JPH0727339B2 - Driving method of matrix type liquid crystal display device - Google Patents

Driving method of matrix type liquid crystal display device

Info

Publication number
JPH0727339B2
JPH0727339B2 JP61218531A JP21853186A JPH0727339B2 JP H0727339 B2 JPH0727339 B2 JP H0727339B2 JP 61218531 A JP61218531 A JP 61218531A JP 21853186 A JP21853186 A JP 21853186A JP H0727339 B2 JPH0727339 B2 JP H0727339B2
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
signal
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61218531A
Other languages
Japanese (ja)
Other versions
JPS6371892A (en
Inventor
進 大今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61218531A priority Critical patent/JPH0727339B2/en
Publication of JPS6371892A publication Critical patent/JPS6371892A/en
Publication of JPH0727339B2 publication Critical patent/JPH0727339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は薄膜トランジスタ(TFTと称す)を備えたアク
テイブマトリクス型表示装置の駆動方法に関するもので
ある。
The present invention relates to a driving method of an active matrix type display device provided with a thin film transistor (referred to as TFT).

(ロ)従来の技術 アクテイブマトリクス型の液晶表示装置は、三洋電機技
報Vo16,No2,1984に示されている如く複数本のゲート
ラインとそれらと直交する複数本のドレインライン及び
それらの交点にTFTを形成して表示電極を結合した第1
の基板に共通対向電極を有する第2基板が相対向しその
間に液晶を挾持する形をとる。又その作製手順は次のと
おりである。例えばガラス基板上にクロム、金等からな
るゲート電極を形成し、その上にナイトライド膜等の絶
縁膜を推積した後、例えばアモルフアスシリコン膜を推
積しチヤンネル部を形成し、その後さらにアルミニウム
等でドレイン、ソース電極を、ITO等で画素電極を形成
し、さらにその上に配向膜を付け、液晶、対向電極、フ
イルター、偏光板を組み合わせる。
(B) Conventional technology As shown in Sanyo Denki Giho Vo16, No2, 1984, an active matrix type liquid crystal display device has a plurality of gate lines, a plurality of drain lines orthogonal to them, and their intersections. The first to form a TFT and combine the display electrodes
The second substrate having the common counter electrode faces each other and the liquid crystal is sandwiched therebetween. The manufacturing procedure is as follows. For example, after forming a gate electrode made of chromium, gold, or the like on a glass substrate and depositing an insulating film such as a nitride film on it, an amorphous silicon film is deposited to form a channel portion, and then further. The drain and source electrodes are formed of aluminum and the like, and the pixel electrode is formed of ITO and the like, and an alignment film is further attached thereon, and a liquid crystal, a counter electrode, a filter, and a polarizing plate are combined.

以上の成膜工程によって得られた従来の画素電極及びTF
T部の平面図と断面図を第3図(a)と(b)に示す。
この図から明らかなように、ドレイン電極(1)、ソー
ス電極(2)はその下方にアモルフアスシリコン膜
(4)、絶縁膜(5)を介してゲート電極(3)と重な
り、その部分でコンデンサを形成する。尚同図に於いて
(6)は上記ドレイン電極(1)〜絶縁膜(5)からな
るTFTのソース電極(2)に結合した画素電極であり、
又(7)はガラス基板である。
Conventional pixel electrode and TF obtained by the above film forming process
Plan views and sectional views of the T portion are shown in FIGS. 3 (a) and 3 (b).
As is clear from this figure, the drain electrode (1) and the source electrode (2) overlap with the gate electrode (3) through the amorphous silicon film (4) and the insulating film (5) thereunder, and at that portion. Form a capacitor. In the figure, (6) is a pixel electrode which is connected to the source electrode (2) of the TFT composed of the drain electrode (1) to the insulating film (5),
Further, (7) is a glass substrate.

ここでこの様な液晶表示装置にてテレビ画像を映像する
場合のゲート及びドレイン信号を第4図に示す。同図に
依ると、ゲート信号X1、X2、X3…のパルス幅は65μSで
ありVHのときTFTが低抵抗状態(ON状態)、VLのとき高
抵抗状態(OFF状態)となる。具体的にはVH=+7.5V、V
L=−7.5Vと設定される。映像はゲートライン(4)ご
とに線順次される。今、1画素に注目し、その画素にド
レイン信号Y1,Y2,Y5…としてVDが印加されたとする
と、このVDは一定の対極レベルVOから計った電圧で印加
されるべきテレビ信号に対応している。この画素のTFT
がON状態、つまりゲート信号がVHである65μSの間に画
素電極(6)・対向電極(図示せず)間の容量CLにその
電圧がVDになるまで充電させる。次にゲート電圧がVL
なったときTFTがOFF状態となり、この容量CLに蓄えられ
ていた電荷がこの容量CLとソース電極(2)・ゲート電
極(4)間の容量CTの間で再分配され、その結果容量CL
の電圧が降下する。TFTのオンオフにより全電荷量及び
対極レベルVOが不変で、ゲートラ電極の電圧がVHからVL
に変わり、画素電極及びソース電極がVCLOからVCLFに変
わると仮定する。すると、ソース電極上の正電荷の個数
は、ソース電極に対向するゲート電極及び対向電極上の
負電荷の個数の和に等しくなる。そこで、左辺にソース
電極上の全電荷量、右辺にゲート電極と対向電極との電
荷量の和を持ってくる。すると、前項をゲート電極上の
電気量、後項を対向電極上の電気量で表して、TFTがオ
ンのとき、QON=QH-CLO+Q0-CLO、TFTがオフのとき、Q
OFF=QL-CLF+Q0-CLFとなる。Q=CVだからソース電極
上の電位を基準として、QONとQOFFはそれぞれQON=(V
CLO−VH)CT+(VCLO−V0)CL、QOFF=(VCLF−VL)CT
+(VCLF−V0)CLと表される。オンオフにより全電荷量
は変わらないと仮定したからQON=QOFFとなる。式を変
形すると対極レベルV0の項が消えて(VCLO−VCLF)(CL
+CT)=(VH−VT)CTとなるので、新たにVCLO−VCLF
σと置く。単純な計算により、その降下分σは σ=CT(VH−VL)/(CL+CT) ……(i)式 と表わされ、結局容量CLの電圧VCLは VCL=VD−σ ……(ii)式 となる。そして、この電圧VCLは次のゲートパルスが入
力されるまでの1フレーム期間保持される。そして次の
フレーム期間で電圧VCLの極性が反転して交流駆動を実
現している。
FIG. 4 shows the gate and drain signals when a television image is displayed on such a liquid crystal display device. According to the figure, the pulse width of the gate signals X 1 , X 2 , X 3 ... Is 65 μS and the TFT is in the low resistance state (ON state) when V H and in the high resistance state (OFF state) when V L. Become. Specifically, V H = + 7.5V, V
L is set to -7.5V. The image is line-sequential for each gate line (4). Now, paying attention to one pixel, and if V D is applied to that pixel as the drain signals Y 1 , Y 2 , Y 5, ..., This V D should be applied at a voltage measured from a constant counter electrode level V O. It supports TV signals. TFT of this pixel
Is in an ON state, that is, the gate signal is V H , and the capacitance C L between the pixel electrode (6) and the counter electrode (not shown) is charged until the voltage becomes V D during 65 μS. Next, when the gate voltage becomes V L , the TFT is turned off, and the electric charge stored in this capacitance C L becomes the capacitance C T between this capacitance C L and the source electrode (2) / gate electrode (4). Redistributed among the resulting capacity C L
Voltage drops. The total charge and the counter level V O remain unchanged by turning the TFT on and off, and the voltage of the gater electrode changes from V H to V L.
, And assume that the pixel and source electrodes change from V CLO to V CLF . Then, the number of positive charges on the source electrode becomes equal to the sum of the numbers of negative charges on the gate electrode and the counter electrode facing the source electrode. Therefore, the total amount of charges on the source electrode is brought to the left side, and the sum of the amounts of charges to the gate electrode and the counter electrode is brought to the right side. Then, the former term is expressed by the quantity of electricity on the gate electrode and the latter term is expressed by the quantity of electricity on the counter electrode. When the TFT is on, Q ON = Q H-CLO + Q 0-CLO , and when the TFT is off, Q ON
OFF = QL-CLF + Q0-CLF . Since Q = CV, with reference to the potential on the source electrode, Q ON and Q OFF are respectively Q ON = (V
CLO −V H ) C T + (V CLO −V 0 ) C L , Q OFF = (V CLF −V L ) C T
+ (V CLF -V 0) is expressed as C L. Since it is assumed that the total amount of charge does not change due to on / off, Q ON = Q OFF . When the equation is transformed, the term at the opposite pole level V 0 disappears (V CLO −V CLF ) (C L
+ C T ) = (V H −V T ) C T , so V CLO −V CLF =
Put σ. By simple calculation, the drop sigma is expressed as σ = C T (V H -V L) / (C L + C T) ...... (i) formula, the voltage V CL eventually capacitance C L is V CL = V D −σ ... (ii) Equation. Then, this voltage V CL is held for one frame period until the next gate pulse is input. Then, the polarity of the voltage V CL is inverted in the next frame period to realize AC driving.

ところが上記(ii)式の如く、σで示す電圧降下がある
ため、直流成分が液晶に印加される。この為、直流成分
σを除去する目的で、ドレイン信号に一定のバイアスを
加えたり、対極の共通電極の電位V0から一定のバイアス
を減じる事が提案されている。
However, since there is a voltage drop indicated by σ as in the above equation (ii), a direct current component is applied to the liquid crystal. Therefore, for the purpose of removing the DC component σ, it has been proposed to apply a constant bias to the drain signal or subtract the constant bias from the potential V 0 of the common electrode of the counter electrode.

(ハ)発明が解決しようとする問題点 (i)式より明らかな様に電圧降下分σは画素電極表示
電極間容量CLに逆比例した形となり、一方CLは液晶の大
きな誘電異方性により液晶のON、OFFによりその値が大
きく変化する。したがってCLは液晶にかかる電圧VDの関
数となりすなわちσはVDの関数となる。第5図は実測し
たσとVDの関係を示しており、この図より明らかな様に
σはVDにより2〜3Vの間で変化し、対極に一定値のバイ
アスを加えても、直流成分を完全にとり去ることはでき
ない。
(C) Problems to be solved by the invention As is apparent from the formula (i), the voltage drop σ is in inverse proportion to the pixel electrode display electrode capacitance C L , while C L is a large dielectric anisotropy of the liquid crystal. Depending on the nature, the value changes greatly depending on whether the liquid crystal is on or off. Therefore, C L is a function of the voltage V D applied to the liquid crystal, that is, σ is a function of V D. Figure 5 shows the relationship between the measured σ and V D. As is clear from this figure, σ changes between 2 and 3 V depending on V D , and even if a constant bias is applied to the counter electrode, DC The ingredients cannot be completely removed.

(ニ)問題点を解決するための手段 本発明の液晶表示装置の駆動方法は複数本のゲートライ
ンと複数本のドレインラインとが交差し、その各交差点
に薄膜トランジスタを設け、該各薄膜トランジスタのソ
ースに夫々画素電極を形成してなる第1の基板と、全面
に共通電極を形成してなる第2の基板との間に液晶物質
を挟持した構造のマトリクス型液晶表示装置の駆動方法
に於いて、ドレイン信号にこのドレイン信号の大きさに
反比例に対応した非線形なバイアス電圧を加えるもので
ある。
(D) Means for Solving the Problems In the method for driving a liquid crystal display device according to the present invention, a plurality of gate lines and a plurality of drain lines intersect with each other, a thin film transistor is provided at each intersection, and a source of each thin film transistor is provided. A method of driving a matrix type liquid crystal display device having a structure in which a liquid crystal substance is sandwiched between a first substrate having pixel electrodes formed on its surface and a second substrate having a common electrode formed on its entire surface. , A non-linear bias voltage that is inversely proportional to the magnitude of the drain signal is applied to the drain signal.

(ホ)作用 本発明によれば液晶にかかる電圧の直流成分である電圧
降下分σはドレイン電圧の関数であるためそのドレイン
電圧に対応したσをドレイン信号に付加してやることに
より、直流成分を完全になくすことができる。これによ
って任意の階調が正確に出せ、又液晶に直流成分がかか
ることがふせげる。
(E) Function According to the present invention, the voltage drop σ, which is the DC component of the voltage applied to the liquid crystal, is a function of the drain voltage, so by adding σ corresponding to the drain voltage to the drain signal, the DC component is completely removed. It can be lost. As a result, an arbitrary gradation can be accurately produced, and a direct current component is applied to the liquid crystal.

(ヘ)実施例 第1図に本発明方法を用いた液晶表示装置の一実施例の
構成を示し、第2図に該装置の信号を示す。尚、対極レ
ベルV0は一定の電圧に保たれている。
(F) Embodiment FIG. 1 shows the configuration of an embodiment of a liquid crystal display device using the method of the present invention, and FIG. 2 shows the signal of the device. The counter level V 0 is maintained at a constant voltage.

第1図に於いて、(10)はアクテイブマトリクス液晶表
示パネルであり、ゲート信号ドライバ回路(12)のゲー
ト信号に基づき、ドレイン信号ドライバ回路(11)から
のドレイン信号(画像信号)に応じた画像表示が行われ
る。(13)は上記両ドライバ回路の動作タイミングを制
御する制御部である。アクティブマトリクス液晶パネル
(10)は複数本のゲートラインと複数本のドレインライ
ンとが交差し、その各交差点に薄膜トランジスタを設
け、該各薄膜トランジスタのソースに夫々画素電極を形
成してなる第1の基板と、全面に共通電極を形成してな
る第2の基板との間に液晶物質を挟持しているマトリク
ス型液晶表示パネルである。
In FIG. 1, (10) is an active matrix liquid crystal display panel, which responds to the drain signal (image signal) from the drain signal driver circuit (11) based on the gate signal of the gate signal driver circuit (12). The image is displayed. (13) is a control unit for controlling the operation timing of both driver circuits. The active matrix liquid crystal panel (10) is a first substrate in which a plurality of gate lines and a plurality of drain lines intersect with each other, a thin film transistor is provided at each intersection, and a pixel electrode is formed at the source of each thin film transistor. And a second substrate having a common electrode formed on the entire surface thereof, and a liquid crystal substance sandwiched between the matrix substrate and the second substrate.

而してドレイン信号ドライバ回路(11)が駆動する画像
信号は、始め第2図V1に示す如き通常の画像信号をフレ
ーム毎に反転せしめたものであり、これに補正が加えら
れるのである。即ち、入力された画像信号V1はA/D変換
(14)されて一画面分ずつバッファメモリ(15)に一時
的に格納されこのバッファメモリ(15)の信号V1は第5
図図示の画素電極の電圧VOLと電圧降下分σとの関係に
従がう交換テーブル(16)に基づき画像信号サンプルの
VDn(n=1,2,3……)に対するσ(VDn)に変換され
る。これを第2図のV2に示す。一方、このバッファメモ
リ(15)の信号V1はそのまま加算器(17)に送られて、
上記変換テーブル(16)からの信号V2と加算され画像メ
モリ(18)に一画面分づつ格納される。この加算信号を
第2図のV3に示す。このような画像メモリ(18)の信号
V3D/A変換(19)されてドレイン信号ドライバ回路(1
1)で駆動される。尚、この画像メモリ(18)からの信
号V3の読み出し制御は、制御部(13)によって、ドレイ
ン信号ドライバ回路(11)及びゲート信号ドライバ回路
の動作タイミングと関係づけられて行なわれる。
Thus, the image signal driven by the drain signal driver circuit (11) is a normal image signal which is initially inverted for each frame as shown in V 1 of FIG. 2 and is corrected. That is, the input image signal V 1 is A / D converted (14) and temporarily stored in the buffer memory (15) one screen at a time, and the signal V 1 of the buffer memory (15) is the fifth signal.
Based on the exchange table (16) that follows the relationship between the voltage V OL of the pixel electrode and the voltage drop σ shown in the figure,
It is converted into σ (V Dn ) for V Dn (n = 1,2,3 ...). This is shown as V 2 in FIG. On the other hand, the signal V 1 of this buffer memory (15) is sent to the adder (17) as it is,
The signal V 2 from the conversion table (16) is added and stored in the image memory (18) for each screen. This addition signal is shown as V 3 in FIG. Signals of such image memory (18)
V 3 D / A conversion (19) and drain signal driver circuit (1
Driven by 1). The control of reading the signal V 3 from the image memory (18) is performed by the control section (13) in association with the operation timing of the drain signal driver circuit (11) and the gate signal driver circuit.

斯様な表示装置に於いては、アクテイブマトリクス液晶
表示パネル(10)の構成から生じるドレイン信号の電圧
降下を正確に補正するべくドレイン信号である画像信号
V1に対して、既測定の電圧降下分σを加算している。即
ち、この既測定の電圧降下分σは、ドレイン信号電圧VD
と電圧降下分σとの既測定の逆比例的な関係から正確に
導出されるのである。
In such a display device, an image signal which is a drain signal in order to accurately correct the voltage drop of the drain signal caused by the structure of the active matrix liquid crystal display panel (10).
The measured voltage drop σ is added to V 1 . That is, the measured voltage drop σ is the drain signal voltage V D
Is accurately derived from the measured and inversely proportional relationship between the voltage drop σ and the voltage drop σ.

(ト)発明の効果 本発明によれば、ドレイン信号に対して、その信号の大
きさに逆比例的に対応したバイアス電圧を加えるもので
あるから、交流駆動される液晶表示パネルの液晶にかか
る電圧の直流成分を解消する事ができる。従って、直流
成分のない交流駆動によって液晶の耐久性の向上が図れ
る上に、ドレイン信号の画素への印加電圧に誤差がない
から、中間色の階調を正確に再現でき、カラー化に適す
るものである。
(G) Effect of the Invention According to the present invention, since a bias voltage that is inversely proportional to the magnitude of the signal is applied to the drain signal, the liquid crystal of the liquid crystal display panel driven by AC is applied. It is possible to eliminate the DC component of the voltage. Therefore, the durability of the liquid crystal can be improved by AC driving without a DC component, and since there is no error in the voltage applied to the pixel of the drain signal, it is possible to accurately reproduce the gradation of the intermediate color and it is suitable for colorization. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のマトリクス型液晶表示装置の駆動方法
を用いた表示装置の構成図、第2図は本発明に係る第1
図の装置の信号図、第3図はアクテイブマトリクス型液
晶表示装置の要部平面図、第4図は従来装置の信号波形
図、第5図はドレイン信号の電圧降下特性図である。 (10)……アクテイブマトリクス液晶表示パネル、(1
1)……ドレイン信号ドライバ回路、(12)……ゲート
信号ドライバ回路、(13)……(制御部)、(15)……
バツフアメモリ、(16)……変換テーブル、(17)……
加算器、(18)……画像メモリ。
FIG. 1 is a configuration diagram of a display device using a driving method of a matrix type liquid crystal display device of the present invention, and FIG. 2 is a first diagram according to the present invention.
FIG. 3 is a signal diagram of the device shown in FIG. 3, FIG. 3 is a plan view of a main part of an active matrix type liquid crystal display device, FIG. 4 is a signal waveform diagram of a conventional device, and FIG. 5 is a voltage drop characteristic diagram of a drain signal. (10) …… Active matrix liquid crystal display panel, (1
1) …… Drain signal driver circuit, (12) …… Gate signal driver circuit, (13) …… (control section), (15) ……
Buffer memory, (16) …… Conversion table, (17) ……
Adder, (18) ... Image memory.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数本のゲートラインと複数本のドレイン
ラインとが交差し、その各交差点に薄膜トランジスタを
設け、該各薄膜トランジスタのソースに夫々画素電極を
形成してなる第1の基板と、全面に共通電極を形成して
なる第2の基板との間に液晶物質を挟持した構造のマト
リクス型液晶表示装置の駆動方法に於いて、ドレイン信
号にこのドレイン信号の大きさに反比例的に対応した非
線形なバイアス電圧を加算する事を特徴としたマトリク
ス型液晶表示装置の駆動方法。
1. A first substrate formed by intersecting a plurality of gate lines and a plurality of drain lines, providing thin film transistors at the respective intersections, and forming pixel electrodes at the sources of the respective thin film transistors, and the entire surface. In a driving method of a matrix type liquid crystal display device having a structure in which a liquid crystal material is sandwiched between a second substrate having a common electrode formed on the substrate, a drain signal is inversely proportional to the magnitude of the drain signal. A driving method of a matrix type liquid crystal display device characterized by adding a non-linear bias voltage.
JP61218531A 1986-09-16 1986-09-16 Driving method of matrix type liquid crystal display device Expired - Fee Related JPH0727339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218531A JPH0727339B2 (en) 1986-09-16 1986-09-16 Driving method of matrix type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218531A JPH0727339B2 (en) 1986-09-16 1986-09-16 Driving method of matrix type liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS6371892A JPS6371892A (en) 1988-04-01
JPH0727339B2 true JPH0727339B2 (en) 1995-03-29

Family

ID=16721384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218531A Expired - Fee Related JPH0727339B2 (en) 1986-09-16 1986-09-16 Driving method of matrix type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0727339B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198089A (en) * 1989-12-27 1991-08-29 Sharp Corp Driving circuit for liquid crystal display device
JP2632071B2 (en) * 1990-06-20 1997-07-16 三洋電機株式会社 Liquid crystal display panel drive device
JP2703402B2 (en) * 1990-10-18 1998-01-26 シャープ株式会社 Driving method of liquid crystal display device
JP3520863B2 (en) * 2000-10-04 2004-04-19 セイコーエプソン株式会社 Image signal correction circuit, correction method thereof, liquid crystal display device, and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116392A (en) * 1984-11-09 1986-06-03 三洋電機株式会社 Driving of liquid crystal desplay unit
JPH0680477B2 (en) * 1985-02-06 1994-10-12 キヤノン株式会社 Liquid crystal display panel and driving method
JPS6211829A (en) * 1985-03-28 1987-01-20 Toshiba Corp Active matrix type liquid crystal display device
JP2783945B2 (en) * 1992-07-28 1998-08-06 松下電工株式会社 Photoelectric smoke detector

Also Published As

Publication number Publication date
JPS6371892A (en) 1988-04-01

Similar Documents

Publication Publication Date Title
JP3069930B2 (en) Liquid crystal display
JP3579051B2 (en) Liquid crystal halftone display with uniform gray level
JPH0334077B2 (en)
JPH0522434B2 (en)
JPH052208B2 (en)
US5369512A (en) Active matrix liquid crystal display with variable compensation capacitor
JPH06138841A (en) Active matrix flat display
JPH0727339B2 (en) Driving method of matrix type liquid crystal display device
JPH0469394B2 (en)
JPH01197722A (en) Liquid crystal display device and its driving method
JP4326242B2 (en) Liquid crystal display
JPH04318512A (en) Thin film transistor type liquid crystal display device
JP2000330519A (en) Driving method for liquid crystal element
JP2503266B2 (en) Thin film transistor matrix
JPS60151615A (en) Driving method of liquid-crystal display device
JPH06265939A (en) Liquid crystal display device
JPS61275823A (en) Liquid crystal display device
JPS63107381A (en) Liquid crystal driving method
US5282069A (en) Active device and active matrix display having ferroelectric layer as active layer
JPS61166587A (en) Thin film transistor
JP2861266B2 (en) Active matrix type liquid crystal display device and driving method thereof
JPH05216442A (en) Liquid crystal display device
JPH0584883B2 (en)
JP2001183698A (en) Liquid crystal display device
JPS6368818A (en) Active matrix type display and its driving method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees