JPH07276924A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH07276924A
JPH07276924A JP6098032A JP9803294A JPH07276924A JP H07276924 A JPH07276924 A JP H07276924A JP 6098032 A JP6098032 A JP 6098032A JP 9803294 A JP9803294 A JP 9803294A JP H07276924 A JPH07276924 A JP H07276924A
Authority
JP
Japan
Prior art keywords
lateral
groove
tire
ratio
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6098032A
Other languages
Japanese (ja)
Other versions
JP2899207B2 (en
Inventor
Naoki Yugawa
直樹 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP6098032A priority Critical patent/JP2899207B2/en
Publication of JPH07276924A publication Critical patent/JPH07276924A/en
Application granted granted Critical
Publication of JP2899207B2 publication Critical patent/JP2899207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To increase the noise performance of a tire while increasing the performance on ice and snow and as well as wet performance. CONSTITUTION:Longitudinal grooves G containing multiple main grooves GM in a tread part, lateral grooves Y extending in the direction crossed at right angles to the longitudinal grooves G, and sipes K are provided. Also the lateral groove Y has a width of 0.010 or more times the ground contact length L of a ground contact area, and the sipe has a groove width of less than 0.010 times. Then the sum (alpha+beta) of a lateral groove lateral density alpha which is the ratio of A to S and a sipe lateral density beta which is the ratio of B to S is set at 9.0X10<-2> to 1.1X10<-2> (unit in mm/mm<2>. Where A is the sum of the lateral groove lateral lengths which is the total length SIGMAa of the lengths obtained by projecting the center lines of the lateral grooves Y containing in an entire ground contact area QO in the axial direction of a tire, S is the area of the entire ground contact area QO, and B is the sum of the lateral lengths of the sipes K. Then the ratio of the lateral groove lateral density a to the sipe lateral density beta is set at 1.9 to 2.1, and the ratio of the total area of the longitudinal grooves S1 to the total area of the lateral grooves S2 is set at 0.9 to 1.1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷雪上性能及びウエッ
ト性能を高めつつ通過騒音性能の向上を計りうる空気入
りタイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire capable of improving passing noise performance while improving ice and snow performance and wet performance.

【0002】[0002]

【従来の技術】氷雪路面を走行しうるタイヤとして、近
年、スタッドレスタイヤが多用されている。このもの
は、一般に、氷雪上性能を高めるために、縦溝及び横溝
等のトレッド溝を用いた海面積比の高いブロックパター
ンを採用するとともに、ブロック面には細溝状のサイプ
を形成している。これは、トレッド溝により雪面を噛み
込む効果、並びに横溝とサイプとのエッジにおけるタイ
ヤ軸方向(ラテラル方向)成分が氷雪面を引掻き掘起こ
す効果によって氷雪路面でのグリップ力を発揮すること
による。
2. Description of the Related Art In recent years, studless tires have been widely used as tires that can run on ice and snow roads. This product generally adopts a block pattern with a high sea area ratio using tread grooves such as vertical grooves and horizontal grooves in order to improve the performance on ice and snow, and forms narrow groove-shaped sipes on the block surface. There is. This is because the tread groove has an effect of biting the snow surface, and the tire axial direction (lateral direction) component at the edge between the lateral groove and the sipe has an effect of scratching and digging the ice and snow surface, thereby exerting a grip force on the ice and snow road surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、氷雪上
性能を向上させるために、前記海面積比を高めること
は、ウエット性能の向上ももたらす反面、トレッド溝と
路面とがなす気柱内で空気が共鳴振動を起こすなど耳障
りな1000Hz前後の気柱共鳴音を発生し、さらには
ポンピング音及びインパクト音等の増大を招くなど通過
騒音性能を著しく阻害する。
However, in order to improve the performance on ice and snow, increasing the sea area ratio also improves the wet performance, but on the other hand, the air in the air column formed by the tread groove and the road surface is Air column resonance sound of around 1000 Hz which is offensive to the ear such as causing resonance vibration is generated, and further, the pumping sound and the impact sound are increased, which significantly impairs the passing noise performance.

【0004】このように氷雪上性能及びウエット性能と
通過騒音性能との間には、相反する関係があり、従来、
これらを十分に満足させることは極めて困難なことであ
った。
As described above, there is a contradictory relationship between the performance on ice and snow and the wet performance and the passing noise performance.
It has been extremely difficult to satisfy these requirements.

【0005】従って本発明者は、前記海面積のうち縦主
溝の面積と横溝の面積との割合、及び横溝のエッジ成分
とサイプのエッジ成分との割合等に着目して研究を重ね
た。
Therefore, the present inventor has conducted repeated studies focusing on the ratio of the area of the vertical main groove to the area of the lateral groove, and the ratio of the edge component of the lateral groove and the edge component of the sipe in the sea area.

【0006】その結果、限られた海面積比の中でも、前
記割合によっては、氷雪上性能及びウエット性能を高め
つつ通過騒音性能を改善しうることを見出し得た。
As a result, it has been found that, even in the limited sea area ratio, the passing noise performance can be improved while improving the performance on ice and snow and the wet performance depending on the ratio.

【0007】なお氷雪走行性能を効果的に高めるものと
して、特開平3−38413号公報及び特開平4−33
4607号公報のものがある。
It should be noted that Japanese Patent Laid-Open No. 3-38413 and Japanese Patent Laid-Open No. 4-33 are known to effectively improve the snow and snow running performance.
There is one disclosed in Japanese Patent No. 4607.

【0008】これらは、いずれも接地面の長さに対す
る、接地面内に配されるサイプのラテラル方向の成分長
さの総和の比を規制し、ブロック剛性の適正化を計って
いる。すなわちサイプによる路面引掻き、堀り起こし効
果を最も有効に発揮させることを意図したものであり、
横溝をも含めたタイヤ全体の氷雪上性能について考察し
たものではなく、又通過騒音性能との両立については何
らふれられていない。
In all of these, the ratio of the sum of the component lengths in the lateral direction of the sipes arranged in the ground plane to the length of the ground plane is regulated to optimize the block rigidity. That is, it is intended to exert the most effective road scratching and dug up effect by sipe,
It does not discuss the performance of the tire as a whole, including the lateral grooves, on ice and snow, and does not mention compatibility with the passing noise performance.

【0009】本発明は、縦溝と横溝との面積の割合及び
横溝ラテラル密度とサイプラテラル密度との和及びその
割合等を特定することを基本として、優れた氷雪上性能
を維持しつつウエット性能を向上できしかも通過騒音の
低減を計りうる空気入りタイヤの提供を目的としてい
る。
The present invention is based on specifying the ratio of the area of the vertical groove and the lateral groove, the sum of the lateral groove lateral density and the lateral density and the ratio thereof, and the like, while maintaining excellent performance on ice and snow, and wet performance. It is an object of the present invention to provide a pneumatic tire capable of improving the noise and reducing the passing noise.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に本発明の空気入りタイヤは、トレッド部にタイヤ円周
方向にのびる複数の縦主溝を含む縦溝と、この縦溝に交
わる向きにのびる横溝とサイプとを設けるとともに、前
記横溝は、標準リムにリム組しかつ標準内圧を充填する
とともに標準荷重を負荷した標準状態において、前記ト
レッド部が接地する接地領域のタイヤ周方向の接地長さ
Lの0.010倍以上の溝巾とし、かつサイプは0.0
10倍よりも小の溝巾とするとともに、タイヤ全周に亘
る前記接地領域に含まれる前記横溝の中心線がタイヤ軸
方向線に投影された長さの合計長さである横溝ラテラル
長さ和Aと、前記タイヤ全周に亘る接地領域の面積Sと
の比A/Sである横溝ラテラル密度α、及び前記サイプ
の中心線をタイヤ軸方向線に投影した長さの合計長さで
あるサイプラテラル長さ和Bと、前記タイヤ全周に亘る
接地領域の面積Sとの比B/Sであるサイプラテラル密
度βの和α+βを9.0×10-2〜11.0×10
-2(単位mm/mm2 )とし、しかも前記横溝ラテラル密度
αとサイプラテラル密度βとの比α/βを1.9〜2.
1とするとともに、前記縦溝の全面積S1と横溝の全面
積S2との比S1/S2を0.9〜1.1としている。
In order to achieve the above object, the pneumatic tire of the present invention has a vertical groove including a plurality of vertical main grooves extending in the tire circumferential direction in a tread portion, and a direction intersecting with the vertical groove. In addition to providing a lateral groove and a sipe, the lateral groove, in a standard state in which a standard rim is assembled into a rim and filled with a standard internal pressure, and a standard load is applied, the tread portion is grounded in the tire circumferential direction in a tire circumferential direction. The groove width is 0.010 times the length L or more, and the sipe is 0.0
The groove width is less than 10 times, and the lateral groove lateral length sum, which is the total length of the center lines of the lateral grooves included in the ground contact area over the entire circumference of the tire and projected on the tire axial direction line. Lateral groove lateral density α, which is the ratio A / S of A and the area S of the ground contact area over the entire circumference of the tire, and the sipe that is the total length of the length of the center line of the sipe projected on the tire axial direction line. The sum α + β of the lateral density β, which is the ratio B / S of the sum B of the lateral lengths and the area S of the ground contact area over the entire circumference of the tire, is 9.0 × 10 −2 to 11.0 × 10.
-2 (unit: mm / mm 2 ), and the ratio α / β of the lateral groove lateral density α and the cyber lateral density β is 1.9 to 2.
1, and the ratio S1 / S2 of the total area S1 of the vertical grooves and the total area S2 of the lateral grooves is 0.9 to 1.1.

【0011】又前記横溝の溝巾は、前記接地長さLの
0.013倍以下とすることがこのましく、又前記縦主
溝は、中心線がタイヤ赤道上をのびる中央の縦主溝と、
中心線がタイヤ赤道から前記接地領域の接地巾の0.2
倍以上かつ0.25倍以下の距離を隔てた外の縦主溝と
で形成するのがよい。
The width of the lateral groove is preferably 0.013 times or less of the ground contact length L, and the longitudinal main groove is a central longitudinal main groove whose center line extends on the tire equator. When,
The center line is from the tire equator to 0.2 of the contact width of the contact area.
It is preferable to form them with the outer vertical main grooves separated by a distance of not less than twice and not more than 0.25 times.

【0012】[0012]

【作用】横溝ラテラル密度αとサイプラテラル密度βの
和α+βの値を9.0×10-2以上に増大し、路面引掻
き・堀起こし効果を高めているため氷雪上性能を向上し
うる。又その中で横溝ラテラル密度αをサイプラテラル
密度βの略2倍として横溝による比率を高めているた
め、排水能力が増し、前記高い氷雪上性能を維持しなが
らウエット性能を向上できる。
[Function] The value of the sum α + β of the lateral groove lateral density α and the cyclic lateral density β is increased to 9.0 × 10 -2 or more to enhance the scratching / digging effect on the road surface, so that the performance on ice and snow can be improved. Further, since the lateral groove lateral density α is set to be approximately twice the lateral density β to increase the ratio of the lateral grooves, the drainage capacity is increased, and the wet performance can be improved while maintaining the high performance on ice and snow.

【0013】又限られた海面積比の中で、横溝に比して
排水効果に優れる縦溝の全面積S1を横溝の全面積S2
の略1倍に高めているため、さらにウエット性能を向上
できる。又前記横溝の全面積S2の比率の低下と横溝ラ
テラル密度αの比率の増大は、実質的な横溝巾の低下を
招来し、横溝に基づくパターンノイズを減じ通過騒音性
能を向上しうる。
Further, in the limited sea area ratio, the total area S1 of the vertical groove which is more excellent in drainage effect than the horizontal groove is changed to the total area S2 of the horizontal groove.
The wet performance can be further improved because it is increased to about 1 time. Further, a decrease in the ratio of the total area S2 of the lateral groove and an increase in the ratio of the lateral groove lateral density α lead to a substantial decrease in the lateral groove width, and pattern noise due to the lateral groove can be reduced to improve the passing noise performance.

【0014】[0014]

【実施例】以下本発明の一実施例を図面に基づき説明す
る。図において、空気入りタイヤ1は、ビードコア2を
有する一対のビード部3と、各ビード部3からタイヤ半
径方向外方にのびるサイドウォール部4と、このサイド
ウォール部4の外端間を継ぐトレッド部5とを有する。
なお空気入りタイヤ1は、本例では、タイヤ最大巾に対
するタイヤ断面高さの比である偏平率を0.80以下、
例えばタイヤサイズが165/70R13の乗用車用の
偏平ラジアルタイヤとして形成され、タイヤには、トレ
ッド部5からサイドウォール部4をへてビードコア2の
廻りで内から外に折返されるカーカス6が架け渡される
とともに、このカーカス6の外側かつトレッド部5の内
方に強靭なベルト層7が巻装される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the figure, a pneumatic tire 1 includes a pair of bead portions 3 each having a bead core 2, sidewall portions 4 extending outward from each of the bead portions 3 in the tire radial direction, and a tread that connects between outer ends of the sidewall portions 4. And part 5.
In this example, the pneumatic tire 1 has an aspect ratio of 0.80 or less, which is the ratio of the tire cross-sectional height to the maximum tire width.
For example, it is formed as a flat radial tire for a passenger car having a tire size of 165 / 70R13, and a carcass 6 which is folded back from inside to outside around the bead core 2 is passed from the tread portion 5 to the sidewall portion 4 to the tire. At the same time, the tough belt layer 7 is wound around the outside of the carcass 6 and the inside of the tread portion 5.

【0015】カーカス6は、カーカスコードをタイヤ赤
道Cに対して75〜90度の角度で配列した1以上、本
例では1枚のカーカスプライからなり、カーカスコード
として、ナイロン、レーヨン、ポリエステル等の有機繊
維コードが好適に採用される。
The carcass 6 is composed of one or more carcass cords in which carcass cords are arranged at an angle of 75 to 90 degrees with respect to the tire equator C. In this example, one carcass ply is used. As the carcass cord, nylon, rayon, polyester or the like is used. An organic fiber cord is preferably adopted.

【0016】ベルト層7は、ベルトコードをタイヤ赤道
Cに対して30度以下、例えば20度の角度で配列した
1以上、本例では内外2枚のベルトプライ7A、7Bか
ら形成され、各プライ7A、7Bはベルトコードがプラ
イ間相互で交差するように向きを違えて重置している。
なおベルトコードとしては、本例ではスチール等の金属
コードが用いられ、前記カーカス6をタガ締めしかつト
レッド部5を補強する。
The belt layer 7 is formed by two or more belt plies 7A and 7B in this example, one or more in which belt cords are arranged at an angle of 30 degrees or less, for example, 20 degrees with respect to the tire equator C. The belt cords 7A and 7B are piled up in different directions so that the belt cords cross each other.
In this example, a metal cord such as steel is used as the belt cord, and the carcass 6 is tightened with a hook and the tread portion 5 is reinforced.

【0017】又トレッド面5Sには、タイヤ円周方向に
のびる複数本の縦主溝GMを含む縦溝Gとこの縦溝Gに
交わる向きにのびる横溝YとサイプKとを形成してい
る。
Further, the tread surface 5S is formed with a vertical groove G including a plurality of vertical main grooves GM extending in the tire circumferential direction, and a lateral groove Y and a sipe K extending in a direction intersecting with the vertical groove G.

【0018】本実施例では前記縦溝Gは、タイヤ赤道C
上をのびる中央の縦主溝GM1とその外側に位置する外
の縦主溝GM2、GM2との3本の縦主溝GM、及び前
記外の縦主溝GM2のさらに外側に配される2本の縦副
溝gとを具える。縦主溝GMは、縦溝のうち溝深さが最
も大な溝体であって、本例では例えば6.5mm程度の溝
深さHGを有する。又縦副溝gは、溝深さ及び溝巾が前
記縦主溝GMより小な溝体であって、前記溝深さHGの
0.5〜0.8倍程度例えば5.0mm程度の溝深さhg
に設定される。なお各縦溝Gは、本例のごとく直線状に
のびるストレート溝として形成することが好ましいが、
ジグザグ溝として形成してもよい。
In this embodiment, the vertical groove G has a tire equator C.
Three vertical main grooves GM1 including a central vertical main groove GM1 extending upward and outer vertical main grooves GM2 and GM2 located on the outer side of the central vertical main groove GM2, and two vertical outer main grooves GM2 arranged further outside. And a vertical sub-groove g. The vertical main groove GM is a groove body having the largest groove depth among the vertical grooves, and has a groove depth HG of, for example, about 6.5 mm in this example. The vertical sub-groove g is a groove body having a groove depth and a groove width smaller than that of the vertical main groove GM, and is about 0.5 to 0.8 times the groove depth HG, for example, a groove of about 5.0 mm. Depth hg
Is set to. It should be noted that each vertical groove G is preferably formed as a straight groove extending linearly as in this example.
You may form as a zigzag groove.

【0019】前記横溝Yは、本例では、前記縦主溝GM
1、GM2間の内のリブ状体Raに配される内の横溝Y
a、前記縦主溝GM2と縦副溝gとの間の中のリブ状体
Rbに配される中の横溝Yb、及び前記縦副溝gとトレ
ッド縁との間の外のリブ状体Rcに配される外の横溝Y
cからなる。又前記内の横溝Yaは、本例では前記内の
リブ状体Raを横切ることによりリブ状体Raをブロッ
クBaに区分する第1の横溝Ya1と、一端がこのブロ
ックBa内で途切れる第2の横溝Ya2とから構成され
る。中の横溝Ybは、本例では前記中のリブ状体Rbを
横切ることによりリブ状体RbをブロックBbに区分す
る。又外の横溝Ycは、本例では前記外のリブ状体Rc
を横切りかつ外端がバットレス面SBで開口することに
よりリブ状体RcをブロックBcに区分する第1の横溝
Yc1と外端がブロックBc内で途切れる第2の縦主溝
Yc2とから構成される。本例では横溝Yは5.0mmの
溝深さYhを有する。
The lateral groove Y is, in this example, the vertical main groove GM.
Inside lateral groove Y arranged in rib-like body Ra inside 1 and GM2
a, an inner lateral groove Yb arranged in the rib-shaped body Rb between the vertical main groove GM2 and the vertical sub-groove g, and an outer rib-shaped body Rc between the vertical sub-groove g and the tread edge. Outer lateral groove Y
It consists of c. Further, the inner lateral groove Ya in this example is a first lateral groove Ya1 which divides the rib-shaped body Ra into blocks Ba by traversing the inner rib-shaped body Ra, and a second lateral groove Ya1 which is cut off at one end in the block Ba. It is composed of a lateral groove Ya2. In this example, the inner lateral groove Yb crosses the inner rib-shaped body Rb to divide the rib-shaped body Rb into blocks Bb. Further, the outer lateral groove Yc is, in this example, the outer rib-like body Rc.
And a second lateral main groove Yc2 whose outer end is interrupted within the block Bc. The first lateral groove Yc1 divides the rib-like body Rc into blocks Bc by opening the outer end at the buttress surface SB. . In this example, the lateral groove Y has a groove depth Yh of 5.0 mm.

【0020】又前記サイプKは、本例では、一端がブロ
ックBa内で途切れる内のサイプKaと、一端がブロッ
クBb内で途切れる中のサイプKbと、一端がブロック
Bc内で途切れる外のサイプKcとから構成される。本
例ではサイプKは5.0mmのサイプ深さKhを有する。
In this example, the sipe K has a sipe Ka whose one end is interrupted in the block Ba, a sipe Kb whose one end is interrupted in the block Bb, and an outside sipe Kc whose one end is interrupted in the block Bc. Composed of and. In this example, the sipe K has a sipe depth Kh of 5.0 mm.

【0021】なお前記横溝Y、サイプKは、本例では略
直線状にのび、又前記第1の横溝Ya1は、本例では円
周方向で隣り合う各横溝Ya1の傾斜方向が交互に異な
るジグザグ状をなし、このことにより前記ブロックBa
は三角形状に形成される。なお横溝Yb、Ycは、夫々
略平行に隔設され、このことにより前記ブロックBb、
Bcは矩形形状をなす。
The lateral groove Y and the sipe K extend in a substantially straight line in this example, and the first lateral groove Ya1 in this example is a zigzag in which the inclination directions of the lateral grooves Ya1 adjacent in the circumferential direction are alternately different. In the shape of the block Ba.
Is formed in a triangular shape. The lateral grooves Yb and Yc are separated from each other substantially parallel to each other, whereby the blocks Bb and
Bc has a rectangular shape.

【0022】ここで前記横溝Yは、タイヤの標準状態に
おいて、トレッド部5が接地する接地領域Qのタイヤ周
方向の接地長さLの0.010倍以上の溝巾WYを有す
る溝体として、又前記サイプKは、その溝巾が0.01
0Lより小の溝体として定義され、このことにより双方
を区別する。なお前記サイプKは、実質的には、切り込
み状をなし、接地の際、溝巾を閉じることによってブロ
ック剛性を維持する。
Here, the lateral groove Y is a groove body having a groove width WY which is 0.010 times or more of the contact length L in the tire circumferential direction of the contact area Q where the tread portion 5 contacts in the standard condition of the tire. The groove width of the sipe K is 0.01
It is defined as a groove smaller than 0L, which distinguishes both. The sipe K is substantially in the form of a notch, and maintains the block rigidity by closing the groove width at the time of grounding.

【0023】なお前記標準状態とは、JIS等の規格で
定まる標準リムにリム組しかつ標準内圧を充填するとと
もに標準荷重を負荷した時のタイヤの状態として定義す
る。
The standard condition is defined as the condition of the tire when the standard rim defined by JIS or the like is assembled into a rim, the standard internal pressure is filled, and the standard load is applied.

【0024】そしてこのようなトレッドパターンのタイ
ヤの氷雪上性能を高めるために、前記接地領域Qのタイ
ヤ全周に亘る領域、すなわち接地巾WQを有して円周方
向にのびるタイヤ全周に亘る帯状の全接地領域Q0にお
いて、前記横溝Yがなす横溝ラテラル密度αと前記サイ
プKがなすサイプラテラル密度βとの和α+βを9.0
+10-2〜11.0×10-2(単位mm/mm2 )の範囲に
高めるとともに、この横溝ラテラル密度αとサイプラテ
ラル密度βとの比α/βを1.9〜2.1に設定してい
る。
In order to improve the performance on the ice and snow of the tire having such a tread pattern, the area of the ground contact area Q over the entire circumference of the tire, that is, the entire circumference of the tire having the ground contact width WQ and extending in the circumferential direction. In the entire belt-shaped ground contact area Q0, the sum α + β of the lateral groove lateral density α formed by the lateral groove Y and the cyper lateral density β formed by the sipe K is 9.0.
Increase the range to +10 -2 to 11.0 x 10 -2 (unit mm / mm 2 ) and set the ratio α / β of the lateral groove lateral density α and the cyber lateral density β to 1.9 to 2.1. is doing.

【0025】なお前記横溝ラテラル密度αとは、図3に
示すように、前記横溝Yの各中心線がタイヤ軸方向線に
投影された長さaの、前記全接地領域QOにおける合計
長さΣaである横溝ラテラル長さ和Aと、前記全接地領
域QOの面積Sとの比A/Sを意味する。
Note that the lateral groove lateral density α is, as shown in FIG. 3, the total length Σa of the length a in which each center line of the lateral groove Y is projected on the tire axial direction line in the entire ground contact area QO. Means the ratio A / S of the sum A of lateral groove lateral lengths and the area S of the entire ground area QO.

【0026】又前記サイプラテラル密度βは、図4に示
すように、前記サイプKの各中心線がタイヤ軸方向線に
投影された長さbの全接地領域QOにおける合計長さΣ
bであるサイプラテラル長さ和Bと、前記全接地領域Q
Oの面積Sとの比B/Sを意味する。
As shown in FIG. 4, the cycloidal density β is a total length Σ of all the ground contact areas QO having a length b in which each center line of the sipe K is projected on the tire axial direction line.
and the total sum B of the cyper lateral length b and the total ground area Q
It means the ratio B / S with the area S of O.

【0027】又前記横溝ラテラル長さ和A及びサイプラ
テラル長さ和Bは、実質的には前記横溝Y及びサイプK
がタイヤ転動の際に氷雪面を引掻き掘起こしうるエッジ
のタイヤ軸方向(ラテラル方向)の成分長さの総和であ
って、これらの前記面積Sに対する各比A/S、B/S
である横溝ラテラル密度α及びサイプラテラル密度βの
和α+βを増大することによって、前記引掻き掘起こし
効果を高め、図5に示すように、氷雪路面でのグリップ
力を向上しうる。
Further, the lateral groove lateral length sum A and the cyper lateral length sum B are substantially the lateral groove Y and the sipe K.
Is the sum of the component lengths in the tire axial direction (lateral direction) of the edge that can scratch and dig up the ice and snow surface during tire rolling, and the respective ratios A / S, B / S to the area S are
By increasing the sum α + β of the lateral groove lateral density α and the cyclic lateral density β that is, the scratch excavation effect can be enhanced, and as shown in FIG. 5, the grip force on the snowy and snowy road surface can be improved.

【0028】従って前記和α+βが9.0×10-2より
小の時、氷雪上性能が不十分となる。又11.0×10
-2より大の時、同図に示すように、トレッドパターンの
周方向の剛性が過度に低下しドライ路面での操縦安定性
を損ねることとなる。
Therefore, when the sum α + β is smaller than 9.0 × 10 -2 , the performance on ice and snow becomes insufficient. Also 11.0 × 10
When it is larger than -2 , as shown in the figure, the rigidity of the tread pattern in the circumferential direction is excessively reduced, which impairs the steering stability on a dry road surface.

【0029】又横溝ラテラル密度αとサイプラテラル密
度βとの比α/βを1.9〜2.1に設定して横溝の含
める割合を高めているため、図6に示すように、横溝に
よる排水能力が増大し、前記氷雪上性能を維持しながら
ウエット性能を向上できる。従って前記比α/βが1.
9より小の時ウエット性能が不十分となる。逆に2.1
より大の時、同図に示すように、横溝Yに基づく車内騒
音性能が悪化する。
Further, since the ratio α / β of the lateral groove lateral density α and the lateral density β is set to 1.9 to 2.1 to increase the lateral groove inclusion ratio, as shown in FIG. The drainage capacity is increased, and the wet performance can be improved while maintaining the performance on ice and snow. Therefore, the ratio α / β is 1.
When it is less than 9, the wet performance is insufficient. On the contrary, 2.1
When it is larger, as shown in the figure, the in-vehicle noise performance due to the lateral groove Y deteriorates.

【0030】横溝Yは、雪の噛込み性を確実化し、雪上
性能をうるために、横溝Yの溝深さYhと、前記縦主溝
GMの溝深さHGとの差HG−Yhを2mm以下とするの
が好ましく、本例では、HG−Yhを1.5mmとしてい
る。
The lateral groove Y has a difference HG-Yh of 2 mm between the groove depth Yh of the lateral groove Y and the groove depth HG of the vertical main groove GM in order to ensure the snow biting property and obtain the snow performance. The following is preferable, and in this example, HG-Yh is set to 1.5 mm.

【0031】又本発明では、さらに、図7に示すよう
に、前記縦溝Gの全面積S1と横溝Yの全面積S2との
比S1/S2を0.9〜1.1に設定する。このように
横溝Yに比して排水能力に優れる縦主溝Gの全面積S1
を比較的高め、排水のバランス化を計っているため、排
水効果を最も有効に発揮できウエット性能をさらに向上
している。なお図8に、本発明者が実験によって見出し
得た、前記面積の比S1/S2と、ウエット性能との関
係を示す。同図のように比S1/S2が0.9〜1.1
に高まることによって縦横の排水バランスが適正化し、
排水能力を最も効果的に発揮する。
Further, in the present invention, as shown in FIG. 7, the ratio S1 / S2 of the total area S1 of the vertical groove G and the total area S2 of the lateral groove Y is set to 0.9 to 1.1. In this way, the total area S1 of the vertical main groove G, which is superior in drainage capacity to the horizontal groove Y,
The water drainage effect is most effectively exerted and the wet performance is further improved because the water drainage is balanced and the water drainage is relatively high. Note that FIG. 8 shows the relationship between the area ratio S1 / S2 and the wet performance, which the present inventor has found through experiments. As shown in the figure, the ratio S1 / S2 is 0.9 to 1.1.
The vertical and horizontal drainage balance is optimized by increasing
Deliver drainage capacity most effectively.

【0032】なお比S1/S2が1.1より大の時、縦
溝内への水の流入性に劣りウエット性能が逆に低下する
こととなる。又前記縦溝Gの全面積S1の比率の増加と
前記横溝ラテラル密度αの比率の増加との結合は、実質
的に、横溝Yの溝巾WYの低下を招来し、横溝Yに基づ
く気柱共鳴、ポンピング音等のパターンノイズを減じて
通過騒音性能を向上する効果も奏しうる。従って前記比
S1/S2が0.9より小の時には、ウエット性能の低
下に加えて、前記溝巾WYを逆に増加し通過騒音性能を
低下することとなる。なおこのような通過騒音性能の向
上効果の維持のためには、図9に示すように、前記溝巾
WYを接地長さLの0.013倍以下とすることが好ま
しい。
When the ratio S1 / S2 is larger than 1.1, the wettability deteriorates due to the poor water inflow property into the vertical groove. Further, the combination of the increase of the ratio of the total area S1 of the vertical groove G and the increase of the ratio of the lateral groove lateral density α substantially causes the decrease of the groove width WY of the lateral groove Y, and the air column based on the lateral groove Y is formed. The effect of reducing pattern noise such as resonance and pumping noise to improve the passing noise performance can also be obtained. Therefore, when the ratio S1 / S2 is smaller than 0.9, the groove performance WY is inversely increased and the passing noise performance is deteriorated in addition to the deterioration of the wet performance. In order to maintain such an effect of improving the passing noise performance, it is preferable that the groove width WY is 0.013 times or less of the ground contact length L as shown in FIG.

【0033】又本願においては、前記全接地領域QOの
面積Sに対する、前記縦溝の全面積S1と横溝の全面積
S2との和S1+S2の比である海面積比(S1+S
2)/Sを0.24〜0.27の範囲に減じた場合に
も、必要な氷雪上性能とウエット性能との維持が可能で
あり、この時、前記低い海面積比の採用によって通過騒
音性能をさらに向上できる。
In the present application, the sea area ratio (S1 + S), which is the ratio of the sum S1 + S2 of the total area S1 of the vertical grooves and the total area S2 of the lateral grooves to the area S of the total ground area QO.
2) Even if the / S is reduced to a range of 0.24 to 0.27, it is possible to maintain the required performance on ice and snow and the wet performance, and at this time, by adopting the low sea area ratio, passing noise The performance can be further improved.

【0034】又本例では、前記ウエット性能、車内騒音
性能、及び操縦安定性とのバランス化を計るために、前
記外の縦主溝GM2の中心線とタイヤ赤道Cとの距離L
Oを前記接地領域Qのタイヤ軸方向の接地巾WQの0.
2〜0.25倍としている。これは、本発明者が行った
図10に示す実験結果に基づくものであり、距離LOが
0.2WQより小の時、車内騒音性能が悪化し、又0.
25WQより大の時、ウエット性能及び操縦安定性能が
低下する。
Further, in this example, in order to balance the wet performance, the in-vehicle noise performance, and the steering stability, the distance L between the center line of the outer longitudinal main groove GM2 and the tire equator C is set.
O is 0. of the contact width WQ of the contact area Q in the tire axial direction.
It is set to 2 to 0.25 times. This is based on the result of the experiment conducted by the present inventor shown in FIG. 10, and when the distance LO is less than 0.2 WQ, the in-vehicle noise performance deteriorates, and the noise level of 0.
When it is more than 25 WQ, wet performance and steering stability performance are deteriorated.

【0035】なお本願では、4本以上の縦主溝GMを設
けうるが、この時必要なパターン剛性を確保することが
難しく操縦安定性を損ねるとともに耐摩耗性能を低下す
る。従ってウエット性能等の観点からも縦主溝GMは、
好ましくは3本である。
In the present application, four or more vertical main grooves GM can be provided, but at this time it is difficult to secure the required pattern rigidity, which impairs steering stability and reduces wear resistance. Therefore, the vertical main groove GM is
It is preferably three.

【0036】(具体例)図1及び図2の構造を具えるタ
イヤサイズが165/70R13のタイヤにおいて、前
記ラテラル密度の和(α+β)、ラテラル密度の比(α
/β)、溝面積比(S1/S2)、横溝の溝巾(W
Y)、距離(LO)をそれぞれ変化させたものを試作
し、各試供タイヤの氷雪上性能、ウエット性能、通過騒
音性能、車内騒音性能、操縦安定性能(ドライ路面)、
耐摩耗性能についてテストを行いその結果を図5〜図1
0に記載している。
(Specific example) In a tire having a tire size of 165 / 70R13 and having the structure of FIGS. 1 and 2, the sum of the lateral densities (α + β) and the ratio of the lateral densities (α
/ Β), groove area ratio (S1 / S2), lateral groove width (W
Y) and the distance (LO) were changed and prototyped, and the on-snow performance, wet performance, passing noise performance, vehicle interior noise performance, steering stability performance (dry road surface) of each sample tire,
Tested for wear resistance performance and the results are shown in Figs.
It is described in 0.

【0037】なおテストは、前記タイヤを標準リム(5
J×13)、標準内圧(2.2ksc)のもとで乗用車
両(1600cc;FF)に装着して実車走行したもの
であり; ・氷雪上性能は、圧雪路面上を走行した時のドライバー
のフィーリングによって評価; ・ウエット性能は、ウエットな舗装路面上を走行した時
のドライバーのフィーリングによって評価; ・操縦安定性能は、ドライな舗装路面上を走行した時の
ドライバーのフィーリングによって評価; ・通過騒音性能は、JASO規格C606に基づき1名
乗者、空積状態かつエンジンオフで走行する(55km/
h)する車両から側方に7.5m離れた位置にマイクセ
ットしてノイズを測定; ・車内騒音性能は、2名乗車、空積状態で走行(60km
/h)した時の右ドア側での車内ノイズをマイクにて測
定;
In the test, the above tire was mounted on a standard rim (5
J × 13), mounted on a passenger vehicle (1600 cc; FF) under standard internal pressure (2.2 ksc), and was actually driven by a vehicle; ・ The performance on ice and snow is that of a driver when traveling on a compressed snow road surface. Evaluation by the feeling; -Wet performance is evaluated by the driver's feeling when traveling on a wet paved road surface; -Operating stability performance is evaluated by the driver's feeling when traveling on a dry paved road surface;・ Passing noise performance is based on JASO standard C606, one occupant, empty condition and running with engine off (55km /
h) Noise is measured by setting a microphone at a position 7.5 m laterally from the vehicle; ・ In-vehicle noise performance is 2 passengers, running in empty condition (60 km
/ H) measured the in-vehicle noise on the right door side with a microphone;

【0038】なお図5においては、α/β=2.0,S
1/S2=1.0,LO=0.225WQ,WY=1.
2%L、(S1+S2)/S=0.25、HG=6.5
mm、hg=5.0mm、Yh=5.0mm,Kh=5.0mm
で各値一定としている。
In FIG. 5, α / β = 2.0, S
1 / S2 = 1.0, LO = 0.225 WQ, WY = 1.
2% L, (S1 + S2) /S=0.25, HG = 6.5
mm, hg = 5.0 mm, Yh = 5.0 mm, Kh = 5.0 mm
Each value is constant.

【0039】又図6においては、α+β=10.0,S
1/S2=1.0,LO=0.225WQ,WY=1.
15%L、(S1+S2)/S=0.25、HG=6.
5mm、hg=5.0mm、Yh=5.0mm、Kh=5.0
mmで各値一定としている。
Further, in FIG. 6, α + β = 10.0, S
1 / S2 = 1.0, LO = 0.225 WQ, WY = 1.
15% L, (S1 + S2) /S=0.25, HG = 6.
5mm, hg = 5.0mm, Yh = 5.0mm, Kh = 5.0
Each value is constant in mm.

【0040】又図8においては、α+β=10.0,α
/β=2.0,LO=0.225WQ,WY=1.2%
L、(S1+S2)/S=0.25、HG=6.5mm、
hg=5.0mm、Yh=5.0mm,Kh=5.0mmで各
値一定としている。
Further, in FIG. 8, α + β = 10.0, α
/Β=2.0, LO = 0.225 WQ, WY = 1.2%
L, (S1 + S2) /S=0.25, HG = 6.5 mm,
The values are fixed at hg = 5.0 mm, Yh = 5.0 mm, and Kh = 5.0 mm.

【0041】又図9においては、α+β=10.0,α
/β=2.0,LO=0.225WQ,(S1+S2)
/S=0.25、S1/S2=1.0、HG=6.5m
m、hg=5.0mm、Yh=5.0mm、Kh=5.0mm
で各値一定としている。
Further, in FIG. 9, α + β = 10.0, α
/Β=2.0, LO = 0.225WQ, (S1 + S2)
/S=0.25, S1 / S2 = 1.0, HG = 6.5m
m, hg = 5.0mm, Yh = 5.0mm, Kh = 5.0mm
Each value is constant.

【0042】又図10においては、α+β=10.0,
α/β=2.0,WY=1.2%L、(S1+S2)/
S=0.25、S1/S2=1.0、HG=6.5mm、
hg=5.0mm、Yh=5.0mm、Kh=5.0mmで各
値一定としている。
Further, in FIG. 10, α + β = 10.0,
α / β = 2.0, WY = 1.2% L, (S1 + S2) /
S = 0.25, S1 / S2 = 1.0, HG = 6.5 mm,
The values are fixed at hg = 5.0 mm, Yh = 5.0 mm, and Kh = 5.0 mm.

【0043】[0043]

【発明の効果】本発明は、叙上のように構成しているた
め、優れた氷雪上性能を維持しつつウエット性能を向上
できしかも通過騒音の低減を計ることができる。
Since the present invention is constructed as described above, the wet performance can be improved while the excellent performance on ice and snow is maintained, and the passing noise can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すタイヤの断面図であ
る。
FIG. 1 is a cross-sectional view of a tire showing an embodiment of the present invention.

【図2】トレッドパターンの一例を示すトレッド部の平
面図である。
FIG. 2 is a plan view of a tread portion showing an example of a tread pattern.

【図3】横溝ラテラル密度を説明するためのトレッドパ
ターンの一部拡大図である。
FIG. 3 is a partially enlarged view of a tread pattern for explaining a lateral groove lateral density.

【図4】サイプラテラル密度を説明するためのトレッド
パターンの一部拡大図である。
FIG. 4 is a partially enlarged view of the tread pattern for explaining the cypralateral density.

【図5】横溝ラテラル密度とサイプラテラル密度との和
α+βと氷雪上性能及び操縦安定性との関係を示す線図
である。
FIG. 5 is a diagram showing a relationship between a sum α + β of lateral groove lateral density and cyber lateral density, and performance on snow and snow and steering stability.

【図6】横溝ラテラル密度とサイプラテラル密度との比
α/βとウエット性能及び通過騒音性能との関係を示す
線図である。
FIG. 6 is a diagram showing a relationship between a ratio α / β of lateral groove lateral density and a lateral lateral density, and wet performance and passing noise performance.

【図7】縦主溝と横溝の各全面積S1、S2を説明する
線図である。
FIG. 7 is a diagram for explaining respective total areas S1 and S2 of a vertical main groove and a horizontal groove.

【図8】面積の比S1/S2と、ウエット性能及び通過
騒音性能との関係を示す線図である。
FIG. 8 is a diagram showing the relationship between the area ratio S1 / S2 and the wet performance and passing noise performance.

【図9】横溝の溝巾とウエット性能及び通過騒音性能と
の関係を示す線図である。
FIG. 9 is a diagram showing a relationship between a groove width of a lateral groove and wet performance and passing noise performance.

【図10】外の縦主溝の距離LOとウエット性能、通過
騒音性能及び操縦安定性との関係を示す線図である。
FIG. 10 is a diagram showing the relationship between the distance LO of the outer longitudinal main groove and the wet performance, passing noise performance, and steering stability.

【符号の説明】[Explanation of symbols]

5 トレッド部 G 縦溝 GM、GM1、GM2 縦主溝 Y、Ya、Yb、Yc 横溝 K、Ka、Kb、Kc サイプ Q 接地領域 5 Tread part G Vertical groove GM, GM1, GM2 Vertical main groove Y, Ya, Yb, Yc Horizontal groove K, Ka, Kb, Kc Sipe Q Ground area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】トレッド部にタイヤ円周方向にのびる複数
の縦主溝を含む縦溝と、この縦溝に交わる向きにのびる
横溝とサイプとを設けるとともに、前記横溝は、標準リ
ムにリム組しかつ標準内圧を充填するとともに標準荷重
を負荷した標準状態において、前記トレッド部が接地す
る接地領域のタイヤ周方向の接地長さLの0.010倍
以上の溝巾とし、かつサイプは0.010倍よりも小の
溝巾とするとともに、タイヤ全周に亘る前記接地領域に
含まれる前記横溝の中心線がタイヤ軸方向線に投影され
た長さの合計長さである横溝ラテラル長さ和Aと、前記
タイヤ全周に亘る接地領域の面積Sとの比A/Sである
横溝ラテラル密度α、及び前記サイプの中心線をタイヤ
軸方向線に投影した長さの合計長さであるサイプラテラ
ル長さ和Bと、前記タイヤ全周に亘る接地領域の面積S
との比B/Sであるサイプラテラル密度βの和α+βを
9.0×10-2〜11.0×10-2(単位mm/mm2 )と
し、しかも前記横溝ラテラル密度αとサイプラテラル密
度βとの比α/βを1.9〜2.1とするとともに、前
記縦溝の全面積S1と横溝の全面積S2との比S1/S
2を0.9〜1.1とした空気入りタイヤ。
1. A tread portion is provided with a vertical groove including a plurality of vertical main grooves extending in a tire circumferential direction, and a lateral groove and a sipe extending in a direction intersecting with the vertical groove. The lateral groove is a rim assembly to a standard rim. In the standard state in which the tread portion is in contact with the tire and the tire is in a standard state in which the tread portion is grounded, the groove width is 0.010 times or more the ground contact length L in the tire circumferential direction of the tread portion, and the sipes are 0. The groove width is smaller than 010 times, and the sum of the lateral groove lateral lengths, which is the total length of the center lines of the lateral grooves included in the ground contact area over the entire circumference of the tire and projected on the tire axial direction line. Lateral groove lateral density α, which is the ratio A / S of A and the area S of the ground contact area over the entire circumference of the tire, and the sipe that is the total length of the length of the center line of the sipe projected on the tire axial direction line. Lateral length sum B and before Area of the ground area S over the entire circumference of the tire
The ratio α + β of the cypralateral density β which is the ratio B / S is 9.0 × 10 -2 to 11.0 × 10 -2 (unit: mm / mm 2 ), and the lateral groove lateral density α and the cypralateral density are The ratio α / β to β is set to 1.9 to 2.1, and the ratio S1 / S between the total area S1 of the vertical grooves and the total area S2 of the lateral grooves.
A pneumatic tire in which 2 is 0.9 to 1.1.
【請求項2】前記横溝の溝巾は、前記接地領域の接地長
さLの0.013倍以下であることを特徴とする請求項
1記載の空気入りタイヤ。
2. The pneumatic tire according to claim 1, wherein the groove width of the lateral groove is 0.013 times or less the ground contact length L of the ground contact area.
【請求項3】前記縦主溝は、中心線がタイヤ赤道上をの
びる中央の縦主溝と、中心線がタイヤ赤道から前記接地
領域の接地巾の0.2倍以上かつ0.25倍以下の距離
を隔てた外の縦主溝とからなることを特徴とした請求項
1記載の空気入りタイヤ。
3. The longitudinal main groove has a central longitudinal main groove whose center line extends on the tire equator, and a center line is 0.2 times or more and 0.25 times or less than a ground contact width of the ground contact area from the tire equator. The pneumatic tire according to claim 1, wherein the pneumatic tire is formed of an outer vertical main groove spaced apart from each other.
JP6098032A 1994-04-11 1994-04-11 Pneumatic tire Expired - Lifetime JP2899207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098032A JP2899207B2 (en) 1994-04-11 1994-04-11 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098032A JP2899207B2 (en) 1994-04-11 1994-04-11 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH07276924A true JPH07276924A (en) 1995-10-24
JP2899207B2 JP2899207B2 (en) 1999-06-02

Family

ID=14208679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098032A Expired - Lifetime JP2899207B2 (en) 1994-04-11 1994-04-11 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2899207B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185527A (en) * 1998-12-24 2000-07-04 Sumitomo Rubber Ind Ltd Pneumatic tire
DE102004042223B4 (en) * 2004-09-01 2012-03-22 Continental Reifen Deutschland Gmbh Vehicle tires
JP2012091733A (en) * 2010-10-28 2012-05-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2013220716A (en) * 2012-04-16 2013-10-28 Toyo Tire & Rubber Co Ltd Pneumatic tire
US20140230980A1 (en) * 2011-09-29 2014-08-21 Michelin Recherche Et Technique S.A. Tire with tread having improved snow and dry traction
JP2014205460A (en) * 2013-04-15 2014-10-30 住友ゴム工業株式会社 Pneumatic tire
CN104169104A (en) * 2011-09-29 2014-11-26 米其林集团总公司 Tire with tread having improved snow and dry traction
JP2015221650A (en) * 2014-05-23 2015-12-10 住友ゴム工業株式会社 Pneumatic tire
JP2017114384A (en) * 2015-12-25 2017-06-29 東洋ゴム工業株式会社 Pneumatic tire
EP3300925A1 (en) * 2016-09-30 2018-04-04 Continental Reifen Deutschland GmbH Pneumatic tyres for a vehicle
JP2018138434A (en) * 2017-02-24 2018-09-06 横浜ゴム株式会社 Pneumatic tire
JP2018138430A (en) * 2017-02-24 2018-09-06 横浜ゴム株式会社 Pneumatic tire
EP3564048A1 (en) * 2018-05-02 2019-11-06 Sumitomo Rubber Industries, Ltd. Tyre
CN110978894A (en) * 2019-12-19 2020-04-10 安徽佳通乘用子午线轮胎有限公司 Wear-resisting pure electric operation type tire of making an uproar that falls
KR20200088902A (en) * 2017-12-30 2020-07-23 꽁빠니 제네날 드 에따블리세망 미쉘린 Improved snow tire performance without dry braking or wear
JP2021095088A (en) * 2019-12-19 2021-06-24 株式会社ブリヂストン tire
US11498364B2 (en) 2017-12-30 2022-11-15 Compagnie Generale Des Etablissements Michelin Tire with improved handling performance and speed durability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026180A (en) * 2017-08-02 2019-02-21 東洋ゴム工業株式会社 Pneumatic tire

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185527A (en) * 1998-12-24 2000-07-04 Sumitomo Rubber Ind Ltd Pneumatic tire
DE102004042223B4 (en) * 2004-09-01 2012-03-22 Continental Reifen Deutschland Gmbh Vehicle tires
JP2012091733A (en) * 2010-10-28 2012-05-17 Yokohama Rubber Co Ltd:The Pneumatic tire
US20140230980A1 (en) * 2011-09-29 2014-08-21 Michelin Recherche Et Technique S.A. Tire with tread having improved snow and dry traction
CN104169104A (en) * 2011-09-29 2014-11-26 米其林集团总公司 Tire with tread having improved snow and dry traction
JP2014531365A (en) * 2011-09-29 2014-11-27 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tread tires with improved snow and dry traction
CN104169104B (en) * 2011-09-29 2017-08-04 米其林集团总公司 Tyre surface has improved snowfield and the tire drawn dryly
JP2013220716A (en) * 2012-04-16 2013-10-28 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2014205460A (en) * 2013-04-15 2014-10-30 住友ゴム工業株式会社 Pneumatic tire
JP2015221650A (en) * 2014-05-23 2015-12-10 住友ゴム工業株式会社 Pneumatic tire
JP2017114384A (en) * 2015-12-25 2017-06-29 東洋ゴム工業株式会社 Pneumatic tire
EP3300925A1 (en) * 2016-09-30 2018-04-04 Continental Reifen Deutschland GmbH Pneumatic tyres for a vehicle
JP2018138434A (en) * 2017-02-24 2018-09-06 横浜ゴム株式会社 Pneumatic tire
JP2018138430A (en) * 2017-02-24 2018-09-06 横浜ゴム株式会社 Pneumatic tire
KR20200088902A (en) * 2017-12-30 2020-07-23 꽁빠니 제네날 드 에따블리세망 미쉘린 Improved snow tire performance without dry braking or wear
US11498364B2 (en) 2017-12-30 2022-11-15 Compagnie Generale Des Etablissements Michelin Tire with improved handling performance and speed durability
US11623478B2 (en) 2017-12-30 2023-04-11 Compagnie Generale Des Etablissments Michelin Tire with improved snow performance without sacrificing dry braking or wear
EP3564048A1 (en) * 2018-05-02 2019-11-06 Sumitomo Rubber Industries, Ltd. Tyre
JP2019194051A (en) * 2018-05-02 2019-11-07 住友ゴム工業株式会社 tire
CN110435363A (en) * 2018-05-02 2019-11-12 住友橡胶工业株式会社 Tire
US11535062B2 (en) 2018-05-02 2022-12-27 Sumitomo Rubber Industries, Ltd. Tyre
CN110978894A (en) * 2019-12-19 2020-04-10 安徽佳通乘用子午线轮胎有限公司 Wear-resisting pure electric operation type tire of making an uproar that falls
JP2021095088A (en) * 2019-12-19 2021-06-24 株式会社ブリヂストン tire
WO2021124939A1 (en) * 2019-12-19 2021-06-24 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP2899207B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP2899207B2 (en) Pneumatic tire
KR100335294B1 (en) A radial pneumatic light truck or automobile tire
EP1189770B1 (en) High-performance tyre for a motor vehicle
RU2620035C2 (en) Pneumatic tire
JP2966748B2 (en) Pneumatic tire
JP4581732B2 (en) Pneumatic tire
JP2774775B2 (en) Pneumatic tire
US9254719B2 (en) Pneumatic tire
US20030226629A1 (en) Pneumatic tire
JP3515232B2 (en) Pneumatic tire and method of using the same
EP2767415A2 (en) Pneumatic tire
JPH11291718A (en) Pneumatic tire
KR20170074999A (en) Pneumatic tire
JP3717617B2 (en) Pneumatic radial tire
JP4979864B2 (en) High performance tire for automobile
JP4122179B2 (en) Pneumatic tire
JP3391755B2 (en) Pneumatic tire
JP3197727B2 (en) Pneumatic tire
JPH11147406A (en) Pneumatic tire
EP0586124A1 (en) Heavy duty tyre
JP3502721B2 (en) Pneumatic tire
JPH05278415A (en) Pneumatic tire
JP3201728B2 (en) Pneumatic tire
JP2000309206A (en) Pneumatic tire
JPH0761210A (en) Pneumatic tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term