the following constituents and containing [C] in an amount of 4 to 25% by weight and [D] in an amount of 0.5 to 10% by weight.

【0011】[A]:エポキシ樹脂 [B]:硬化剤 [C]:数平均分子量が10000以上かつガラス転移
温度が150 ℃以上であり、[A]に溶解し得る芳香族熱
可塑性樹脂 [D]:[A]と反応性の官能基を有し、[A]に溶解
し得る数平均分子量2000乃至20000の熱可塑性
樹脂 また、本発明のプリプレグは、次の構成を有する。すな
わち、エポキシ樹脂組成物と強化繊維[E]よりなるプ
リプレグであって、エポキシ樹脂組成物が次の構成成分
からなり、[C]を4 〜25重量%、[D]を0.5 〜10重
量%含有するものであることを特徴とするプリプレグ。
[A]: Epoxy resin [B]: Curing agent [C]: Aromatic thermoplastic resin having a number average molecular weight of 10,000 or more and a glass transition temperature of 150 ° C. or more and soluble in [A] [D] ]: A thermoplastic resin having a functional group reactive with [A] and having a number average molecular weight of 2,000 to 20,000 and soluble in [A]. The prepreg of the present invention has the following constitution. That is, a prepreg comprising an epoxy resin composition and a reinforcing fiber [E], wherein the epoxy resin composition comprises the following constituents, [C] is 4 to 25% by weight, and [D] is 0.5 to 10% by weight. A prepreg characterized by being contained.

【0012】[A]:エポキシ樹脂 [B]:硬化剤 [C]:数平均分子量が10000以上かつガラス転移
温度が150 ℃以上であり、[A]に溶解し得る芳香族熱
可塑性樹脂 [D]:[A]と反応性の官能基を有し、[A]に溶解
し得る数平均分子量2000乃至20000の熱可塑性
樹脂 さらに、本発明の繊維強化プラスチックは次の構成を有
する。すなわち、エポキシ樹脂組成物と強化繊維[E]
よりなるプリプレグを硬化させて得られる繊維強化プラ
スチックであって、エポキシ樹脂組成物が次の構成成分
からなり、[C]を4 〜25重量%、[D]を0.5 〜10重
量%含有するものであることを特徴とする繊維強化プラ
スチック。
[A]: Epoxy resin [B]: Curing agent [C]: Aromatic thermoplastic resin [D] having a number average molecular weight of 10,000 or more and a glass transition temperature of 150 ° C. or more and soluble in [A] ]: Thermoplastic resin having a functional group reactive with [A] and having a number average molecular weight of 2000 to 20000 and soluble in [A] Further, the fiber-reinforced plastic of the present invention has the following constitution. That is, the epoxy resin composition and the reinforcing fiber [E]
A fiber reinforced plastic obtained by curing a prepreg consisting of the following, wherein the epoxy resin composition comprises the following constituents and contains [C] in an amount of 4 to 25% by weight and [D] in an amount of 0.5 to 10% by weight. A fiber reinforced plastic characterized by:

【0013】[A]:エポキシ樹脂 [B]:硬化剤 [C]:数平均分子量が10000以上かつガラス転移
温度が150 ℃以上であり、[A]に溶解し得る芳香族熱
可塑性樹脂 [D]:[A]と反応性の官能基を有し、[A]に溶解
し得る数平均分子量2000乃至20000の熱可塑性
樹脂 ここで、構成要素[C]および[D]における「構成要
素[A]に溶解し得る熱可塑性樹脂」とは、次のように
定義されるものをいう。すなわち、構成要素[A]に対
し、該熱可塑性樹脂を5wt%添加し、25℃の状態お
よび140℃にて2時間加熱撹拌後の2条件にて顕微鏡
観察を行う。25℃での観察において、樹脂中に熱可塑
性樹脂が占有する領域(顕微鏡写真上の熱可塑性樹脂面
積で代表させる)に対し、加熱処理後の熱可塑性樹脂占
有面積が30%以下に減少している場合、この熱可塑性
樹脂を「溶解し得る熱可塑性樹脂」とする。
[A]: Epoxy resin [B]: Curing agent [C]: Aromatic thermoplastic resin [D] which has a number average molecular weight of 10,000 or more and a glass transition temperature of 150 ° C. or more and is soluble in [A] ]: A thermoplastic resin having a functional group reactive with [A] and soluble in [A] and having a number average molecular weight of 2000 to 20000. Here, in the constituent elements [C] and [D], “component [A] ] The thermoplastic resin which can be dissolved "means a resin defined as follows. That is, 5 wt% of the thermoplastic resin is added to the constituent element [A], and microscopic observation is performed under the two conditions of 25 ° C. and heating and stirring at 140 ° C. for 2 hours. In the observation at 25 ° C, the area occupied by the thermoplastic resin in the resin (represented by the area of the thermoplastic resin on the micrograph) was reduced to 30% or less after the heat treatment. If so, this thermoplastic resin is referred to as a "meltable thermoplastic resin".

【0014】以下、構成要素別に説明を加える。Hereinafter, description will be added for each component.

【0015】本発明に構成要素[A]として用いられる
要素はエポキシ樹脂である。エポキシ樹脂とは1分子あ
たり平均2個以上のエポキシ基を有する樹脂である。特
に、アミン類、フェノール類、炭素炭素二重結合を有す
る化合物を前駆体とするエポキシ樹脂が好ましい。具体
的には、アミン類を前駆体とするエポキシ樹脂として、
テトラグリシジルジアミノジフェニルメタン、トリグリ
シジル−p−アミノフェノール、トリグリシジル−m−
アミノフェノール、トリグリシジルアミノクレゾールの
各種異性体、フェノール類を前駆体とするエポキシ樹脂
として、ビスフェノールA型エポキシ樹脂、ビスフェノ
ールF型エポキシ樹脂、ビスフェノールS型エポキシ樹
脂、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂、レゾルシノール型エポキシ
樹脂、炭素炭素二重結合を有する化合物を前駆体とする
エポキシ樹脂としては、脂環式エポキシ樹脂等があげら
れる。また、これらのエポキシ樹脂をブロム化したブロ
ム化エポキシ樹脂も用いられる。これらエポキシ樹脂は
2種以上の混合系で用いてもよく、モノエポキシ化合物
を含有しても良い。例えば、グリシジルアミン型エポキ
シ樹脂とグリシジルエーテル型エポキシ樹脂の組み合わ
せによる組成物は耐熱性、耐水性および良作業性を併せ
持つため好ましい。特に、トリグリシジル−p−アミノ
フェノール、トリグリシジル−m−アミノフェノールの
誘導体といったグリシジルアミン型エポキシ樹脂とビス
フェノールA型エポキシ樹脂とビスフェノールF型エポ
キシ樹脂、レゾルシノール型エポキシ樹脂といったグリ
シジルエーテル型エポキシ樹脂の組み合わせは、それぞ
れの樹脂の低粘度性に起因して作業性に優れた樹脂組成
物を与える。
The element used as the constituent element [A] in the present invention is an epoxy resin. The epoxy resin is a resin having an average of 2 or more epoxy groups per molecule. In particular, epoxy resins having an amine, a phenol, or a compound having a carbon-carbon double bond as a precursor are preferable. Specifically, as an epoxy resin using amines as a precursor,
Tetraglycidyl diaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-
Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type, as epoxy resins using aminophenol, various isomers of triglycidyl aminocresol, and phenols as precursors Examples of the epoxy resin, resorcinol type epoxy resin, and epoxy resin having a compound having a carbon-carbon double bond as a precursor include alicyclic epoxy resins. Brominated epoxy resins obtained by bromizing these epoxy resins are also used. These epoxy resins may be used as a mixture of two or more kinds, and may contain a monoepoxy compound. For example, a composition obtained by combining a glycidyl amine type epoxy resin and a glycidyl ether type epoxy resin is preferable because it has both heat resistance, water resistance and good workability. In particular, a combination of a glycidylamine type epoxy resin such as triglycidyl-p-aminophenol and a derivative of triglycidyl-m-aminophenol, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin and a glycidyl ether type epoxy resin such as a resorcinol type epoxy resin. Gives a resin composition excellent in workability due to the low viscosity of each resin.

【0016】構成要素[B]として用いられる要素は硬
化剤である。好ましくは、アミノ基、酸無水物基、アジ
ド基、水酸基を有する化合物が適している。例えば、ジ
シアンジアミド、ジアミノジフェニルスルホンの各種異
性体、アミノ安息香酸エステル類、各種酸無水物、フェ
ノールノボラック樹脂、クレゾールノボラック樹脂が挙
げられるがこれに限定されない。ジシアンジアミドはプ
リプレグの保存性に優れるため好んで用いられる。芳香
族ジアミンを硬化剤として用いると耐熱性良好なエポキ
シ樹脂硬化物が得られる。特に、ジアミノジフェニルス
ルホンの各種異性体は、耐熱性の良好な硬化物を与える
ため本発明には最も適している。アミノ安息香酸エステ
ル類としては、トリメチレングリコールジ−p−アミノ
ベンゾエートやネオペンチルグリコールジ−p−アミノ
ベンゾエートが好んで用いられ、ジアミノジフェニルス
ルホンと比較して、耐熱性に劣るものの、引張伸度、靭
性に優れるため、用途に応じて選択して用いられる。メ
チルヘキサヒドロ無水フタル酸に代表される酸無水物を
硬化剤として用いると、耐熱性が高い硬化物を与え、低
粘度で作業性に優れたエポキシ樹脂組成物が得られる。
フェノールノボラック樹脂あるいはクレゾールノボラッ
ク樹脂はこれを硬化剤として用いると、分子鎖中に耐加
水分解性の優れたエーテル結合が導入され、硬化物の耐
湿性が向上するため好ましい。さらに、種々の硬化触媒
も併用することができる。その代表的なものは三フッ化
ほう素のモノエチルアミン錯体である。また、シアネー
ト樹脂(トリアジン樹脂)もエポキシ樹脂と組み合わせ
て好ましく用いられる。この場合、シアネートはエポキ
シと硬化反応をおこし、吸水率の低い樹脂硬化物を与え
る。
The element used as component [B] is a curing agent. A compound having an amino group, an acid anhydride group, an azido group or a hydroxyl group is preferable. Examples thereof include, but are not limited to, dicyandiamide, various isomers of diaminodiphenyl sulfone, aminobenzoic acid esters, various acid anhydrides, phenol novolac resins, and cresol novolac resins. Dicyandiamide is preferred because it is excellent in storage stability of prepreg. When an aromatic diamine is used as a curing agent, an epoxy resin cured product having good heat resistance can be obtained. In particular, various isomers of diaminodiphenyl sulfone are most suitable for the present invention because they give a cured product having good heat resistance. As the aminobenzoic acid esters, trimethylene glycol di-p-aminobenzoate and neopentyl glycol di-p-aminobenzoate are preferably used. Although they have poor heat resistance as compared with diaminodiphenyl sulfone, they have a tensile elongation. Since it has excellent toughness, it is selected and used according to the application. When an acid anhydride represented by methylhexahydrophthalic anhydride is used as a curing agent, a cured product having high heat resistance is obtained, and an epoxy resin composition having low viscosity and excellent workability can be obtained.
When phenol novolac resin or cresol novolac resin is used as a curing agent, an ether bond having excellent hydrolysis resistance is introduced into the molecular chain and the moisture resistance of the cured product is improved, which is preferable. Further, various curing catalysts can be used together. A typical example thereof is a monoethylamine complex of boron trifluoride. A cyanate resin (triazine resin) is also preferably used in combination with an epoxy resin. In this case, cyanate undergoes a curing reaction with epoxy to give a resin cured product having a low water absorption.

【0017】構成要素[C]は、数平均分子量1000
0以上かつガラス転移温度150 ℃以上であり[A]に溶
解し得る芳香族熱可塑性樹脂である。特に、主鎖に炭素
炭素結合、アミド結合、イミド結合、エステル結合、エ
ーテル結合、カーボネート結合、ウレタン結合、炭素結
合、チオエーテル結合、スルホン結合、イミダゾール結
合およびカルボニル結合から選ばれる結合を有する熱可
塑性樹脂が好ましい。具体的には、ポリアリレート、ポ
リスルホン、ポリエーテルイミド、ポリエーテルサルホ
ン、ポリアミドイミド、ポリイミドなどがあり、耐熱性
が良好であり、エポキシ樹脂に溶解し得る非晶性の熱可
塑性樹脂が良い。熱硬化性樹脂に対して元来非相溶な改
質剤を添加した場合、均一混合は難しく、大きな相分離
形態となったり相分離界面の接着性が不十分であったり
するため靭性向上効果が不十分となる。とりわけ、ポリ
エーテルイミドを用いたとき、耐熱性と靭性のバランス
に優れた樹脂硬化物を与えるので好ましい。また、構成
要素[C]の分子量は数平均分子量にして10000以
上とするものである。樹脂粘度の増加が著しくなるのを
防止する観点から、好ましくは100000以下の範囲
である。数平均分子量が10000未満の場合、靭性向
上効果が小さい。さらに、構成要素[C]の量は樹脂組
成物中4〜25重量%とするものである。これより少な
ければ靭性向上効果が小さく、またこれより多ければ作
業性の低下が顕著である。好ましくは、6乃至20重量
%である。
The constituent [C] has a number average molecular weight of 1,000.
It is an aromatic thermoplastic resin having a glass transition temperature of 0 ° C. or higher and a glass transition temperature of 150 ° C. or higher and soluble in [A]. Particularly, a thermoplastic resin having a bond selected from carbon-carbon bond, amide bond, imide bond, ester bond, ether bond, carbonate bond, urethane bond, carbon bond, thioether bond, sulfone bond, imidazole bond and carbonyl bond in the main chain. Is preferred. Specifically, there are polyarylate, polysulfone, polyetherimide, polyethersulfone, polyamideimide, polyimide, etc., which have good heat resistance, and amorphous thermoplastic resin which can be dissolved in epoxy resin is preferable. If an originally incompatible modifier is added to the thermosetting resin, uniform mixing is difficult, resulting in a large phase separation morphology or insufficient adhesiveness at the phase separation interface, resulting in an improvement in toughness. Is insufficient. In particular, the use of polyetherimide is preferable because it gives a resin cured product having an excellent balance of heat resistance and toughness. The molecular weight of the constituent element [C] is 10,000 or more in terms of number average molecular weight. From the viewpoint of preventing the resin viscosity from increasing remarkably, the range is preferably 100,000 or less. When the number average molecular weight is less than 10,000, the toughness improving effect is small. Further, the amount of the constituent element [C] is 4 to 25% by weight in the resin composition. If it is less than this range, the toughness improving effect is small, and if it is more than this range, the workability is significantly deteriorated. It is preferably 6 to 20% by weight.

【0018】構成要素[D]は、[A]と反応性の官能
基を有し、[A]に溶解し得る数平均分子量2000乃
至20000の熱可塑性樹脂である。構成要素[A]と
反応性の末端基を有することは、相分離界面の接着性を
向上させ、高い靭性値及び良好な耐溶剤性を与える。構
成要素[D]は、1分子中に溶解度パラメーターが大き
く異なる、例えばエポキシ樹脂に相溶部分と非相溶部分
を併せ持つブロック共重合体またはグラフト共重合体が
好ましい。好ましい具体例の1つは、構成要素[A]と
は本来非相溶であるシロキサン骨格またはニトリルゴム
からなる連鎖と構成要素[A]と相溶するポリイミド骨
格、ポリアミド骨格、ポリスルホン骨格あるいはポリエ
ーテルスルホン骨格からなるブロック共重合体またはグ
ラフト共重合体である。このブロック共重合体またはグ
ラフト共重合体を構成要素[C]と併用して使用するこ
とで、特に顕著な高靭性、高耐熱性、耐溶剤性及び物性
安定性を有する樹脂組成物が得られる。とりわけ、シロ
キサン骨格とポリイミド骨格からなるブロック共重合体
は靭性向上効果が高く、低吸水性となるため好ましい。
また、構成要素[D]を適量添加することにより、分散
相の大きさを制御することが可能となり、それらによっ
て従来得られなかった高い靭性を持つ硬化物が得られ
る。さらに、硬化条件の変化に対して安定的であり、そ
れにより物性安定な硬化物が得られる。また、構成要素
[D]の分子量は数平均分子量にして約2000乃至2
0000の範囲とするものである。特に3000乃至1
0000のオリゴマ領域のものは、構成要素[A]を主
成分とする分散相の大きさを制御するだけではなく、相
分離界面の接着性をより強固なものとするので好まし
い。構成要素[D]の量は樹脂組成物中0.5〜10重
量%とするものである。これより少なければ靭性向上の
効果が得られず、また、これより多くてもそれ以上の効
果があまり認められない。より好ましくは2乃至8重量
%である。
The constituent element [D] is a thermoplastic resin having a functional group reactive with [A] and soluble in [A] and having a number average molecular weight of 2000 to 20000. Having an end group reactive with the component [A] improves the adhesiveness of the phase separation interface, and gives a high toughness value and good solvent resistance. The constituent element [D] is preferably a block copolymer or graft copolymer having a large difference in solubility parameter in one molecule, for example, an epoxy resin having both compatible and incompatible parts. One of the preferred specific examples is a polyimide skeleton, a polyamide skeleton, a polysulfone skeleton or a polyether which is compatible with the constituent [A] and a chain composed of a siloxane skeleton or a nitrile rubber which is originally incompatible with the constituent [A]. It is a block copolymer or graft copolymer having a sulfone skeleton. By using this block copolymer or graft copolymer in combination with the constituent element [C], a resin composition having particularly high toughness, high heat resistance, solvent resistance and physical property stability can be obtained. . Above all, a block copolymer having a siloxane skeleton and a polyimide skeleton is preferable because it has a high toughness improving effect and low water absorption.
Moreover, by adding an appropriate amount of the constituent element [D], it becomes possible to control the size of the dispersed phase, and by these, a cured product having high toughness which has not been obtained hitherto can be obtained. Furthermore, a cured product that is stable against changes in curing conditions and has stable physical properties can be obtained. The molecular weight of the constituent element [D] is about 2000 to 2 in terms of number average molecular weight.
The range is 0000. Especially 3000 to 1
Those having an oligomer region of 0000 are preferable not only for controlling the size of the dispersed phase containing the constituent [A] as a main component, but also for further strengthening the adhesiveness of the phase separation interface. The amount of the constituent element [D] is 0.5 to 10% by weight in the resin composition. If it is less than this, the effect of improving toughness is not obtained, and if it is more than this, no further effect is observed. It is more preferably 2 to 8% by weight.

【0019】本発明において、樹脂硬化物中に、構成要
素[C]及び[D]を主とする相が、三次元的に連続し
た構造を持つことが好ましい。例えば、構成要素[C]
及び[D]を主とする連続相(海相)に構成要素[A]
及び[B]が主として分散相(島相)になっているか、
構成要素[A]及び[B]と構成要素[C]及び[D]
がともに連続相を形成し、互いの連続相中に他成分の分
散相が存在していてもよい。構成要素[C]及び[D]
を主とする連続相(海相)中に存在する構成要素[A]
及び[B]を主とする分散相(島相)の大きさは、約
0.01乃至50ミクロンが好ましい。0.01ミクロ
ン以下であると破断面の凹凸深さが浅く、高靭性を発現
しにくい。逆に50ミクロンを越えても高靭性効果が薄
れる。より好ましくは0.1乃至3ミクロン程度であ
る。
In the present invention, it is preferred that the phase mainly composed of the constituent elements [C] and [D] has a three-dimensionally continuous structure in the cured resin. For example, component [C]
And a constituent element [A] in the continuous phase (sea phase) mainly consisting of [D]
And [B] is mainly a dispersed phase (island phase),
Components [A] and [B] and components [C] and [D]
May together form a continuous phase, and the dispersed phase of another component may be present in the continuous phase of each other. Components [C] and [D]
Component [A] existing in the continuous phase (sea phase)
The size of the dispersed phase (island phase) mainly composed of [B] and [B] is preferably about 0.01 to 50 microns. When it is 0.01 micron or less, the unevenness of the fracture surface is shallow and it is difficult to exhibit high toughness. On the contrary, the effect of high toughness diminishes even if it exceeds 50 microns. More preferably, it is about 0.1 to 3 microns.

【0020】本発明は、上記した構成要素[A]、
[B]、[C]、[D]からなるエポキシ樹脂組成物、
該エポキシ樹脂組成物と強化繊維[E]よりなる高靭
性、高強度の繊維強化プラスチックおよびそれを与える
プリプレグを提供する。その際に用いる強化繊維は、一
般に先進複合材料として用いられる耐熱性および引張強
度の良好な繊維である。たとえば、その強化繊維には、
炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、
アルミナ繊維、ボロン繊維、タングステンカーバイド繊
維、ガラス繊維があげらる。このうち比強度、比弾性率
が良好で軽量化に大きな寄与が認められる炭素繊維や黒
鉛繊維が本発明には最も良好である。炭素繊維や黒鉛繊
維は用途に応じてあらゆる種類の炭素繊維や黒鉛繊維を
用いることが可能であるが、引張強度 450kgf/mm2 、引
張伸度 1.7 %以上の高強度高伸度炭素繊維が最も適して
いる。炭素繊維や黒鉛繊維は他の強化繊維を混合して用
いてもかまわない。また、強化繊維はその形状や配列を
限定されず、たとえば、単一方向、ランダム方向、シー
ト状、マット状、織物状、組み紐状であっても使用可能
である。また、特に、比強度、比弾性率が高いことを要
求される用途には強化繊維が単一方向に引き揃えられた
配列が最も適しているが、取り扱いの容易なクロス(織
物)状の配列も本発明には適している。
The present invention includes the above-mentioned component [A],
An epoxy resin composition comprising [B], [C] and [D],
A high toughness and high strength fiber reinforced plastic comprising the epoxy resin composition and a reinforcing fiber [E], and a prepreg for providing the same. The reinforcing fiber used at that time is a fiber generally used as an advanced composite material and having good heat resistance and tensile strength. For example, the reinforcing fibers include
Carbon fiber, graphite fiber, aramid fiber, silicon carbide fiber,
Alumina fiber, boron fiber, tungsten carbide fiber, and glass fiber are listed. Among these, carbon fibers and graphite fibers, which have good specific strength and specific elastic modulus and are recognized to make a great contribution to weight reduction, are the best for the present invention. It is possible to use all kinds of carbon fibers and graphite fibers depending on the application, but the highest strength and high elongation carbon fiber with a tensile strength of 450 kgf / mm 2 and a tensile elongation of 1.7% or more is the most suitable. Are suitable. Carbon fibers and graphite fibers may be used by mixing with other reinforcing fibers. Further, the reinforcing fiber is not limited in shape or arrangement, and may be used in a single direction, a random direction, a sheet shape, a mat shape, a woven shape, or a braided shape. In addition, the arrangement in which the reinforcing fibers are aligned in a single direction is most suitable for applications that require high specific strength and high specific elastic modulus, but a cloth (fabric) arrangement that is easy to handle. Are also suitable for the present invention.

【0021】本発明の組成物を用いて製造された硬化樹
脂の破壊歪エネルギー解放率GICは、ダブルトーション
(DT)法で測定される。荷重をかけるクロスヘッドの
速度は1mm/min. とした。測定法の概図を図1に示し
た。DT法について詳しくは、ジャーナル・オブ・マテ
リアルズ・サイエンス第20巻 (1985) 第77-84 頁などに
記載されている。
The fracture strain energy release rate G IC of the cured resin produced using the composition of the present invention is measured by the double torsion (DT) method. The speed of the crosshead for applying a load was 1 mm / min. A schematic diagram of the measuring method is shown in FIG. Details of the DT method are described in Journal of Materials Science, Volume 20, (1985), pp. 77-84, etc.

【0022】GICは亀裂発生荷重P、コンプライアンス
Cの亀裂進展距離ai に対する傾きΔC/Δai および
亀裂進展部のサンプル厚みtから、GIC=P2 (ΔC/
Δai )/2tによって計算される。
[0022] G IC is cracking load P, the slope [Delta] C / .DELTA.a i and crack growth of the sample thickness t for crack extension distance a i compliance C, G IC = P 2 ( ΔC /
Calculated by Δa i ) / 2t.

【0023】但し、コンプライアンスCは、亀裂発生時
のクロスヘッド変位δおよび亀裂発生荷重Pの比δ/P
によって定義される。
However, the compliance C is the ratio δ / P of the crosshead displacement δ at the time of crack initiation and the crack initiation load P.
Defined by

【0024】[0024]

【実施例】【Example】

[実施例1] (A部)窒素導入口および温度計、撹拌器および脱水ト
ラップを装着した3000ml容のセパラブルフラスコに窒素
置換のもとで 392g(0.91mol) のビス[4-(3-アミノフェ
ノキシ)フェニル] スルホン(BAPS−M)、39g(0.
11mol)の9,9'- ビス(4-アミノフェニル) フルオレン
(FDA)、147g(0.11mol) のNH2 当量650 のアミノ
末端ジメチルシロキサン(BY-16-853 )[東レ・ダウコ
ーニング・シリコーン(株)製]を2000mlのN-メチル-2
- ピロリドン(NMP)に撹拌溶解した。そこへ固体状
のビフェニルテトラカルボン酸二無水物を300g(1.02mo
l) を少しずつ加え、室温で3時間撹拌した後、120 ℃
に昇温し2時間撹拌した。フラスコを室温に戻しトリエ
チルアミン50mlとトルエン50mlを加えた後、再び昇温し
160 ℃で共沸脱水すると約30mlの水が得られた。この反
応混合物を冷却した後、倍量のNMPで希釈し、ゆっく
りと20l のアセトン中に注ぎアミン末端シロキサンポリ
イミドオリゴマーを固体生成物として沈殿させた。そし
て、その沈殿物を200 ℃で真空乾燥した。このオリゴマ
ーの数平均分子量(Mn)をジメチルホルムアミド(DM
F)溶媒を用いてゲルパーミエーションクロマトグラフ
ィー(GPC)で測定すると、ポリエチレングリコール
(PEG)換算で5500であった。またガラス転移点は示
差熱分析計(DSC)によると223 ℃であった。また、
シロキサン骨格の導入およびアミン末端であることはN
MRスペクトルおよびIRスペクトルから確認できた。
[Example 1] (Part A) In a 3000 ml separable flask equipped with a nitrogen inlet, a thermometer, a stirrer and a dehydration trap, 392 g (0.91 mol) of bis [4- (3- Aminophenoxy) phenyl] sulfone (BAPS-M), 39 g (0.
11 mol of 9,9'-bis (4-aminophenyl) fluorene (FDA), 147 g (0.11 mol) of NH 2 equivalent 650 amino-terminated dimethylsiloxane (BY-16-853) [Toray Dow Corning Silicone ( 2000 ml N-methyl-2
-Pyrrolidone (NMP) was dissolved by stirring. There, 300 g (1.02 mol) of solid biphenyltetracarboxylic dianhydride was added.
l) was added little by little and stirred at room temperature for 3 hours, then at 120 ℃
The temperature was raised to and the mixture was stirred for 2 hours. After returning the flask to room temperature and adding 50 ml of triethylamine and 50 ml of toluene, the temperature was raised again.
Azeotropic dehydration at 160 ° C yielded about 30 ml of water. After cooling the reaction mixture, it was diluted with double NMP and slowly poured into 20 l of acetone to precipitate the amine-terminated siloxane polyimide oligomer as a solid product. Then, the precipitate was vacuum dried at 200 ° C. The number average molecular weight (Mn) of this oligomer was calculated from dimethylformamide (DMn).
F) When measured by gel permeation chromatography (GPC) using a solvent, it was 5500 in terms of polyethylene glycol (PEG). The glass transition point was 223 ° C. according to a differential thermal analyzer (DSC). Also,
The introduction of the siloxane skeleton and the amine termination are N
It could be confirmed from the MR spectrum and the IR spectrum.

【0025】(B部)ビーカーに上記A部のシロキサン
ポリイミドを5.0重量%、ビスフェノールF型エポキ
シ樹脂(Epc830)[大日本インキ化学(株)製]
55.2重量%およびポリエーテルイミド(PEI)
[ゼネラル・エレクトリック社製]20.0重量%を加
え、室温で充分に分散させ、それを130 ℃で1時間加熱
溶解し、次いで19.9重量%のスミキュアーS(4,4'-
DDS)[住友化学工業(株)製]を加え130 ℃で10分で溶
解させた。
(Part B) In a beaker, 5.0% by weight of the siloxane polyimide of Part A, bisphenol F type epoxy resin (Epc830) [manufactured by Dainippon Ink and Chemicals, Inc.]
55.2% by weight and polyetherimide (PEI)
[General Electric Co., Ltd.] 20.0% by weight was added, and the mixture was thoroughly dispersed at room temperature, heated and dissolved at 130 ° C. for 1 hour, and then 19.9% by weight of Sumicure S (4,4′-).
DDS) [Sumitomo Chemical Co., Ltd.] was added and dissolved at 130 ° C. for 10 minutes.

【0026】これを離型処理を施したフィルムにはさ
み、3mm 厚の板状に押し延ばし、6Kg/cm2 の加圧下で18
0 ℃で2時間硬化反応させ、3mm 厚の樹脂硬化板を得
た。
This is sandwiched between release-treated films, pressed into a plate with a thickness of 3 mm, and pressed under a pressure of 6 Kg / cm 2 for 18 hours.
A curing reaction was carried out at 0 ° C. for 2 hours to obtain a 3 mm-thick resin cured plate.

【0027】この樹脂硬化板についての破壊歪エネルギ
ー解放率(GIC)測定結果を表1に示す。また、60×10
×3mm の樹脂板を24時間塩化メチレンに浸漬したとき
の変化(以下、耐溶剤性)を表1に示す。
Table 1 shows the results of measuring the fracture strain energy release rate (G IC ) of this resin cured plate. Also, 60 × 10
Table 1 shows changes (hereinafter referred to as solvent resistance) when a resin plate of × 3 mm was immersed in methylene chloride for 24 hours.

【0028】[0028]

【表1】 (C部)この樹脂をマトリックスとする一方向プリプレ
グを用いたコンポジットの衝撃後圧縮強度および90°
方向の引張り伸度の測定を行った。プリプレグは次の手
順で調製した。
[Table 1] (Part C) Compressive strength after impact of a composite using a unidirectional prepreg using this resin as a matrix and 90 °
The tensile elongation in the direction was measured. The prepreg was prepared by the following procedure.

【0029】ニーダで上記組成の樹脂を調製し、シリコ
ン離型剤をあらかじめ薄く塗布した離型紙に一定の厚さ
でコーティングした。炭素繊維トレカT800H(東レ
(株)製)を用いて、先に調製した樹脂コーティング紙
2枚のあいだに炭素繊維を1方向に引き揃えてから圧着
させてプリプレグとした。この時プリプレグ中の樹脂の
重量分率は35%であり、炭素繊維の目付は145g/m2
あった。このプリプレグを疑似等方構成((+45°/90 °
/-45°/0°) 4S)で32層に積層し、通常の真空バッグ
オートクレーブ成形法を用い、6 kg/cm2 の加圧下で1
80℃×2時間の加熱を行い硬化板を得た。その繊維容
積は56±2%であった。4″×6″の試験片を切り出
し、1500in・lb/in の衝撃エネルギーを与えた後、圧縮
試験を行った。その結果、45ksi の残存圧縮強度を示し
た。また、上記プリプレグを単一方向に16枚積層し、
同様に成形した硬化板を用いて90°引張伸度を測定し
たところ1.2%であった。プリプレグを一方向に20枚積
層し、硬化板を成形した。ダブルカンテレバービーム法
にて引きはがしモードの層間靭性GICを測定したとこ
ろ、640J/m2 であった。
A resin having the above composition was prepared with a kneader, and a release paper to which a silicone release agent was thinly applied was coated with a constant thickness. Using carbon fiber Torayca T800H (manufactured by Toray Industries, Inc.), carbon fibers were aligned in one direction between the two resin-coated paper sheets prepared above and then pressure-bonded to obtain a prepreg. At this time, the weight fraction of the resin in the prepreg was 35%, and the basis weight of the carbon fiber was 145 g / m 2 . This prepreg is a pseudo isotropic structure ((+ 45 ° / 90 °
/ -45 ° / 0 °) 4S ) and laminated in 32 layers, using a normal vacuum bag autoclave molding method, under pressure of 6 kg / cm 2
A cured plate was obtained by heating at 80 ° C. for 2 hours. The fiber volume was 56 ± 2%. A 4 ″ × 6 ″ test piece was cut out, subjected to an impact energy of 1500 in · lb / in, and then subjected to a compression test. As a result, it showed a residual compressive strength of 45 ksi. In addition, 16 sheets of the above prepreg are laminated in a single direction,
When a 90 ° tensile elongation was measured using a similarly cured cured plate, it was 1.2%. Twenty prepregs were laminated in one direction to form a cured plate. The interlaminar toughness G IC in the peeling mode was measured by the double cantilever beam method and found to be 640 J / m 2 .

【0030】[実施例2]実施例1において、A部のシ
ロキサンポリイミドを3.0重量%としたほかは実施例
1と同様にして、樹脂硬化板を得た。この樹脂硬化板に
ついての破壊歪エネルギー解放率(GIC)、耐溶剤性測
定結果を表1に併せて示す。
Example 2 A resin cured plate was obtained in the same manner as in Example 1 except that the siloxane polyimide in Part A was 3.0% by weight. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0031】[実施例3]実施例1において、A部のシ
ロキサンポリイミドを8.0重量%としたほかは実施例
1と同様にして、樹脂硬化板を得た。この樹脂硬化板に
ついての破壊歪エネルギー解放率(GIC)、耐溶剤性測
定結果を表1に併せて示す。
[Example 3] A resin cured plate was obtained in the same manner as in Example 1 except that the siloxane polyimide in Part A was 8.0% by weight. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0032】[実施例4]ポリエーテルイミド(PE
I)[ゼネラル・エレクトリック社製]を10.0重量
%としたほかは実施例1と同様にして、樹脂硬化板を得
た。この樹脂硬化板についての破壊歪エネルギー解放率
(GIC)、耐溶剤性測定結果を表1に併せて示す。
Example 4 Polyetherimide (PE
I) A resin cured plate was obtained in the same manner as in Example 1 except that 10.0% by weight of [General Electric Co.] was used. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0033】[実施例5]ポリエーテルイミド(PE
I)[ゼネラル・エレクトリック社製]を15.0重量
%としたほかは実施例1と同様にして、樹脂硬化板を得
た。この樹脂硬化板についての破壊歪エネルギー解放率
(GIC)、耐溶剤性測定結果を表1に併せて示す。
Example 5 Polyetherimide (PE
I) A resin cured plate was obtained in the same manner as in Example 1 except that 15.0% by weight of [General Electric Co.] was used. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0034】[実施例6]実施例1において、A部のシ
ロキサンポリイミドを8.0重量%、ポリエーテルイミ
ド(PEI)[ゼネラル・エレクトリック社製]を1
5.0重量%とし、実施例1と同様にして、樹脂硬化板
を得た。この樹脂硬化板についての破壊歪エネルギー解
放率(GIC)、耐溶剤性測定結果を表1に併せて示す。
[Example 6] In Example 1, the siloxane polyimide of Part A was 8.0% by weight, and the polyetherimide (PEI) [manufactured by General Electric Company] was added to 1 part.
A resin cured plate was obtained in the same manner as in Example 1 except that the amount was 5.0% by weight. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0035】[比較例1]構成要素[D]としてのシロ
キサンポリイミドを添加しないで実施例1と同様の手順
を繰り返し、エポキシ樹脂板を調製した。
Comparative Example 1 An epoxy resin plate was prepared by repeating the same procedure as in Example 1 without adding the siloxane polyimide as the constituent element [D].

【0036】この樹脂硬化板についての破壊歪エネルギ
ー解放率(GIC)、耐溶剤性測定結果を表1に併せて示
す。
The fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate are also shown in Table 1.

【0037】この樹脂をマトリックスとする一方向プリ
プレグを用いたコンポジットの衝撃後圧縮強度および9
0°方向の引張り伸度の測定を行った。プリプレグは次
のようにして作製した。
The post-impact compressive strength of a composite using a unidirectional prepreg using this resin as a matrix and 9
The tensile elongation in the 0 ° direction was measured. The prepreg was produced as follows.

【0038】ニーダで上記組成の樹脂を調製し、シリコ
ーン離型剤をあらかじめ薄く塗布した離型紙に一定の厚
さでコーティングした。炭素繊維トレカT800H(東
レ(株)製)を用いて、先に調製した樹脂コーティング
紙2枚のあいだに炭素繊維を1方向に引き揃えてから圧
着させてプリプレグとした。この時プリプレグ中の樹脂
の重量分率は35%であり、炭素繊維の目付は145g/m2
であった。このプリプレグを疑似等方構成((+45°/90
°/-45°/0°) 4s)で32層に積層し、通常の真空バッ
グオートクレーブ成形法を用い、6 kg/cm2 の加圧下で
180℃×2時間の加熱を行い硬化板を得た。その繊維
容積は56±2%であった。4″×6″の試験片を切り
出し、1500in・lb/in の衝撃エネルギーを与えた後、圧
縮試験を行った。その結果、32ksi の残存圧縮強度を示
した。また、上記プリプレグを単一方向に16枚積層
し、同様に成形した硬化板を用いて90°引張伸度を測
定したところ0.8%であった。プリプレグを一方向に20
枚積層し、硬化板を成形した。ダブルカンテレバービー
ム法にて引きはがしモードの層間靭性GICを測定したと
ころ、300J/m2 であった。
A resin having the above composition was prepared with a kneader, and a release paper to which a silicone release agent had been thinly applied was coated with a constant thickness. Using carbon fiber Torayca T800H (manufactured by Toray Industries, Inc.), carbon fibers were aligned in one direction between the two resin-coated paper sheets prepared above and then pressure-bonded to obtain a prepreg. At this time, the weight fraction of the resin in the prepreg was 35%, and the basis weight of the carbon fiber was 145 g / m 2
Met. This prepreg is a pseudo isotropic structure ((+ 45 ° / 90
(° / -45 ° / 0 °) 4s ) and laminated in 32 layers, and using a normal vacuum bag autoclave molding method, heating at 180 ° C x 2 hours under a pressure of 6 kg / cm 2 to obtain a cured plate. It was The fiber volume was 56 ± 2%. A 4 ″ × 6 ″ test piece was cut out, subjected to an impact energy of 1500 in · lb / in, and then subjected to a compression test. As a result, it showed a residual compressive strength of 32 ksi. Further, 16 pieces of the above prepregs were laminated in a single direction, and a 90 ° tensile elongation was measured using a cured plate formed in the same manner, and it was 0.8%. 20 prepregs in one direction
The sheets were laminated and a cured plate was formed. The interlaminar toughness G IC in the peeling mode was measured by the double cantilever beam method and found to be 300 J / m 2 .

【0039】[比較例2]実施例1において、A部のシ
ロキサンポリイミドを0.2重量%としたほかは実施例
1と同様にして、樹脂硬化板を得た。この樹脂硬化板に
ついての破壊歪エネルギー解放率(GIC)、耐溶剤性測
定結果を表1に併せて示す。
[Comparative Example 2] A resin cured plate was obtained in the same manner as in Example 1 except that the siloxane polyimide in Part A was 0.2% by weight. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0040】[比較例3]実施例1において、A部のシ
ロキサンポリイミドを15重量%としたほかは実施例1
と同様にして、樹脂硬化板を得た。この樹脂硬化板につ
いての破壊歪エネルギー解放率(GIC)、耐溶剤性測定
結果を表1に併せて示す。
[Comparative Example 3] Example 1 is the same as Example 1 except that the siloxane polyimide in the part A is 15% by weight.
A resin cured plate was obtained in the same manner as in. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0041】プリプレグを作製するために、ニーダで上
記組成の樹脂を調製し、離型紙に一定の厚さにコーティ
ングを試みたが、高粘度のためできなかった。
In order to prepare a prepreg, a resin having the above composition was prepared with a kneader and an attempt was made to coat release paper with a certain thickness, but this was not possible because of high viscosity.

【0042】[比較例4]ポリエーテルイミド(PE
I)[ゼネラル・エレクトリック社製]を3.0重量%
としたほかは実施例1と同様にして、樹脂硬化板を得
た。この樹脂硬化板についての破壊歪エネルギー解放率
(GIC)、耐溶剤性測定結果を表1に併せて示す。
Comparative Example 4 Polyetherimide (PE
I) [General Electric Co.] 3.0% by weight
A resin cured plate was obtained in the same manner as in Example 1 except that. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0043】[比較例5]ポリエーテルイミド(PE
I)[ゼネラル・エレクトリック社製]を28.0重量
%とし、シロキサンポリイミドを添加しないで実施例1
と同様にして、樹脂硬化板を得た。この樹脂硬化板につ
いての破壊歪エネルギー解放率(GIC)、耐溶剤性測定
結果を表1に併せて示す。
[Comparative Example 5] Polyetherimide (PE
I) [manufactured by General Electric Co.] 28.0% by weight, without adding siloxane polyimide Example 1
A resin cured plate was obtained in the same manner as in. Table 1 also shows the fracture strain energy release rate (G IC ) and solvent resistance measurement results of this resin cured plate.

【0044】プリプレグを作製するために、ニーダで上
記組成の樹脂を調製し、離型紙に一定の厚さのコーティ
ングを試みたが、高粘度のためできなかった。
In order to prepare a prepreg, a resin having the above composition was prepared by a kneader and an attempt was made to coat release paper with a certain thickness, but this was not possible because of high viscosity.

【0045】[比較例6]ポリエーテルイミド(PE
I)[ゼネラル・エレクトリック社製]を28重量%と
したほかは実施例1と同様にして、樹脂硬化板を得た。
この樹脂硬化板についての破壊歪エネルギー解放率(G
IC)、耐溶剤性測定結果を表1に併せて示す。 プリプ
レグを作製するために、ニーダで上記組成の樹脂を調製
し、離型紙に一定厚さのコーティングを試みたが、高粘
度のためできなかった。
[Comparative Example 6] Polyetherimide (PE
I) A resin cured plate was obtained in the same manner as in Example 1 except that 28% by weight of [General Electric Co.] was used.
Fracture strain energy release rate (G
IC ) and solvent resistance measurement results are also shown in Table 1. In order to prepare a prepreg, a resin having the above composition was prepared with a kneader and an attempt was made to coat release paper with a certain thickness, but this was not possible because of high viscosity.

【0046】[0046]

【発明の効果】本発明による熱硬化性樹脂組成物は良好
な作業性を有し、高靭性、高伸度、高弾性率、低内部応
力性さらには高耐熱性、低吸水性を持つ樹脂硬化物を提
供し、その物性の安定性が高い。さらに、これをマトリ
ックス樹脂とするプリプレグは良好なタック性、ドレー
プ性を有し、硬化物である繊維強化複合材料は高靭性、
高耐衝撃性、高強度、高伸度、かつ高耐熱性、低吸水率
を有する。
The thermosetting resin composition according to the present invention has good workability and is a resin having high toughness, high elongation, high elastic modulus, low internal stress property, high heat resistance and low water absorption. It provides a cured product and has high stability of its physical properties. Furthermore, the prepreg using this as a matrix resin has good tackiness and drape, and the fiber-reinforced composite material that is a cured product has high toughness,
It has high impact resistance, high strength, high elongation, high heat resistance, and low water absorption.

【図面の簡単な説明】[Brief description of drawings]

【図1】硬化樹脂の破壊歪エネルギー解放率GICを測定
するためのダブルトーション(DT)法の説明図。
FIG. 1 is an explanatory diagram of a double torsion (DT) method for measuring a fracture strain energy release rate G IC of a cured resin.

【図2】硬化樹脂の破壊歪エネルギー解放率GICを測定
するためのダブルトーション(DT)法の説明図。
FIG. 2 is an explanatory diagram of a double torsion (DT) method for measuring a fracture strain energy release rate G IC of a cured resin.

【図3】硬化樹脂の破壊歪エネルギー解放率GICを測定
するためのダブルトーション(DT)法の説明図。
FIG. 3 is an explanatory diagram of a double torsion (DT) method for measuring a fracture strain energy release rate G IC of a cured resin.

【符号の説明】[Explanation of symbols]

P:亀裂発生荷重 ai :亀裂進展距離(mm)P: Crack initiation load a i : Crack propagation distance (mm)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08K 7/14 NLD // B29L 31:30 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area C08K 7/14 NLD // B29L 31:30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】次の構成成分からなり、[C]を4 〜25重
量%、[D]を0.5 〜10重量%含有することを特徴とす
るエポキシ樹脂組成物。 [A]:エポキシ樹脂 [B]:硬化剤 [C]:数平均分子量が10000以上かつガラス転移
温度が150 ℃以上であり、[A]に溶解し得る芳香族熱
可塑性樹脂 [D]:[A]と反応性の官能基を有し、[A]に溶解
し得る数平均分子量2000乃至20000の熱可塑性
樹脂
1. An epoxy resin composition comprising the following constituents, containing 4 to 25% by weight of [C] and 0.5 to 10% by weight of [D]. [A]: Epoxy resin [B]: Curing agent [C]: Aromatic thermoplastic resin having a number average molecular weight of 10,000 or more and a glass transition temperature of 150 ° C. or more and soluble in [A] [D]: [ A] A thermoplastic resin having a number average molecular weight of 2,000 to 20,000, which has a functional group reactive with [A] and is soluble in [A].
【請求項2】エポキシ樹脂組成物と強化繊維[E]より
なるプリプレグであって、エポキシ樹脂組成物が次の構
成成分からなり、[C]を4 〜25重量%、[D]を0.5
〜10重量%含有するものであることを特徴とするプリプ
レグ。 [A]:エポキシ樹脂 [B]:硬化剤 [C]:数平均分子量が10000以上かつガラス転移
温度が150 ℃以上であり、[A]に溶解し得る芳香族熱
可塑性樹脂 [D]:[A]と反応性の官能基を有し、[A]に溶解
し得る数平均分子量2000乃至20000の熱可塑性
樹脂
2. A prepreg comprising an epoxy resin composition and a reinforcing fiber [E], wherein the epoxy resin composition comprises the following constituents: [C] 4 to 25% by weight and [D] 0.5.
A prepreg characterized by being contained in an amount of up to 10% by weight. [A]: Epoxy resin [B]: Curing agent [C]: Aromatic thermoplastic resin having a number average molecular weight of 10,000 or more and a glass transition temperature of 150 ° C. or more and soluble in [A] [D]: [ A] A thermoplastic resin having a number average molecular weight of 2,000 to 20,000, which has a functional group reactive with [A] and is soluble in [A].
【請求項3】エポキシ樹脂組成物と強化繊維[E]より
なるプリプレグを硬化させて得られる繊維強化プラスチ
ックであって、エポキシ樹脂組成物が次の構成成分から
なり、[C]を4 〜25重量%、[D]を0.5 〜10重量%
含有するものであることを特徴とする繊維強化プラスチ
ック。 [A]:エポキシ樹脂 [B]:硬化剤 [C]:数平均分子量が10000以上かつガラス転移
温度が150 ℃以上であり、[A]に溶解し得る芳香族熱
可塑性樹脂 [D]:[A]と反応性の官能基を有し、[A]に溶解
し得る数平均分子量2000乃至20000の熱可塑性
樹脂
3. A fiber reinforced plastic obtained by curing a prepreg comprising an epoxy resin composition and a reinforcing fiber [E], wherein the epoxy resin composition comprises the following constituents, and [C] is 4 to 25: % By weight, 0.5 to 10% by weight of [D]
A fiber reinforced plastic characterized by being contained. [A]: Epoxy resin [B]: Curing agent [C]: Aromatic thermoplastic resin having a number average molecular weight of 10,000 or more and a glass transition temperature of 150 ° C. or more and soluble in [A] [D]: [ A] A thermoplastic resin having a number average molecular weight of 2,000 to 20,000, which has a functional group reactive with [A] and is soluble in [A].
JP7028372A 1994-02-17 1995-02-16 Epoxy resin composition, prepreg and fiber reinforced plastic Pending JPH07278412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7028372A JPH07278412A (en) 1994-02-17 1995-02-16 Epoxy resin composition, prepreg and fiber reinforced plastic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2037894 1994-02-17
JP6-20378 1994-02-17
JP7028372A JPH07278412A (en) 1994-02-17 1995-02-16 Epoxy resin composition, prepreg and fiber reinforced plastic

Publications (1)

Publication Number Publication Date
JPH07278412A true JPH07278412A (en) 1995-10-24

Family

ID=26357316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7028372A Pending JPH07278412A (en) 1994-02-17 1995-02-16 Epoxy resin composition, prepreg and fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JPH07278412A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0879854A3 (en) * 1997-04-21 1999-02-24 Toray Industries, Inc. A resin composition for a fibre reinforced composite, a prepreg and a fibre reinforced composite
WO2009107697A1 (en) * 2008-02-26 2009-09-03 東レ株式会社 Epoxy resin composition, prepreg, abd fiber-reinforced composite material
JP2012211255A (en) * 2011-03-31 2012-11-01 Toho Tenax Co Ltd Resin composition, cured matter, prepreg and fiber-reinforced composite material
JP2016104882A (en) * 2011-01-18 2016-06-09 日立化成株式会社 Prepreg, laminate sheet and printed wiring board using the same
CN106367316A (en) * 2016-08-30 2017-02-01 北海运龙环保材料有限责任公司 Preparation process of glass fiber reinforced plastic for biogas digester
CN106399063A (en) * 2016-08-30 2017-02-15 北海运龙环保材料有限责任公司 Preparation method of glass reinforced plastic for methane tank
WO2018173953A1 (en) 2017-03-24 2018-09-27 東レ株式会社 Prepreg and carbon fiber-reinforced composite material
WO2019021613A1 (en) 2017-07-28 2019-01-31 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
WO2019208242A1 (en) 2018-04-27 2019-10-31 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
CN117069987A (en) * 2023-10-17 2023-11-17 天津爱思达航天科技股份有限公司 Carbon fiber prepreg and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623457B1 (en) * 1997-04-21 2006-12-05 도레이 가부시끼가이샤 Resin Compositions, Prepregs and Fiber Reinforced Composites for Fiber Reinforced Composites
EP0879854A3 (en) * 1997-04-21 1999-02-24 Toray Industries, Inc. A resin composition for a fibre reinforced composite, a prepreg and a fibre reinforced composite
US8309631B2 (en) 2008-02-26 2012-11-13 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber reinforced composite material
WO2009107697A1 (en) * 2008-02-26 2009-09-03 東レ株式会社 Epoxy resin composition, prepreg, abd fiber-reinforced composite material
TWI726270B (en) * 2011-01-18 2021-05-01 日商昭和電工材料股份有限公司 Prepreg and laminate and printed wiring board using it
KR20180121679A (en) * 2011-01-18 2018-11-07 히타치가세이가부시끼가이샤 Prepreg, and laminate board and printed wiring board using same
JP2016104882A (en) * 2011-01-18 2016-06-09 日立化成株式会社 Prepreg, laminate sheet and printed wiring board using the same
JP2012211255A (en) * 2011-03-31 2012-11-01 Toho Tenax Co Ltd Resin composition, cured matter, prepreg and fiber-reinforced composite material
CN106367316A (en) * 2016-08-30 2017-02-01 北海运龙环保材料有限责任公司 Preparation process of glass fiber reinforced plastic for biogas digester
CN106399063A (en) * 2016-08-30 2017-02-15 北海运龙环保材料有限责任公司 Preparation method of glass reinforced plastic for methane tank
WO2018173953A1 (en) 2017-03-24 2018-09-27 東レ株式会社 Prepreg and carbon fiber-reinforced composite material
KR20190125369A (en) 2017-03-24 2019-11-06 도레이 카부시키가이샤 Prepregs and Carbon Fiber Reinforced Composites
US11319420B2 (en) 2017-03-24 2022-05-03 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite material
US11208541B2 (en) 2017-07-28 2021-12-28 Toray Industries, Inc. Prepreg and carbon fiber reinforced material
WO2019021613A1 (en) 2017-07-28 2019-01-31 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
KR20200034967A (en) 2017-07-28 2020-04-01 도레이 카부시키가이샤 Prepreg and carbon fiber reinforced composite material
WO2019208242A1 (en) 2018-04-27 2019-10-31 東レ株式会社 Prepreg and carbon-fiber-reinforced composite material
KR20210005852A (en) 2018-04-27 2021-01-15 도레이 카부시키가이샤 Prepreg and carbon fiber reinforced composite material
CN117069987A (en) * 2023-10-17 2023-11-17 天津爱思达航天科技股份有限公司 Carbon fiber prepreg and preparation method thereof
CN117069987B (en) * 2023-10-17 2023-12-29 天津爱思达航天科技股份有限公司 Carbon fiber prepreg and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6621457B2 (en) Thermosetting resin composite containing interlayer toughening particles
JP2643518B2 (en) Prepreg
KR101555395B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
AU2012291863B2 (en) Thermoset resin compositions with increased toughness
CA2811881A1 (en) Epoxy resin composition, prepreg and fiber-reinforced composite materials
JP3312441B2 (en) Prepreg and fiber reinforced plastic
JP7063021B2 (en) Prepreg and carbon fiber reinforced composites
JPH0741575A (en) Prepreg and fiber-reinforced composite material
JPH0741576A (en) Prepreg and fiber-reinforced resin
CN110191915B (en) Prepreg, method for producing same, and slit tape prepreg
JPH07278412A (en) Epoxy resin composition, prepreg and fiber reinforced plastic
JP2010095557A (en) Prepreg and fiber-reinforced composite material
JPH07149952A (en) Thermosetting resin composition, cured resin, prepaeg, and fiber-reinforced plastic
JP2014156582A (en) Prepreg and fiber-reinforced composite material
JP4655329B2 (en) Unidirectional prepreg and fiber reinforced composites
JPH08225666A (en) Prepreg and composite material
JPH07150042A (en) Resin composition, cured resin, prepreg and fiber-reinforced plastics
JPH0481421A (en) Epoxy resin composition, prepreg, cured material and composite material thereof
JPH05255564A (en) Maleimide resin composition, prepreg and fiber-reinforced plastic
JP2000344870A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JPH0481422A (en) Epoxy resin composition, cured material of resin, prepreg and fiber reinforced plastics
JP3065683B2 (en) Prepreg
JPH0753742A (en) Prepreg
JPH06240024A (en) Prepreg and composite material
JPH0753741A (en) Prepreg and composite material