JPH07277826A - Production of glassy carbon molded body - Google Patents

Production of glassy carbon molded body

Info

Publication number
JPH07277826A
JPH07277826A JP6073384A JP7338494A JPH07277826A JP H07277826 A JPH07277826 A JP H07277826A JP 6073384 A JP6073384 A JP 6073384A JP 7338494 A JP7338494 A JP 7338494A JP H07277826 A JPH07277826 A JP H07277826A
Authority
JP
Japan
Prior art keywords
resin
molded body
glassy carbon
mold
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6073384A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
哲雄 鈴木
Hiroshi Chiyousokabe
浩 長曽我部
Hideki Yamamuro
秀樹 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6073384A priority Critical patent/JPH07277826A/en
Publication of JPH07277826A publication Critical patent/JPH07277826A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce a high performance uniform glassy carbon molded body almost free from defects and capable of well satisfying requirements in recent years as the substrate of a magnetic disk with satisfactory productivity. CONSTITUTION:A powdery or granular thermosetting resin which is fluidized once by heating and then cures is used as starting material, heated, introduced into a metallic mold in a fluidized state and heat-cured under pressure to form a resin molded body and the objective glassy carbon molded body is obtd. by carbonizing and firing the resin molded body in an inert atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、均質であり、研磨によ
って表面平滑性に優れた鏡面を得ることができる様なガ
ラス状炭素成形体を高い生産率で製造することのできる
方法に関するものである。そして本発明方法によって得
られるガラス状炭素成形体は、磁気ディスク用基板、磁
気ヘッド用基板、光学レンズ用鋳型、光学用反射板の基
板等の素材として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glassy carbon molding which is homogeneous and which can be polished to obtain a mirror surface having excellent surface smoothness at a high production rate. is there. The glassy carbon molded article obtained by the method of the present invention is useful as a material for a magnetic disk substrate, a magnetic head substrate, an optical lens mold, an optical reflection plate substrate, and the like.

【0002】[0002]

【従来の技術】フェノール樹脂やフラン樹脂等の様に3
次元編み目構造を有する樹脂を、溶融状態を経ることな
く炭化焼成して成形体とすることによって、ガラス状炭
素成形体が製造できることは既に知られている。この様
にして製造されたガラス状炭素成形体は、実質的に開気
孔(open pore )をもたず、気体不透過性や耐薬品性等
の特性に優れており、電子、化学、光学をはじめ多くの
工業分野で使用されている。
2. Description of the Related Art 3 such as phenol resin and furan resin
It is already known that a glassy carbon molded body can be manufactured by carbonizing and firing a resin having a dimensional stitch structure without passing through a molten state to form a molded body. The glass-like carbon molded product produced in this manner has substantially no open pores and is excellent in properties such as gas impermeability and chemical resistance. First used in many industrial fields.

【0003】しかしながら、従来のガラス状炭素成形体
は、μmオーダーの閉気孔(closedpore )や数十μm
の大きさをもつ構造の異なる局所的な異質部分を多数含
んでいるので、従来のガラス状炭素成形体を研磨した面
には、これらに起因するボイドやくぼみが現れることが
ある。そして研磨面に現れるこれらの欠陥が、ガラス状
炭素成形体を磁気ディスク基板等の用途へ応用すること
を、著しく制限しているのである。
However, the conventional glassy carbon molded body has a closed pore of the order of μm or a few tens of μm.
Since a large number of locally heterogeneous parts having different structures with different sizes are included, voids and dents due to these may appear on the polished surface of the conventional glassy carbon molding. Then, these defects appearing on the polished surface significantly limit the application of the glassy carbon molded body to applications such as magnetic disk substrates.

【0004】こうしたことから、ガラス状炭素成形体中
に存在するμmオーダーの閉気孔を減少させるという観
点から、これまでにもいくつかの技術が提案されてい
る。例えば特公昭64−321号には、硬化前の初期縮
合物状態で20重量%以上の水を含むことのできる熱硬
化性樹脂を原料として用いることによって、樹脂の硬化
過程で生じる縮合水や分解ガスを母体樹脂中に均一分散
させた状態で保てる様にし、ガラス状炭素材料中の閉気
孔を減少させ得ることが示されている。また特公平4−
55122号には、原料である熱硬化性樹脂初期縮合物
を硬化させるための硬化剤として、強酸性の触媒を用い
れば、重縮合反応を緩徐かつ均一に進行させ、生成する
縮合水や分解ガスの効果的除去を可能にし、内部ポアの
少ない緻密組織構造のガラス状炭素が製造できることが
示されている。
Therefore, some techniques have been proposed so far from the viewpoint of reducing the number of closed pores on the order of μm existing in the glassy carbon molding. For example, in Japanese Examined Patent Publication No. 64-321, a thermosetting resin capable of containing 20% by weight or more of water in an initial condensate state before curing is used as a raw material, so that condensation water or decomposition generated during the curing process of the resin can be achieved. It has been shown that the gas can be kept uniformly dispersed in the matrix resin and the closed pores in the glassy carbon material can be reduced. In addition,
No. 55122 discloses that when a strongly acidic catalyst is used as a curing agent for curing a thermosetting resin initial condensate as a raw material, the polycondensation reaction is allowed to proceed slowly and uniformly to generate condensed water and decomposition gas. It has been shown that it is possible to produce a glassy carbon having a close-knit structure with less internal pores, which enables effective removal of

【0005】しかしながらこれまで提案された技術はい
ずれも、原料の初期重縮合物を硬化させる際に発生する
縮合水や分解ガスを、母体樹脂中に均一に分散させて効
果的に系外に除去することによって、閉気孔の発生を抑
制しようとするものであるので、樹脂を硬化させて樹脂
成形体を得るのに数十時間以上、場合によっては百時間
以上を必要とし、生産性が低いという欠点がある。また
原料として初期縮合物を用いるので、完全に硬化するま
でに発生する縮合水や分解ガスの全体の量が多く、それ
らを完全に除去することは難しく、その結果、それらの
一部が気泡となって材料中に残り、閉気孔の原因となる
という問題もある。
However, in all of the techniques proposed so far, condensed water and decomposition gas generated when the initial polycondensation product of the raw material is cured are uniformly dispersed in the base resin and effectively removed from the system. By doing so, since it is intended to suppress the generation of closed pores, it takes several tens of hours or more, and in some cases, 100 hours or more to cure the resin to obtain a resin molded product, which is low in productivity. There are drawbacks. Further, since the initial condensate is used as a raw material, the total amount of condensed water and decomposition gas generated until completely cured is large, and it is difficult to completely remove them, and as a result, some of them become bubbles. There is also a problem that it remains in the material and causes closed pores.

【0006】また従来のガラス状炭素成形体の研磨面に
は、閉気孔に由来するボイドの他、前述の如く、数十μ
mの大きさの構造的に異質な領域が存在し、これが原因
となってくぼみが発生することになる。この様なくぼみ
の深さは、100nm前後とそれほど深くないのである
が、磁気ディスク基板の様に緻密さが高度に要求される
用途では、近年の記録密度の向上と共に記録再生エラー
の原因となり、特に問題視される様になっている。こう
したことから、この様な欠陥の存在しない様な高性能な
ガラス状炭素成形体の実現が望まれている。
In addition to the voids originating from the closed pores, the polished surface of the conventional glassy carbon molding has several tens of μm as described above.
There is a structurally heterogeneous region of size m, which causes a depression. The depth of such a recess is not so deep as around 100 nm, but in applications such as a magnetic disk substrate that requires a high degree of compactness, it may cause a recording / reproduction error as well as an increase in recording density in recent years. It is becoming a particular problem. For these reasons, it has been desired to realize a high-performance glassy carbon molded product that does not have such defects.

【0007】[0007]

【発明が解決しようとする課題】上述の如く、ガラス状
炭素成形体の従来の製造方法では、高度な表面平滑性を
有する成形体を与えることができなかった。また原料の
初期縮合物を硬化させるのに、条件のきびしい管理が要
求され、且つ硬化に長時間を必要とし、生産性が低く、
コストも高くなるという問題があった。
As described above, the conventional method for producing a glassy carbon molded article cannot provide a molded article having a high degree of surface smoothness. Further, in order to cure the initial condensate of the raw material, strict control of the conditions is required, and it takes a long time to cure, and the productivity is low,
There was a problem that the cost would be high.

【0008】本発明は、こうした状況の下になされたも
のであって、その目的は、均一で欠陥のほとんど存在し
ない様な、磁気ディスク基板としての近年の要求に十分
に応えることのできる高性能なガラス状炭素成形体を生
産性良く製造することのできる方法を提供することにあ
る。
The present invention has been made under these circumstances, and its purpose is to achieve a high performance capable of sufficiently satisfying recent demands for a magnetic disk substrate that are uniform and have almost no defects. It is an object of the present invention to provide a method capable of producing an excellent glassy carbon molded body with high productivity.

【0009】[0009]

【課題を解決するための手段】上記目的を達成し得た本
発明方法とは、加熱によって一旦流動化した後硬化する
性質を有する粉末状または粒状の熱硬化性樹脂を原料と
して用い、該樹脂を加熱して流動状態で金型に導入した
後、加熱および加圧下で硬化させて樹脂成形体とし、更
に該樹脂成形体を不活性雰囲気で炭化焼成することによ
ってガラス状炭素成形体とする点に要旨を有するもので
ある。
Means for Solving the Problems The method of the present invention capable of achieving the above object is to use as a raw material a powdery or granular thermosetting resin having a property of being fluidized and then cured by heating. After being heated and introduced into a mold in a fluidized state, it is cured under heating and pressure to obtain a resin molded body, and the resin molded body is carbonized and baked in an inert atmosphere to form a glassy carbon molded body. It has the gist.

【0010】[0010]

【作用】ガラス状炭素成形体を製造する際に、原料とし
て用いる熱硬化性樹脂は、均質に成形するという点から
すれば、液体状のものであることが好ましい。しかしな
がら液体状の熱硬化性樹脂は、分子量が小さいので、完
全に硬化させるまでに要する時間が長い。また硬化反応
中に発生する縮合水や分解ガスの量が多いため、硬化条
件を厳密に制御しても微細な気泡の生成を回避すること
が困難である。これに対して、固体状の熱硬化性樹脂
は、分子量が既に十分に大きくなっているため硬化反応
に要する時間は短く、発生する縮合水や分解ガスの量も
少ないために硬化過程での気泡の発生を抑えることがで
きるが、成形工程で樹脂が十分に流動することができな
いので、均質な樹脂成形体を得ることが難しい。
The thermosetting resin used as a raw material in the production of the glassy carbon molded product is preferably in liquid form from the viewpoint of homogeneous molding. However, since the liquid thermosetting resin has a small molecular weight, it takes a long time to completely cure it. Further, since the amount of condensed water and decomposition gas generated during the curing reaction is large, it is difficult to avoid generation of fine bubbles even if the curing conditions are strictly controlled. On the other hand, the solid thermosetting resin has a sufficiently large molecular weight so that the time required for the curing reaction is short, and the amount of condensed water and decomposition gas generated is small, so that bubbles in the curing process are generated. However, it is difficult to obtain a homogeneous resin molded product because the resin cannot sufficiently flow in the molding process.

【0011】本発明者らは、上記の様に互いに相反する
要求を満足させる原料樹脂の性状および成形方法を検討
した。その結果、加熱により一旦流動化した後に硬化す
る性質を有する粉末状あるいは粒状の熱硬化性樹脂を原
料として用い、この樹脂を加熱流動状態で金型に導入
し、加熱、加圧下で硬化させ成形体を作るようにすれ
ば、短い成形、硬化時間であっても十分に均質な樹脂成
形体を得ることができ、この樹脂成形体を炭化焼成すれ
ば、希望するガラス状炭素成形体となり得ることを見出
し、本発明を完成した。
The present inventors have examined the properties of the raw material resin and the molding method which satisfy the mutually conflicting requirements as described above. As a result, powdery or granular thermosetting resin, which has the property of being fluidized and then cured by heating, is used as a raw material, and this resin is introduced into a mold in a heated and fluidized state and cured under heating and pressure to mold. By making a body, it is possible to obtain a sufficiently homogeneous resin molded body even with a short molding and curing time, and if this resin molded body is carbonized and fired, the desired glassy carbon molded body can be obtained. And completed the present invention.

【0012】次に、本発明における「流動化」の概念、
およびそれに関連する「流動開始温度」について説明す
る。まず用いた測定装置および測定条件は下記の通りで
ある。 (測定装置および測定条件) ・装置 :フローテスター(島津製作所製
「フローテスターCFT−500C」) ・測定モード :昇温モード ・昇温速度 :5℃/min ・ピストン断面積 :1cm2 ・ピストンストローク:20mm ・使用ノズル :径1mm、長さ1mm ・試験荷重 :35kgf ・測定開始温度 :60℃ ・予熱時間 :20秒 ・サンプル量 :1.8g ・雰囲気 :大気中
Next, the concept of "fluidization" in the present invention,
And the "flow start temperature" related thereto will be described. First, the measuring device and measuring conditions used are as follows. (Measurement device and measurement conditions) -Device: Flow tester ("Flow tester CFT-500C" manufactured by Shimadzu Corporation) -Measurement mode: Temperature increase mode-Rate of temperature increase: 5 ° C / min-Piston cross-sectional area: 1 cm 2 -Piston stroke : 20mm-Nozzle used: Diameter 1mm, length 1mm-Test load: 35kgf-Measurement start temperature: 60 ° C-Preheating time: 20 seconds-Sample amount: 1.8g-Atmosphere: In air

【0013】測定は、下記の手順に従って行なう。まず
60℃に予め加熱したバレルに、サンプルを所定量投入
する。次いでピストンを挿入し、試験荷重を負荷する。
所定の予熱時間経過後、設定速度で160℃まで昇温す
る。樹脂の軟化に伴う変形、および流動化に伴うノズル
からの樹脂の流出のため、ピストンストロークが変化す
る。そして温度に対するピストンストロークの変化を流
出曲線と呼ぶ。
The measurement is performed according to the following procedure. First, a predetermined amount of sample is put into a barrel preheated to 60 ° C. The piston is then inserted and the test load is applied.
After the elapse of a predetermined preheating time, the temperature is raised to 160 ° C. at a set rate. The piston stroke changes due to the deformation caused by the softening of the resin and the outflow of the resin from the nozzle accompanying the fluidization. The change in piston stroke with temperature is called the outflow curve.

【0014】流出曲線の一例を、図1に示す。図1に記
した流出曲線のA−Bの過程を樹脂の「軟化」と呼び、
C−Dの過程を「流動化」と呼ぶ。またこの測定におい
て、C−Dの過程を有する流出曲線を与える樹脂を「加
熱により流動化する樹脂」と呼ぶ。そして流出曲線の直
線部B−Cを延長した線と流出曲線との間隔が、ピスト
ンストロークで0.5mmとなるときの温度を、「流動
開始温度」(Tf1 )と定義する。
An example of the outflow curve is shown in FIG. The process AB of the outflow curve shown in FIG. 1 is called "softening" of the resin,
The process of CD is called "fluidization". Further, in this measurement, a resin that gives an outflow curve having a process of CD is called "a resin fluidized by heating". The spacing of the line extended from the straight portion B-C of the outflow curve and the outflow curve, the temperature at which the 0.5mm piston stroke is defined as a "flow initiation temperature" (Tf 1).

【0015】フェノール樹脂、フラン樹脂およびイミド
・トリアジン樹脂等の熱硬化性樹脂は、加熱によって
「軟化」、「溶融」、「流動化」し、「軟化」と「流動
化」は、類似した現象であるが、図1に示す様な流出曲
線によって明確に区別できる。
Thermosetting resins such as phenol resin, furan resin and imide / triazine resin "soften", "melt" and "fluidize" by heating, and "softening" and "fluidization" are similar phenomena. However, it can be clearly distinguished by the outflow curve as shown in FIG.

【0016】尚樹脂の流動化しやすさの度合いを、B−
Cの延長線と流動曲線との間隔がピストンストロークで
0.5mmとなったところ(「流動開始温度」(Tf1)
における位置)から、さらに5.0mmピストンが進ん
だときの位置の温度(Tf2)と、前記「流動開始温度」
(Tf1 )との差(Tf2 −Tf1 )でもって表すこと
ができ、この差が小さい方が流動化し易いことを示す。
The degree of ease of fluidization of the resin is expressed by B-
When the distance between the extension line of C and the flow curve is 0.5 mm in piston stroke (“flow start temperature” (Tf 1 ))
(The position at the position) and the temperature (Tf 2 ) at the position when the piston further advances by 5.0 mm, and the “flow starting temperature”
It can be expressed by the difference (Tf 2 −Tf 1 ) from (Tf 1 ), and the smaller the difference, the easier the fluidization.

【0017】本発明で用いる熱硬化性樹脂は、「加熱に
より流動化する性質をもつ樹脂」の中でも、特に、上記
の流動化しやすさを表す(Tf2 −Tf1 )の値が10
℃以内であるものが好ましい。また本発明で用いる熱硬
化性樹脂は、上記の様な「流動化」を示すものであれ
ば、その種類は限定されず上記のフェノール樹脂、フラ
ン樹脂またはイミド・トリアジン樹脂の他、フルフリル
アルコール樹脂、エポキシ樹脂、メラミン樹脂等も採用
できる。
The thermosetting resin used in the present invention has a value of (Tf 2 -Tf 1 ) of 10 which represents the above-mentioned easiness of fluidization, among the "resins having a property of fluidizing by heating".
It is preferably within ℃. Further, the thermosetting resin used in the present invention is not limited in kind as long as it exhibits the above-mentioned "fluidization", and in addition to the above-mentioned phenol resin, furan resin or imide-triazine resin, furfuryl alcohol. Resin, epoxy resin, melamine resin, etc. can also be adopted.

【0018】ところで短い硬化時間で気泡を発生させる
ことなく樹脂を硬化させるためには、重合の進んだ、即
ち常温で固体状の樹脂を用いる必要がある。この様な常
温で固体状態の熱硬化性樹脂でも、加熱により軟化ある
いは流動化したのち硬化反応が進み、樹脂の硬化が起こ
る。本発明では、上述の如く、粉末状あるいは粒状の熱
硬化性樹脂で、加熱により硬化反応の進行に先立って流
動化する性質をもつものを原料として用いる。流動状態
にある樹脂は、撹拌や混練等により容易に均質化でき
る。加熱により軟化するだけの樹脂は、圧縮成形などに
より樹脂成形体を作ることはできるが、原料樹脂粉末あ
るいは粒同士の境界面を完全に均質化することができな
い。粉末状あるいは粒状の樹脂の表面は、空気中の酸素
による酸化、水やその他の物質の吸着などにより、程度
の差はあれバルクに比べて変質している。その為に、樹
脂を単に加熱により軟化させて成形しただけでは、これ
らの表面変質層が残るために均質な成形体を得ることが
できない。また樹脂の合成工程で添加した微量成分など
も、樹脂中には不均一に分布しているので、軟化した樹
脂を加熱、加圧下で成形しただけでは十分に均一分散化
することができない。これら樹脂成形体中の異質部が炭
化焼成後も、局所的に異質な炭素組織として残り、研磨
面にくぼみとなって現れる。
By the way, in order to cure the resin in a short curing time without generating bubbles, it is necessary to use a resin which has been polymerized, that is, which is solid at room temperature. Even in such a thermosetting resin which is in a solid state at room temperature, the resin is hardened or fluidized by heating, and then the hardening reaction proceeds to harden the resin. In the present invention, as described above, a powdery or granular thermosetting resin having a property of being fluidized by heating prior to the progress of the curing reaction is used as a raw material. The resin in a fluidized state can be easily homogenized by stirring, kneading or the like. Although a resin that is only softened by heating can be used to form a resin molded body by compression molding or the like, the raw material resin powder or the boundary surface between particles cannot be completely homogenized. The surface of the powdery or granular resin is deteriorated to some extent compared with the bulk due to oxidation by oxygen in the air, adsorption of water and other substances, and the like. Therefore, even if the resin is simply softened by heating and molded, these surface-altered layers remain, so that a homogeneous molded product cannot be obtained. In addition, since trace components added in the resin synthesis step are non-uniformly distributed in the resin, it is not possible to sufficiently disperse the softened resin only by molding it under heat and pressure. Even after the carbonization and firing, the foreign portion in these resin molded bodies locally remains as a foreign carbon structure and appears as a depression on the polished surface.

【0019】加熱により流動状態になった樹脂は、撹拌
や混練などにより、表面変質層や微量添加物と均一に混
ざりあうことができる。流動状態の樹脂を均質化する方
法および時期については特に制限されず、例えば流動状
態の樹脂を金型に送り込む際に、ギヤーポンプを用いる
ことにより樹脂の送りと混合する均質化を同時に行なう
様にしても良い。また、スクリューフィーダーを用い
て、樹脂の加熱溶融と混練とを同時に行うことも可能で
ある。更に、スタティックミキサー、メタルサンド層、
多孔板などを、ギヤーポンプやスクリューフィーダーか
ら金型へ樹脂を移動する送液ラインに挿入することによ
り、樹脂のいっそうの均質化が図れる。尚いずれの樹脂
を用いる場合でも、金属粉、金属炭化物、金属酸化物、
金属珪酸塩、金属炭酸塩等の金属系異物を含まないもの
を用いる必要があるのは言うまでもない。
The resin which is brought into a fluid state by heating can be uniformly mixed with the surface-altered layer and the trace amount additive by stirring or kneading. The method and timing of homogenizing the resin in the fluid state are not particularly limited, and for example, when the resin in the fluid state is fed into the mold, a gear pump is used to simultaneously perform homogenization by feeding and mixing the resin. Is also good. It is also possible to simultaneously heat and melt and knead the resin using a screw feeder. Furthermore, static mixer, metal sand layer,
Further homogenization of the resin can be achieved by inserting a perforated plate or the like into the liquid feeding line that moves the resin from the gear pump or the screw feeder to the mold. When using any resin, metal powder, metal carbide, metal oxide,
It goes without saying that it is necessary to use a metal silicate, a metal carbonate or the like that does not contain a metallic foreign substance.

【0020】金型に導入された樹脂は、加熱および加圧
下で硬化されて樹脂成形体とされる。このときの金型の
加熱は、樹脂の冷却固化の防止と熱硬化を目的としたも
のである。また加圧は、金型の隅々まで樹脂を均一に充
填すると共に、硬化反応で生じる分解ガスや縮合水を樹
脂中に均一に分散させながら系外に排出させるために不
可欠の要件である。
The resin introduced into the mold is cured under heat and pressure to form a resin molding. The heating of the mold at this time is for the purpose of preventing cooling and solidification of the resin and thermosetting. Pressurization is an indispensable requirement in order to fill the resin evenly in every corner of the mold and to discharge the decomposition gas and condensed water generated by the curing reaction into the resin while discharging the decomposition gas out of the system.

【0021】この様にして得られた樹脂成形体を、窒素
やアルゴン等の不活性雰囲気中で炭化焼成することによ
って、閉気孔や構造的に異質な微小領域を実質的に含ま
ない均質なガラス状炭素成形体が得られる。この様にし
て得られたガラス状炭素成形体は、研磨面にボイドやく
ぼみが現れることなく、また非常に高い表面平滑度を達
成することができる。
The resin molded body thus obtained is carbonized and baked in an inert atmosphere such as nitrogen or argon to obtain a homogeneous glass substantially free of closed pores and structurally different minute regions. A shaped carbon compact is obtained. The glassy carbon molded product thus obtained can achieve very high surface smoothness without the appearance of voids or dents on the polished surface.

【0022】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any design changes made to the gist of the preceding and the following will be applied to the present invention. It is included in the technical scope.

【0023】[0023]

【実施例】【Example】

実施例1 フローテスターで測定した流動開始温度が85℃の粒状
ビスマレイミド・トリアジン樹脂を、窒素気流中で11
5℃に加熱し流動化させた後、撹拌し、金型に流し込ん
だ。金型温度:140℃、面圧:20kgf/cm2
20分間成形、硬化させた後、金型を40℃まで冷やし
て、板状成形体を取り出した。この成形体を、窒素雰囲
気中で1500℃まで熱処理して炭化焼成し、ガラス状
炭素板を得た。このときの昇温速度は、室温から140
℃までが100℃/h、140℃から800℃までが5
℃/h、800℃から1500℃までが20℃/hとし
た。
Example 1 A granular bismaleimide triazine resin having a flow starting temperature of 85 ° C. measured by a flow tester was used in a nitrogen stream at a temperature of 11 ° C.
After heating to 5 ° C. for fluidization, the mixture was stirred and poured into a mold. After molding and curing at a mold temperature of 140 ° C. and a surface pressure of 20 kgf / cm 2 for 20 minutes, the mold was cooled to 40 ° C., and a plate-shaped molded body was taken out. This molded body was heat-treated in a nitrogen atmosphere to 1500 ° C. and carbonized to obtain a glassy carbon plate. The heating rate at this time is from room temperature to 140
100 ℃ / h up to ℃, 5 from 140 ℃ to 800 ℃
C./h, 20.degree. C./h from 800.degree. C. to 1500.degree.

【0024】この様にして製造したガラス状炭素板を、
研磨したところ、均質な鏡面を得ることができた。そし
て干渉顕微鏡を用いて研磨面を観察したところ、ボイド
は見出すことができなかった。またくぼみは平均2個/
cm2 であった。くぼみ深さおよび表面粗度を非接触光
学式表面粗さ計で測定したところ、くぼみ深さは8nm
以内であり、表面粗度は0.5nmRaであった。更
に、SEMで研磨面を観察したが、ボイドを見出すこと
はできなかった。
The glassy carbon plate produced as described above is
After polishing, a uniform mirror surface could be obtained. When the polished surface was observed with an interference microscope, no void could be found. The average number of dents is 2 /
It was cm 2 . The indentation depth and surface roughness were measured with a non-contact optical surface roughness meter, and the indentation depth was 8 nm.
And the surface roughness was 0.5 nmRa. Furthermore, the polished surface was observed by SEM, but no void could be found.

【0025】実施例2 フローテスターで測定した流動開始温度が105℃の粉
末状フェノール樹脂を、先端部温度:115℃のスクリ
ューフィーダー中で加熱して流動化させ、混練した後、
温度が150℃の金型に導入した。100kgf/cm
2 の圧力で金型を締めつけた状態で3分間硬化させた
後、成形物を金型より取り出した。この成形物を、窒素
雰囲気中で1600℃まで熱処理して炭化焼成し、ガラ
ス状炭素板を得た。このときの昇温速度は、室温から1
50℃までが100℃/h、150℃から800℃まで
が5℃/h、800℃から1600℃までが20℃/h
とした。
Example 2 A powdery phenolic resin having a flow starting temperature of 105 ° C. measured by a flow tester was heated in a screw feeder having a tip temperature of 115 ° C. to be fluidized and kneaded.
It was introduced into a mold having a temperature of 150 ° C. 100 kgf / cm
After the mold was clamped under the pressure of 2 for curing for 3 minutes, the molded product was taken out of the mold. The molded product was heat-treated in a nitrogen atmosphere to 1600 ° C. and carbonized to obtain a glassy carbon plate. The heating rate at this time is from room temperature to 1
100 ℃ / h up to 50 ℃, 5 ℃ / h from 150 ℃ to 800 ℃, 20 ℃ / h from 800 ℃ to 1600 ℃
And

【0026】この様にして製造したガラス状炭素板を、
研磨したところ、均質な鏡面を得ることができた。そし
て干渉顕微鏡を用いて研磨面を観察したところ、ボイド
を見出すことができなかった。またくぼみは平均3.5
個/cm2 であった。くぼみ深さおよび表面粗度を非接
触光学式表面粗さ計で測定したところ、くぼみ深さは1
0nm以内であり、表面粗度は0.6nmRaであっ
た。
The glassy carbon plate thus produced is
After polishing, a uniform mirror surface could be obtained. When the polished surface was observed using an interference microscope, no void could be found. The average number of depressions is 3.5.
The number was pieces / cm 2 . When the indentation depth and surface roughness were measured with a non-contact optical surface roughness meter, the indentation depth was 1
It was within 0 nm, and the surface roughness was 0.6 nmRa.

【0027】このガラス状炭素板を、外径:65mm、
内径:20mm、厚さ:0.635mmの磁気ディスク
用サブストレートに加工し、Cr下地層を蒸着した後、
磁性層(Co,Cr,Pt)およびカーボン保護膜を蒸
着して磁気ディスクにした。この磁気ディスクの記録再
生エラー試験を行なったところ、線記録密度:60kF
CIで平均2.2箇所/面のエラー発生であった。
This glassy carbon plate was prepared to have an outer diameter of 65 mm,
After processing into a substrate for a magnetic disk having an inner diameter of 20 mm and a thickness of 0.635 mm and depositing a Cr underlayer,
A magnetic layer (Co, Cr, Pt) and a carbon protective film were vapor deposited to form a magnetic disk. When a recording / reproducing error test of this magnetic disk was conducted, a linear recording density: 60 kF
In CI, an error occurred at an average of 2.2 points / plane.

【0028】実施例3 フローテスターで測定した流動開始温度が100℃の粉
末状フェノール樹脂を、加熱し流動化させ、ギヤーポン
プで金型に送り込んだ。金型温度:140℃、面圧:5
0kgf/cm2 で10分間硬化させた後、金型を40
℃まで冷やして、樹脂成形体を取り出した。この成形体
を、窒素雰囲気中で1500℃まで熱処理して炭化焼成
した。このときの昇温速度は、室温から140℃までが
120℃/h、140℃から700℃までが5℃/h、
700℃から1500℃までが20℃/hとした。
Example 3 A powdery phenolic resin having a flow starting temperature of 100 ° C. measured by a flow tester was heated to be fluidized and fed into a mold by a gear pump. Mold temperature: 140 ℃, Surface pressure: 5
After curing at 0 kgf / cm 2 for 10 minutes, the mold was
After cooling to ℃, the resin molded product was taken out. This molded body was heat treated to 1500 ° C. in a nitrogen atmosphere and carbonized. The heating rate at this time is 120 ° C / h from room temperature to 140 ° C, 5 ° C / h from 140 ° C to 700 ° C,
The temperature from 700 ° C to 1500 ° C was set to 20 ° C / h.

【0029】この様にして製造したガラス状炭素板を、
研磨したところ、均質な鏡面を得ることができた。そし
て干渉顕微鏡を用いて研磨面を観察したところ、ボイド
を見出すことができなかった。またくぼみは平均2個/
cm2 であった。くぼみ深さおよび表面粗度を非接触光
学式表面粗さ計で測定したところ、くぼみ深さは8nm
以内であり、表面粗度は0.5nmRaであった。更
に、SEMで研磨面を観察したが、ボイドを見出すこと
はできなかった。
The glassy carbon plate thus produced was
After polishing, a uniform mirror surface could be obtained. When the polished surface was observed using an interference microscope, no void could be found. The average number of dents is 2 /
It was cm 2 . The indentation depth and surface roughness were measured with a non-contact optical surface roughness meter, and the indentation depth was 8 nm.
And the surface roughness was 0.5 nmRa. Furthermore, the polished surface was observed by SEM, but no void could be found.

【0030】実施例4 フローテスターで測定した流動開始温度が105℃の粉
末状フェノール樹脂を用い、熱硬化性樹脂用射出成形機
のシリンダー温度設定を、前部100℃、中間部95
℃、後部80℃とし、スクリュー回転数:30rpm、
背圧:136kgf/cm2 で可塑化溶融させ、射出圧
力:1000kgf/cm2 で、温度:150℃の金型
に射出し、2分間硬化させた後、成形体を採取した。こ
の成形体を、窒素雰囲気中で1600℃まで熱処理して
炭化焼成した。このときの昇温速度は、室温から150
℃までが100℃/h、150℃から800℃までが5
℃/h、800℃から1600℃までが20℃/hとし
た。
Example 4 Using a powdered phenolic resin having a flow starting temperature of 105 ° C. measured by a flow tester, the cylinder temperature of an injection molding machine for thermosetting resin was set to 100 ° C. at the front and 95 at the middle.
℃, 80 ℃ rear, screw rotation speed: 30 rpm,
A back pressure: 136 kgf / cm 2 was plasticized and melted, and an injection pressure: 1000 kgf / cm 2 was injected into a mold at a temperature: 150 ° C., and after curing for 2 minutes, a molded body was sampled. This molded body was heat-treated to 1600 ° C. in a nitrogen atmosphere and carbonized. The heating rate at this time is from room temperature to 150
100 ℃ / h up to ℃, 5 from 150 ℃ to 800 ℃
℃ / h, from 800 ℃ to 1600 ℃ was 20 ℃ / h.

【0031】この様にして製造したガラス状炭素板を、
研磨したところ、均質な鏡面を得ることができた。そし
て干渉顕微鏡を用いて研磨面を観察したところ、ボイド
を見出すことができなかった。またくぼみは平均1.8
個/cm2 であった。くぼみ深さおよび表面粗度を非接
触光学式表面粗さ計で測定したところ、くぼみ深さは1
0nm以下であり、表面粗度は0.6nmRaであっ
た。
The glassy carbon plate produced as described above is
After polishing, a uniform mirror surface could be obtained. When the polished surface was observed using an interference microscope, no void could be found. The average number of depressions is 1.8.
The number was pieces / cm 2 . When the indentation depth and surface roughness were measured with a non-contact optical surface roughness meter, the indentation depth was 1
The surface roughness was 0 nm or less, and the surface roughness was 0.6 nm Ra.

【0032】このガラス状炭素板を、外径:48mm、
内径:12mm、厚さ:0.635mmの磁気ディスク
用サブストレートに加工し、Cr下地層を蒸着した後、
磁性層(Co,Cr,Pt)およびカーボン保護膜を蒸
着して磁気ディスクにした。この磁気ディスクの記録再
生エラー試験を行なったところ、線記録密度:60kF
CIで平均1.1箇所/面のエラー発生であった。
This glassy carbon plate was prepared with an outer diameter of 48 mm,
After processing into a substrate for a magnetic disk having an inner diameter of 12 mm and a thickness of 0.635 mm and depositing a Cr underlayer,
A magnetic layer (Co, Cr, Pt) and a carbon protective film were vapor deposited to form a magnetic disk. When a recording / reproducing error test of this magnetic disk was conducted, a linear recording density: 60 kF
In CI, an error occurred at an average of 1.1 points / face.

【0033】比較例1 軟化温度が120℃の粉末状フェノール樹脂を、粉末の
まま金型へ充填し、温度:135℃、面圧:150kg
f/cm2 で10分間成形、硬化させた。金型を40℃
まで冷やした後、樹脂成形体を取り出した。この成形体
を、窒素雰囲気中で1500℃まで熱処理して炭化焼成
した。またこのときの昇温速度は、実施例3と同じにし
た。
Comparative Example 1 A powdery phenolic resin having a softening temperature of 120 ° C. was filled into a mold as a powder, and the temperature was 135 ° C. and the surface pressure was 150 kg.
It was molded and cured at f / cm 2 for 10 minutes. Mold at 40 ℃
After cooling to room temperature, the resin molded product was taken out. This molded body was heat treated to 1500 ° C. in a nitrogen atmosphere and carbonized. The heating rate at this time was the same as in Example 3.

【0034】この様にして製造してガラス状炭素板を、
研磨したところ、肉眼の観察では十分に均質な鏡面を得
ることができた。しかしながら、干渉顕微鏡で観察した
ところ、数10μmの大きさのくぼみが100個/cm
2 程度で認められた。くぼみ深さを非接触光学式表面粗
さ計で測定したところ、最高70nmの深さのものも見
つかった。更に、SEMで研磨面を観察したところ、大
きさ数μmのボイドを容易に見出すことができた。
The glassy carbon plate produced in this manner is
After polishing, a sufficiently homogeneous mirror surface could be obtained by visual observation. However, when observed with an interference microscope, 100 dents / cm with a size of several tens of μm were found.
It was recognized in about 2 . When the depression depth was measured with a non-contact optical surface roughness meter, a depth of up to 70 nm was also found. Further, when the polished surface was observed by SEM, voids having a size of several μm could be easily found.

【0035】比較例2 フローテスターで測定した流動開始温度が140℃の粉
末状フェノール樹脂を、加圧してタブレット状に成形
し、高周波で予熱した後、金型に入れ、温度:130
℃、面圧:150kgf/cm2 で5分間成形、硬化さ
せた。金型から取り出した樹脂成形体を、窒素雰囲気中
で1600℃まで熱処理して炭化焼成した。
Comparative Example 2 A powdery phenolic resin having a flow starting temperature of 140 ° C. measured by a flow tester was pressed into a tablet shape, preheated at a high frequency and then placed in a mold at a temperature of 130.
° C., surface pressure: 150 kgf / cm 2 for 5 minutes molding and cured. The resin molded body taken out from the mold was heat treated to 1600 ° C. in a nitrogen atmosphere and carbonized.

【0036】この様にして製造してガラス状炭素板を、
研磨したところ、肉眼の観察では十分に均質な鏡面を得
ることができた。しかしながら、干渉顕微鏡で観察した
ところ、数10μmの大きさのくぼみが50個/cm2
程度で認められた。くぼみ深さを非接触光学式表面粗さ
計で測定したところ、最高40nmの深さのものも見つ
かった。
The glassy carbon plate produced in this manner is
After polishing, a sufficiently homogeneous mirror surface could be obtained by visual observation. However, when observed with an interference microscope, 50 dents / cm 2 with a size of several tens of μm were observed.
It was recognized by the degree. When the recess depth was measured with a non-contact optical surface roughness meter, a maximum depth of 40 nm was also found.

【0037】この様にして製造したガラス状炭素板を、
外径:65mm、内径:20mm、厚さ:0.635m
mの磁気ディスク用サブストレートに加工し、Cr下地
層を蒸着した後、磁性層(Co,Cr,Pt)およびカ
ーボン保護膜を蒸着して磁気ディスクにした。この磁気
ディスクの記録再生エラー試験を行なったところ、線記
録密度:50kFCIで平均4.5箇所/面、線記録密
度:60kFCIでは平均35箇所/面のエラー発生が
あった。
The glassy carbon plate produced as described above is
Outer diameter: 65 mm, inner diameter: 20 mm, thickness: 0.635 m
m magnetic disk substrate, and after depositing a Cr underlayer, a magnetic layer (Co, Cr, Pt) and a carbon protective film were deposited to obtain a magnetic disk. When a recording / reproducing error test was performed on this magnetic disk, an error occurred at an average of 4.5 points / plane at a linear recording density of 50 kFCI and at an average of 35 points / side at a linear recording density of 60 kFCI.

【0038】[0038]

【発明の効果】本発明は以上の様に構成されており、均
一で欠陥のほとんど存在しない高性能なガラス状炭素成
形体を製造することができ、得られたこの成形体は磁気
ディスク基板としての近年の要求に十分に応えることの
できるものである。
The present invention is constituted as described above, and it is possible to manufacture a high-performance glassy carbon molded product which is uniform and has almost no defects. The obtained molded product is used as a magnetic disk substrate. It is possible to sufficiently meet the recent demands of.

【図面の簡単な説明】[Brief description of drawings]

【図1】「流動化」の概念および「流動開始温度」を説
明するための流出曲線である。
FIG. 1 is an outflow curve for explaining the concept of “fluidization” and “flow start temperature”.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱によって一旦流動化した後硬化する
性質を有する粉末状または粒状の熱硬化性樹脂を原料と
して用い、該樹脂を加熱して流動状態で金型に導入した
後、加熱および加圧下で硬化させて樹脂成形体とし、更
に該樹脂成形体を不活性雰囲気で炭化焼成することによ
ってガラス状炭素成形体とすることを特徴とするガラス
状炭素成形体の製造方法。
1. A powdery or granular thermosetting resin having a property of being once fluidized by heating and then being cured is used as a raw material, and the resin is heated and introduced into a mold in a fluidized state, followed by heating and applying. A method for producing a glassy carbon molded body, which comprises curing under pressure to obtain a resinous molded body, and further carbonizing the resin molded body in an inert atmosphere to obtain a glassy carbon molded body.
JP6073384A 1994-04-12 1994-04-12 Production of glassy carbon molded body Withdrawn JPH07277826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6073384A JPH07277826A (en) 1994-04-12 1994-04-12 Production of glassy carbon molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6073384A JPH07277826A (en) 1994-04-12 1994-04-12 Production of glassy carbon molded body

Publications (1)

Publication Number Publication Date
JPH07277826A true JPH07277826A (en) 1995-10-24

Family

ID=13516650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6073384A Withdrawn JPH07277826A (en) 1994-04-12 1994-04-12 Production of glassy carbon molded body

Country Status (1)

Country Link
JP (1) JPH07277826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008772A1 (en) * 1996-08-28 1998-03-05 Nisshinbo Industries, Inc. Glassy carbon and process for the preparation thereof
US6241956B1 (en) 1997-08-27 2001-06-05 Nisshinbo Industries, Inc. Glassy carbon and process for production thereof
JP2008253023A (en) * 2007-03-29 2008-10-16 Fujinon Corp Drive unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008772A1 (en) * 1996-08-28 1998-03-05 Nisshinbo Industries, Inc. Glassy carbon and process for the preparation thereof
US6241956B1 (en) 1997-08-27 2001-06-05 Nisshinbo Industries, Inc. Glassy carbon and process for production thereof
JP2008253023A (en) * 2007-03-29 2008-10-16 Fujinon Corp Drive unit

Similar Documents

Publication Publication Date Title
KR102198017B1 (en) Material for metal FDM 3D printing to which nano size powder was added
JPH07277826A (en) Production of glassy carbon molded body
CN1041178C (en) Method of preparing a durable air-permeable mold
EP0905107B1 (en) Method for molding an article from a powder slurry
JP7202238B2 (en) Coated sand and mold manufacturing method using the same
EP0324579A3 (en) Foundry moulding composition
US5990222A (en) Resin-Filler composite and production method thereof
CN111960465A (en) Spherical ZrO2Method for preparing powder
KR100796150B1 (en) Producing method for vehicle in solenoid valve seat housing
JP3863308B2 (en) Method for producing glassy carbon pipe
US5609959A (en) Carbon substrate and production thereof
JPH06279099A (en) Binder for refractory and preparation of refractory granule using the binder
JP3051897B2 (en) Method for producing graphite dispersed ceramic molded body
KR102644165B1 (en) 3d printing of ceramics using selective reaction hardening
JPH10259404A (en) Calcined compact of carbonyl iron powder and powder injection molding method
JPH06227854A (en) Production of formed ceramic article
US6225396B1 (en) Resin composite and process for producing the same
JPH1171190A (en) Production of silicon carbide-silicon composite material
JPH06287055A (en) Production of sintered article of ceramic
CN114032424A (en) Oxide-reinforced metal-based photocuring slurry and 3D printing forming method thereof
US20210069969A1 (en) Method of 3d printing metal part
JPH08276410A (en) Cast molding method for ceramics
JPS59195515A (en) Manufacture of precision-molded hard carbon body
WO2023211317A1 (en) Method for additively manufacturing irregularly shaped articles
JPS6110050A (en) Ceramic composition for injection molding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703