JPH07270683A - Wide angle zoom lens - Google Patents

Wide angle zoom lens

Info

Publication number
JPH07270683A
JPH07270683A JP6057302A JP5730294A JPH07270683A JP H07270683 A JPH07270683 A JP H07270683A JP 6057302 A JP6057302 A JP 6057302A JP 5730294 A JP5730294 A JP 5730294A JP H07270683 A JPH07270683 A JP H07270683A
Authority
JP
Japan
Prior art keywords
lens
wide
lens component
component
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6057302A
Other languages
Japanese (ja)
Inventor
Atsushi Shibayama
敦史 芝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6057302A priority Critical patent/JPH07270683A/en
Priority to US08/379,928 priority patent/US5633760A/en
Priority to TW084100819A priority patent/TW305028B/zh
Priority to KR1019950001892A priority patent/KR950033544A/en
Publication of JPH07270683A publication Critical patent/JPH07270683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide a zoom lens having a wide view angle on a wide angle end, a shape that the entire length of a lens on the wide angle end is short and a small number of components and being advantageous to decrease the cost and excellent in image forming performance. CONSTITUTION:In the wide angle zoom lens provided with a first lens group G1 having positive refractive power and a second lens group G2 having negative refractive power in order from the object side and varying power in such a manner that the distance between the first and second lens groups G1 and G2 is reduced, the first lens groups G1 is provided with a first lens component L1 of negative refractive power, a second lens component L2 of positive refractive power, a third lens component L3 of positive or negative refractive power and a forth lens component L4 of positive refractive power in the order from the object side and constituted so as to satisfy various kinds of conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レンズシャッター式の
コンパクトカメラに適した小型の広角ズームレンズ、特
に70゜程度以上の広画角を含む広角ズームレンズに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact wide-angle zoom lens suitable for a lens shutter type compact camera, and more particularly to a wide-angle zoom lens including a wide angle of view of about 70 ° or more.

【0002】[0002]

【従来の技術】近年、コンパクトカメラでも広角ズーム
レンズの搭載が一般的となり、正・負の2群から構成さ
れる広角ズームレンズが、例えば特開平2−73322
号公報等で数多く提案されている。
2. Description of the Related Art In recent years, a wide-angle zoom lens is generally mounted even in a compact camera, and a wide-angle zoom lens composed of two groups, positive and negative, is disclosed in, for example, Japanese Patent Laid-Open No. 2-73232.
It has been proposed in many publications.

【0003】[0003]

【発明が解決しようとする課題】特開平2−73322
号公報等で提案されている広角ズームレンズでは、広角
端での画角は60゜程度であった。しかし、近年、コン
パクトカメラ用の広角ズームレンズでも、より広角化の
要求が高まっており、この要求に対し、本件と同一出願
人による特開平3−240013号公報、特開平5−1
9166号公報、特開平5−232383号公報におい
て70゜以上の広角域を含む広角ズームレンズを提案し
ている。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-73322
In the wide-angle zoom lens proposed in Japanese Laid-Open Patent Publication No. 2003-242, the angle of view at the wide-angle end was about 60 °. However, in recent years, there has been an increasing demand for a wider-angle zoom lens for a compact camera, and in response to this demand, Japanese Patent Laid-Open Nos. 3-240013 and 5-1 of the same applicant filed this patent.
A wide-angle zoom lens including a wide-angle range of 70 ° or more is proposed in Japanese Patent No. 9166 and Japanese Patent Application Laid-Open No. 5-232383.

【0004】しかしながら、特開平3−240013号
公報の各実施例においては、構成枚数が11枚と多いた
め低コスト化および小型化が困難であった。また、特開
平5−19166号公報、特開平5−232382号公
報の各実施例においては、いずれも広角端での全長(最
も物体側のレンズ面から像面までの距離)が広角端での
焦点距離の1.9倍以上であり、小型化が十分であると
はいえなかった。
However, in each of the embodiments disclosed in Japanese Patent Laid-Open No. 3-240013, it is difficult to reduce the cost and the size because the number of constituent elements is as large as 11. Further, in each of the examples of JP-A-5-19166 and JP-A-5-232382, the total length at the wide-angle end (the distance from the lens surface closest to the object side to the image plane) is at the wide-angle end. The focal length was 1.9 times or more, which was not sufficient for miniaturization.

【0005】本発明の目的は、広角端での画角が70°
以上であり、広角端でのレンズ全長が広角端の焦点距離
の1.8倍以下の小型な形状であり、構成枚数が7枚程
度と少なく低コスト化に有利で、かつ結像性能の優れた
広角ズームレンズを提供することにある。
An object of the present invention is to have an angle of view of 70 ° at the wide-angle end.
The above is a compact shape in which the total lens length at the wide-angle end is 1.8 times or less than the focal length at the wide-angle end, the number of components is about seven, which is advantageous for cost reduction and excellent imaging performance. To provide a wide-angle zoom lens.

【0006】[0006]

【課題を解決するための手段】本発明は、物体側より順
に、正の屈折力を持つ第1レンズ群と、負の屈折力を持
つ第2レンズ群を有し、前記第1レンズ群と前記第2レ
ンズ群との空気間隔を縮小させることにより広角端から
望遠端への変倍を行なう広角ズームレンズにおいて、前
記第1レンズ群は、物体側から順に、負屈折力の第1レ
ンズ成分と正屈折力の第2レンズ成分と正屈折力または
負屈折力の第3レンズ成分と正屈折力の第4レンズ成分
を有し、前記第1レンズ群の焦点距離をf1 、前記第2
レンズ成分の焦点距離をfL2、前記第4レンズ成分の焦
点距離をfL4、前記第1レンズ群の最も物体側のレンズ
面から最も像側のレンズ面までの軸上距離をDとすると
き、以下の条件を満足するよう構成した広角ズームレン
ズである。
The present invention has, in order from the object side, a first lens group having a positive refractive power and a second lens group having a negative refractive power, and the first lens group and In a wide-angle zoom lens that performs zooming from a wide-angle end to a telephoto end by reducing an air space between the first lens unit and the second lens unit, the first lens unit includes, in order from the object side, a first lens component having a negative refractive power. And a second lens component having a positive refracting power, a third lens component having a positive refracting power or a negative refracting power, and a fourth lens component having a positive refracting power, and a focal length of the first lens group is f1,
When the focal length of the lens component is fL2, the focal length of the fourth lens component is fL4, and the axial distance from the most object-side lens surface to the most image-side lens surface of the first lens group is D, The wide-angle zoom lens is configured to satisfy the condition of.

【0007】0 < f1 /fL2 < 2.5 0.5 < f1 /fL4 < 2.0 D/f1 < 0.84 さらに、前記第3レンズ成分の焦点距離をfL3とすると
き、以下の条件式を満足することが望ましい。
0 <f1 / fL2 <2.5 0.5 <f1 / fL4 <2.0 D / f1 <0.84 Further, when the focal length of the third lens component is fL3, the following conditional expression It is desirable to satisfy.

【0008】−1.5 < f1 /fL3 < 1.0 また、前記第1レンズ成分の焦点距離をfL1とすると
き、以下の条件式を満足することが望ましい。 −2.0 < f1 /fL1 < −0.4 さらに、広角ズームレンズの広角端の焦点距離をfW 、
前記第3レンズ成分の軸上レンズ厚をDL3とするとき、
以下の条件式を満足することが望ましい。
-1.5 <f1 / fL3 <1.0 When the focal length of the first lens component is fL1, it is desirable that the following conditional expression be satisfied. -2.0 <f1 / fL1 <-0.4 Furthermore, the focal length at the wide-angle end of the wide-angle zoom lens is fW,
When the axial lens thickness of the third lens component is DL3,
It is desirable to satisfy the following conditional expressions.

【0009】 0.085 < DL3/fW < 0.400 また、前記第3レンズ成分は負レンズと正レンズとの接
合レンズであることが望ましい。さらにこのとき、前記
第3レンズ成分を構成する負レンズと正レンズの屈折率
をそれぞれN3nとN3pとし、前記第3レンズ成分を構成
する負レンズと正レンズのアッベ数をそれぞれν3nとν
3pとするとき、以下の条件式を満足することがより望ま
しい。
0.085 <DL3 / fw <0.400 Further, it is desirable that the third lens component is a cemented lens of a negative lens and a positive lens. Further, at this time, the refractive indices of the negative lens and the positive lens forming the third lens component are N3n and N3p, respectively, and the Abbe numbers of the negative lens and the positive lens forming the third lens component are ν3n and ν, respectively.
When 3p, it is more desirable to satisfy the following conditional expressions.

【0010】N3n−N3p > 0.2 ν3p−ν3n > 4 また、前記第2レンズ成分の物体側面を非球面で構成し
てもよく、このとき、第2レンズ成分は物体側に凸面を
向けたメニスカス形状とするのが好ましい。あるいは、
前記第1レンズ成分の像側面を非球面で構成してもよ
い。
N3n-N3p> 0.2 ν3p-ν3n> 4 Further, the object side surface of the second lens component may be constructed as an aspherical surface. At this time, the second lens component has a convex surface directed toward the object side. A meniscus shape is preferable. Alternatively,
The image side surface of the first lens component may be an aspherical surface.

【0011】あるいは、前記第1レンズ成分の物体側面
を非球面で構成してもよい。あるいは、前記第4レンズ
成分の物体側面を非球面で構成してもよく、このとき、
前記第4レンズ成分は物体側に凹面を向けたメニスカス
形状とするのが好ましい。
Alternatively, the object side surface of the first lens component may be aspheric. Alternatively, the object side surface of the fourth lens component may be configured as an aspherical surface, and at this time,
The fourth lens component preferably has a meniscus shape with a concave surface facing the object side.

【0012】[0012]

【作用】正の第1レンズ群と負の第2レンズ群とから成
るズームレンズでは、負の第2レンズ群は、常に1より
大きい正の結像倍率で用いられている。このため、全系
の焦点距離をf、第1レンズ群の焦点距離をf1、第2
レンズ群の結像倍率をβ2とすると、f=f1・β2の関
係が成立するので、第1レンズ群の焦点距離f1は、広
角端での全系の焦点距離fWより短くなる。この結果、
広角化を図るために広角端での焦点距離fWを短くしよ
うとすると、第1レンズ群の焦点距離f1は従来よりも
一層短くする必要があり、収差補正が困難となりがちで
ある。
In the zoom lens composed of the positive first lens group and the negative second lens group, the negative second lens group is always used with a positive imaging magnification larger than 1. Therefore, the focal length of the entire system is f, the focal length of the first lens unit is f1,
When the image forming magnification of the lens group is β2, the relationship of f = f1 · β2 is established, and therefore the focal length f1 of the first lens group is shorter than the focal length fW of the entire system at the wide angle end. As a result,
If the focal length fW at the wide-angle end is shortened in order to achieve a wide angle, the focal length f1 of the first lens group needs to be made shorter than in the conventional case, and aberration correction tends to be difficult.

【0013】また、バックフォーカスの制約が少ないレ
ンズシャッターカメラに用いる場合、極端にバックフォ
ーカスを短くすると第2レンズ群の最終レンズ面の有効
径が大きくなりカメラ全体の小型化が難しくなるという
欠点がある。このため、広角端においてもある程度のバ
ックフォーカスを確保せねばならない。例えば、35m
m版(画面サイズ24×36mm)では、6mm程度の
バックフォーカスを確保するのが望ましい。
Further, when used in a lens shutter camera with few restrictions on the back focus, if the back focus is extremely shortened, the effective diameter of the final lens surface of the second lens group becomes large, which makes it difficult to downsize the entire camera. is there. Therefore, it is necessary to secure a certain amount of back focus even at the wide-angle end. For example, 35m
It is desirable to secure a back focus of about 6 mm for the m plate (screen size 24 × 36 mm).

【0014】しかしながら、前述の特開平2−7332
2号公報のごとき従来の正負の2群広角ズームレンズで
は、70°程度の広画角を得ようとすると、広角端にお
けるバックフォーカスの確保と、望遠端における第1レ
ンズ群と第2レンズ群との空気間隔の確保とを同時に達
成するのが困難であった。また、広角化を図るために第
1レンズ群の焦点距離f1 を短くすれば、これに伴い諸
収差が悪化し、収差補正のためには第1レンズ群を多数
のレンズを用いて複雑な構成とせねばならなかった。
However, the above-mentioned Japanese Unexamined Patent Publication No. 2-7332.
In the conventional positive / negative two-group wide-angle zoom lens as disclosed in Japanese Patent Laid-Open No. 2-2, when trying to obtain a wide angle of view of about 70 °, a back focus is secured at the wide-angle end, and the first lens group and the second lens group at the telephoto end. It was difficult to simultaneously secure the air gap between and. Further, if the focal length f1 of the first lens group is shortened in order to widen the angle, various aberrations are deteriorated accordingly, and in order to correct the aberration, the first lens group has a complicated structure using a large number of lenses. I had to say.

【0015】以上のごとく、従来の正負の2群広角ズー
ムレンズでは、レンズ系のコンパクト化を図りながら、
単純な構成で広角化を達成することは困難であった。そ
こで、本発明においては、第1レンズ群G1 の最も物体
側に、負屈折力の第1レンズ成分L1 を配置し、第1レ
ンズ群がレトロフォーカス型のレンズ群となるよう構成
する。これにより、広角端でのバックフォーカスの確保
と、望遠端での第1レンズ群G1 と第2レンズ群G2と
の空気間隔の確保とを同時に達成できる。
As described above, in the conventional positive / negative two-group wide-angle zoom lens, while making the lens system compact,
It was difficult to achieve a wide angle with a simple configuration. Therefore, in the present invention, the first lens component L1 having a negative refractive power is arranged on the most object side of the first lens group G1 so that the first lens group is a retrofocus type lens group. As a result, it is possible to simultaneously secure the back focus at the wide-angle end and the air space between the first lens group G1 and the second lens group G2 at the telephoto end.

【0016】また、最も物体側に負屈折力の第1レンズ
成分L1 を配しているために、像面湾曲、非点収差、歪
曲収差、倍率色収差等の軸外諸収差を補正することが容
易となる。これにより、第1レンズ群G1 を単純な構成
とすることが可能となり、レンズ系の小型化を達成でき
る。さらに詳しく本発明における広角ズームレンズの構
成を以下に説明する。
Further, since the first lens component L1 having negative refractive power is arranged closest to the object side, off-axis various aberrations such as field curvature, astigmatism, distortion and lateral chromatic aberration can be corrected. It will be easy. As a result, the first lens group G1 can have a simple structure, and the size of the lens system can be reduced. The configuration of the wide-angle zoom lens according to the present invention will be described in more detail below.

【0017】第1レンズ群G1 は、負屈折力の第1レン
ズ成分L1 と、正屈折力の第2レンズ成分L2 と、正屈
折力または負屈折力の第3レンズ成分L3 と、正屈折力
の第4レンズ成分L4 とからなり、前記第3レンズ成分
L3 は、負レンズL3nと正レンズL3pとの接合レンズで
ある。一方、負の第2レンズ群G2は物体側に凹面を向
けた正メニスカスレンズと物体側に凹面を向けた負メニ
スカスレンズからなる。
The first lens group G1 includes a first lens component L1 having a negative refractive power, a second lens component L2 having a positive refractive power, a third lens component L3 having a positive refractive power or a negative refractive power, and a positive refractive power. No. 4 lens component L4, and the third lens component L3 is a cemented lens of a negative lens L3n and a positive lens L3p. On the other hand, the negative second lens group G2 is composed of a positive meniscus lens having a concave surface facing the object side and a negative meniscus lens having a concave surface facing the object side.

【0018】本発明では、前述した効果を確実に達成す
るために、以下の条件(1)〜(3)を見出した。 (1) 0 < f1 /fL2 < 2.5 (2) 0.5 < f1 /fL4 < 2.0 (3) D/f1 < 0.84 但し、 f1 :前記第1レンズ群G1 の焦点距離、 fL2 :前記第2レンズ成分L2 の焦点距離、 fL4 :前記第4レンズ成分L4 の焦点距離、 D :前記第1レンズ群G1 の最も物体側のレンズ面
から最も像側のレンズ面までの軸上距離である。
In the present invention, the following conditions (1) to (3) have been found in order to surely achieve the above-mentioned effects. (1) 0 <f1 / fL2 <2.5 (2) 0.5 <f1 / fL4 <2.0 (3) D / f1 <0.84 where f1 is the focal length of the first lens group G1, fL2: focal length of the second lens component L2, fL4: focal length of the fourth lens component L4, D: on-axis from the most object side lens surface to the most image side lens surface of the first lens group G1 It is a distance.

【0019】条件式(1)は第2レンズ成分L2 の最適
な焦点距離の範囲を規定するものである。第2レンズ成
分L2 を正の屈折力とすることにより、負の第1レンズ
成分L1 と正の第2レンズ成分L2 で発生する諸収差を
互いに相殺でき、良好な収差補正が可能となる。条件式
(1)の下限を越えると、第2レンズ成分L2 が負の屈
折力を持ち、第1レンズ成分L1 と第2レンズ成分L2
とで発生する諸収差を相殺することが不可能となり、収
差補正が困難となる。反対に、条件式(1)の上限を越
えると、第2レンズ成分L2 の屈折力が大きくなり、第
2レンズ成分L2 で発生する負の球面収差が過大とな
り、補正が困難となる。
Conditional expression (1) defines the optimum range of the focal length of the second lens component L2. By making the second lens component L2 have a positive refracting power, various aberrations generated in the negative first lens component L1 and the positive second lens component L2 can be offset to each other, and good aberration correction can be performed. When the lower limit of conditional expression (1) is exceeded, the second lens component L2 has a negative refractive power, and the first lens component L1 and the second lens component L2
It becomes impossible to cancel various aberrations generated in and, and it becomes difficult to correct aberrations. On the contrary, if the upper limit of conditional expression (1) is exceeded, the refracting power of the second lens component L2 becomes large, and the negative spherical aberration generated in the second lens component L2 becomes excessive, which makes correction difficult.

【0020】条件式(2)は第4レンズ成分L4 の最適
な焦点距離の範囲を規定する条件である。条件式(2)
の下限を越えると、第4レンズ成分L4 の正の屈折力が
弱くなり、第1レンズ群G1 をレトロフォーカス型の構
成とする効果が弱まる。このため、広角端でのバックフ
ォーカスの確保と、望遠端での第1レンズ群G1 と第2
レンズ群G2 との空気間隔の確保とを同時に達成するこ
とが困難となる。反対に、条件式(2)の上限を越える
と、第4レンズ成分L4の屈折力が大きくなり、第4レ
ンズ成分L4 で発生する負の球面収差が過大となり、補
正が困難となる。
Conditional expression (2) defines the optimum range of the focal length of the fourth lens component L4. Conditional expression (2)
Beyond the lower limit of, the positive refractive power of the fourth lens component L4 becomes weak and the effect of making the first lens group G1 a retrofocus type structure becomes weak. Therefore, the back focus is secured at the wide-angle end, and the first lens group G1 and the second lens group at the telephoto end are used.
At the same time, it becomes difficult to secure an air gap with the lens group G2. On the other hand, if the upper limit of conditional expression (2) is exceeded, the refracting power of the fourth lens component L4 will increase, and the negative spherical aberration generated by the fourth lens component L4 will become excessive, making correction difficult.

【0021】条件式(3)は第1レンズ群G1 の軸上レ
ンズ厚を規定する条件である。条件式(3)の上限を越
えると、第1レンズ群G1 が大型化し、レンズ全長の大
型化を招き好ましくない。さらに好ましい条件として、
以下の条件式(4)〜(6)を見出した。 (4) −1.5 < f1 /fL3 < 1.0 (5) −2.0 < f1 /fL1 < −0.4 (6) 0.085 < DL3/fW < 0.4
00 但し、 fL3 :前記第3レンズ成分L3 の焦点距離、 fL1 :前記第1レンズ成分L1 の焦点距離、 DL3 :前記第3レンズ成分L3の軸上レンズ厚、 fW :広角ズームレンズの広角端の焦点距離である。
Conditional expression (3) defines the axial lens thickness of the first lens group G1. If the upper limit of conditional expression (3) is exceeded, the size of the first lens group G1 becomes large, which undesirably increases the total lens length. More preferable conditions are
The following conditional expressions (4) to (6) were found. (4) -1.5 <f1 / fL3 <1.0 (5) -2.0 <f1 / fL1 <-0.4 (6) 0.085 <DL3 / fw <0.4
Where fL3 is the focal length of the third lens component L3, fL1 is the focal length of the first lens component L1, DL3 is the axial lens thickness of the third lens component L3, and fW is the wide-angle end of the wide-angle zoom lens. The focal length.

【0022】条件式(4)は第3レンズ成分L3 の適切
な焦点距離範囲を規定する条件であり、条件式(4)の
上限、下限いずれを越えても、第3レンズ成分L3 の屈
折力が大きくなり、第1レンズ群G1 内部の各レンズ成
分の偏心公差が厳しくなり、好ましくない。条件式
(5)は第1レンズ成分L1 の適切な焦点距離範囲を規
定している。条件式(5)の下限を越えると、第1レン
ズ成分L1 で発生するコマ収差、倍率色収差等が過大と
なり、補正が困難となる。反対に、条件式(5)の上限
を越えると、第1レンズ成分L1 の負の屈折力が小さく
なり、第1レンズ群G1 をレトロフォーカス型の構成と
する効果が弱まる。このため、広角端でのバックフォー
カスの確保と、望遠端での第1レンズ群G1 と第2レン
ズ群G2 との空気間隔の確保とを同時に達成することが
困難となる。
Conditional expression (4) is a condition for defining an appropriate focal length range of the third lens component L3. Even if either the upper limit or the lower limit of the conditional expression (4) is exceeded, the refractive power of the third lens component L3. Is large and the eccentricity tolerance of each lens component inside the first lens group G1 becomes strict, which is not preferable. Conditional expression (5) defines an appropriate focal length range of the first lens component L1. If the lower limit of conditional expression (5) is exceeded, coma, chromatic aberration of magnification, etc. generated in the first lens component L1 will become excessive and correction will be difficult. On the other hand, if the upper limit of conditional expression (5) is exceeded, the negative refractive power of the first lens component L1 will become small, and the effect of making the first lens group G1 of the retrofocus type will be weakened. For this reason, it is difficult to simultaneously secure the back focus at the wide-angle end and the air space between the first lens group G1 and the second lens group G2 at the telephoto end.

【0023】条件式(6)は第3レンズ成分L3 の軸上
レンズ厚を規定している。条件式(6)の下限をこえる
と、第3レンズ成分L3の軸上レンズ厚が薄くなり、像
面湾曲、および歪曲収差を適切に補正するのが困難とな
る。反対に、条件式(6)の上限を越えると、第3レン
ズ成分L3 の軸上レンズ厚が大きくなり、第1レンズ群
G1 の大型化をまねき好ましくない。
Conditional expression (6) defines the axial lens thickness of the third lens component L3. If the lower limit of conditional expression (6) is exceeded, the axial lens thickness of the third lens component L3 becomes thin, and it becomes difficult to properly correct field curvature and distortion. On the other hand, if the upper limit of conditional expression (6) is exceeded, the axial lens thickness of the third lens component L3 becomes large, which is not preferable because the first lens group G1 becomes large.

【0024】さらに、球面収差、および色収差を良好に
補正するためには、第3レンズ成分L3 を、負レンズL
3nと正レンズL3pとの接合レンズとするのが望ましい。
このとき、以下の条件式(7)、(8)を満足するのが
望ましい。 (7) N3n−N3p > 0.2 (8) ν3p−ν3n > 4 但し、 N3n :前記第3レンズ成分L3 を構成する負レンズL
3nの屈折率、 N3p :前記第3レンズ成分L3 を構成する正レンズL
3pの屈折率、 ν3n :前記第3レンズ成分L3 を構成する負レンズL
3nのアッベ数、 ν3p :前記第3レンズ成分L3を構成する正レンズL3p
のアッベ数である。 条件式(7)の下限を越えると、第1レンズ群G1 で発
生しがちな負の球面収差の補正が困難になり、好ましく
ない。
Further, in order to satisfactorily correct spherical aberration and chromatic aberration, the third lens component L3 is replaced by the negative lens L
It is desirable to use a cemented lens of 3n and the positive lens L3p.
At this time, it is desirable to satisfy the following conditional expressions (7) and (8). (7) N3n-N3p> 0.2 (8) ν3p-ν3n> 4 However, N3n: Negative lens L constituting the third lens component L3
Refractive index of 3n, N3p: Positive lens L constituting the third lens component L3
Refractive index of 3p, ν3n: Negative lens L constituting the third lens component L3
Abbe number of 3n, ν3p: Positive lens L3p constituting the third lens component L3
Is the Abbe number. If the lower limit of conditional expression (7) is exceeded, it becomes difficult to correct the negative spherical aberration that tends to occur in the first lens group G1, which is not preferable.

【0025】条件式(8)の下限を越えると、広角ズー
ムレンズの広角端から望遠端にわたって、軸上色収差お
よび倍率色収差をともに補正するのが困難となる。ま
た、広角ズームレンズの小型化に関連して、第1レンズ
群G1 を小型に構成するには、第1レンズ群G1 中に非
球面を設けるのが望ましい。その際、第2レンズ成分L
2 の物体側面、または、第1レンズ成分L1 の像側面、
または、第1レンズ成分L1 の物体側面、または、第4
レンズ成分L4 の物体側面を非球面とするのが望まし
い。
If the lower limit of conditional expression (8) is exceeded, it becomes difficult to correct both axial chromatic aberration and lateral chromatic aberration from the wide-angle end to the telephoto end of the wide-angle zoom lens. Further, in order to make the first lens group G1 small in association with the miniaturization of the wide-angle zoom lens, it is desirable to provide an aspherical surface in the first lens group G1. At that time, the second lens component L
2, the object side surface, or the image side surface of the first lens component L1,
Alternatively, the object side surface of the first lens component L1 or the fourth lens component L1
It is desirable that the object side surface of the lens component L4 be an aspherical surface.

【0026】なお、第2レンズ成分L2 の物体側面を非
球面とする場合には、第2レンズ成分L2 を物体側に凸
面を向けたメニスカス形状とするのが収差補正上望まし
い。また、第4レンズ成分L4 の物体側面を非球面とす
る場合には、第4レンズ成分L4 を物体側に凹面を向け
たメニスカス形状とするのが収差補正上望ましい。
When the object side surface of the second lens component L2 is an aspherical surface, it is desirable for aberration correction that the second lens component L2 has a meniscus shape with its convex surface facing the object side. When the object side surface of the fourth lens component L4 is an aspherical surface, it is desirable for aberration correction that the fourth lens component L4 has a meniscus shape with a concave surface facing the object side.

【0027】[0027]

【実施例】以下に、図を参照しながら本発明による各実
施例について具体的に説明する。 〔実施例1〕実施例1の各レンズ群の具体的なレンズ構
成を図1に示す。図1に示される如く、正屈折力の第1
レンズ群G1 は、物体側から順に、負屈折力を有し両凹
形状の第1レンズ成分L1 と、正屈折力を有し物体側に
凸面を向けたメニスカス形状の第2レンズ成分L2 と、
正屈折力を有し両凸形状の第3レンズ成分L3 と、正屈
折力を有し両凸形状の第4レンズ成分L4 とからなり、
第1レンズ成分乃至第4レンズ成分の間は空気間隔であ
る。そして、前記第2レンズ成分L2 の物体側面は非球
面であり、前記第3レンズ成分L3 は、物体側より順
に、物体側に凸面を向けた負メニスカスレンズL3nと、
両凸正レンズL3pとの接合レンズである。一方、負屈折
力の第2レンズ群G2は、物体側から順に、正屈折力を
有し物体側に凹面を向けたメニスカス形状の第5レンズ
成分L5 と、負屈折力を有し物体側に凹面を向けたメニ
スカス形状の第6レンズ成分L6 とからなり、第5レン
ズ成分L5 の物体側面は非球面である。また、絞りSは
第1レンズ群G1 と第2レンズ群G2 の間に位置し、ズ
ーミングに際しては第1レンズ群G1 と一体で移動す
る。
Embodiments Embodiments of the present invention will be specifically described below with reference to the drawings. Example 1 FIG. 1 shows a specific lens configuration of each lens group of Example 1. As shown in FIG. 1, the first
The lens group G1 includes, in order from the object side, a biconcave first lens component L1 having negative refractive power, and a meniscus second lens component L2 having positive refractive power and having a convex surface directed toward the object side.
A biconvex third lens component L3 having positive refracting power and a biconvex fourth lens component L4 having positive refracting power,
There is an air gap between the first lens component to the fourth lens component. The object side surface of the second lens component L2 is an aspherical surface, and the third lens component L3 includes, in order from the object side, a negative meniscus lens L3n having a convex surface directed toward the object side.
It is a cemented lens with a biconvex positive lens L3p. On the other hand, the second lens unit G2 having a negative refractive power has, in order from the object side, a meniscus-shaped fifth lens component L5 having a positive refractive power and a concave surface facing the object side, and a negative refractive power to the object side. It is composed of a meniscus sixth lens component L6 having a concave surface, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0028】以下の表1に、本発明の実施例1の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
In Table 1 below, the values of the specifications and the numerical values corresponding to the conditions of Example 1 of the present invention are listed. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0029】[0029]

【表1】 実施例1の諸元値 f=28.4〜54.9 F=4.1〜7.9 2ω=
76.6〜44.0゜ (第3面非球面係数) k=-0.1345 ×10 C4 =-0.8849 ×10-4 C6 =-
0.8754 ×10-6 C8 =-0.5813 ×10-8 C10=-0.1178 ×10-9 (第11面非球面係数) k=0.1967×10 C4 =0.3937×10-4 C6 =0.17
69×10-6 C8 =-0.5888 ×10-9 C10=0.2974×10-10 変倍における間隔の変化を以下に示す。 f 28.3789 40.2433 54.8684 d10 13.2148 7.2156 3.3907 B.f 6.7130 20.6181 37.7588 条件対応数値を以下に示す。 (1)f1 /fL2=0.139 (2)f1 /fL4=1.16 (3)D/f1 =0.750 (4)f1 /fL3=0.518 (5)f1 /fL1=-1.10 (6)DL3/fW =0.279 (7)N3n−N3p=0.23593 (8)ν3p−ν3n=32.2 〔実施例2〕実施例2の各レンズ群の具体的なレンズ構
成を図2に示す。
Table 1 Specifications of Example 1 f = 28.4 to 54.9 F = 4.1 to 7.9 2ω =
76.6-44.0 ° (Third surface aspherical surface coefficient) k = -0.1345 x10 C4 = -0.8849 x10 -4 C6 =-
0.8754 × 10 -6 C8 = -0.5813 × 10 -8 C10 = -0.1178 × 10 -9 (11th surface aspherical surface coefficient) k = 0.1967 × 10 C4 = 0.3937 × 10 -4 C6 = 0.17
69 × 10 -6 C8 = -0.5888 × 10 -9 C10 = 0.2974 × 10 -10 The following shows the change in the interval during zooming. f 28.3789 40.2433 54.8684 d10 13.2148 7.2156 3.3907 Bf 6.7130 20.6181 37.7588 The conditions corresponding numerical values are shown below. (1) f1 / fL2 = 0.139 (2) f1 / fL4 = 1.16 (3) D / f1 = 0.750 (4) f1 / fL3 = 0.518 (5) f1 / fL1 = -1.10 (6) DL3 / fw = 0.279 ( 7) N3n-N3p = 0.23593 (8) ν3p-ν3n = 32.2 [Example 2] FIG. 2 shows a specific lens configuration of each lens group of Example 2.

【0030】図2に示される如く、正屈折力の第1レン
ズ群G1 は、物体側から順に、負屈折力を有し両凹形状
の第1レンズ成分L1 と、正屈折力を有し両凸形状の第
2レンズ成分L2 と、負屈折力を有し物体側に凹面を向
けたメニスカス形状の第3レンズ成分L3 と、正屈折力
を有し両凸形状の第4レンズ成分L4 とからなり、第1
レンズ成分乃至第4レンズ成分の間は空気間隔である。
そして、前記第1レンズ成分L1 の像側面は非球面であ
り、前記第3レンズ成分L3 は、物体側より順に、両凹
負レンズL3nと、両凸正レンズL3pとの接合レンズであ
る。
As shown in FIG. 2, the first lens group G1 having positive refracting power has, in order from the object side, the first lens component L1 having negative refracting power and having a biconcave shape, and both having positive refracting power. From the second lens component L2 having a convex shape, the third lens component L3 having a negative refractive power and having a concave surface facing the object side, and the fourth lens component L4 having a positive refractive power and having a biconvex shape. Become, first
There is an air space between the lens component and the fourth lens component.
The image side surface of the first lens component L1 is an aspherical surface, and the third lens component L3 is a cemented lens of a biconcave negative lens L3n and a biconvex positive lens L3p in order from the object side.

【0031】一方、負屈折力の第2レンズ群G2は、物
体側から順に、正屈折力を有し物体側に凹面を向けたメ
ニスカス形状の第5レンズ成分L5 と、負屈折力を有し
物体側に凹面を向けたメニスカス形状の第6レンズ成分
L6 とからなり、第5レンズ成分L5 の物体側面は非球
面である。また、絞りSは第1レンズ群G1 と第2レン
ズ群G2 の間に位置し、ズーミングに際しては第1レン
ズ群G1 と一体で移動する。
On the other hand, the second lens unit G2 having a negative refractive power has, in order from the object side, a fifth meniscus lens component L5 having a positive refractive power and a concave surface facing the object side, and a negative refractive power. The sixth lens component L6 has a meniscus shape with a concave surface facing the object side, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0032】以下の表2に、本発明の実施例2の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
In Table 2 below, the values of specifications and the numerical values corresponding to the conditions of the second embodiment of the present invention are listed. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0033】[0033]

【表2】 実施例2の諸元値 f=28.4〜54.9 F=4.0〜7.8 2ω=
76.9〜44.0゜ (第2面非球面係数) k=0.9573×10 C4 =0.8933×10-4 C6 =0.2611
×10-6 C8 =0.4354×10-8 C10=0.8326×10-11 (第11面非球面係数) k=0.2633×10 C4 =0.4186×10-4 C6 =0.1830×
10-6 C8 =0.3808×10-10 C10=0.2219×10-10 変倍における間隔の変化を以下に示す。 f 28.3808 40.1850 54.8774 d10 11.8149 6.1549 2.5115 B.f 7.5957 21.5919 39.0127 条件対応数値を以下に示す。 (1)f1 /fL2=0.940 (2)f1 /fL4=1.15 (3)D/f1 =0.637 (4)f1 /fL3=-0.498 (5)f1 /fL1=-0.924 (6)DL3/fW =0.128 (7)N3n−N3p=0.31635 (8)ν3p−ν3n=36.3 〔実施例3〕実施例3の各レンズ群の具体的なレンズ構
成を図3に示す。
Table 2 Specifications of Example 2 f = 28.4 to 54.9 F = 4.0 to 7.8 2ω =
76.9 to 44.0 ° (Second surface aspherical coefficient) k = 0.9573 × 10 C4 = 0.8933 × 10 −4 C6 = 0.261
× 10 -6 C8 = 0.4354 × 10 -8 C10 = 0.8326 × 10 -11 (11th surface aspherical coefficient) k = 0.2633 × 10 C4 = 0.4186 × 10 -4 C6 = 0.1830 ×
The change of the interval at the magnification change of 10 −6 C 8 = 0.3808 × 10 −10 C 10 = 0.2219 × 10 −10 is shown below. f 28.3808 40.1850 54.8774 d10 11.8149 6.1549 2.5115 Bf 7.5957 21.5919 39.0127 The numerical values corresponding to the conditions are shown below. (1) f1 / fL2 = 0.940 (2) f1 / fL4 = 1.15 (3) D / f1 = 0.637 (4) f1 / fL3 = -0.498 (5) f1 / fL1 = -0.924 (6) DL3 / fW = 0.128 (7) N3n-N3p = 0.31635 (8) ν3p-ν3n = 36.3 [Example 3] FIG. 3 shows a specific lens configuration of each lens group of Example 3.

【0034】図3に示される如く、正屈折力の第1レン
ズ群G1 は、物体側から順に、負屈折力を有し両凹形状
の第1レンズ成分L1 と、正屈折力を有し両凸形状の第
2レンズ成分L2 と、負屈折力を有し物体側に凹面を向
けたメニスカス形状の第3レンズ成分L3 と、正屈折力
を有し両凸形状の第4レンズ成分L4 とからなり、第1
レンズ成分乃至第4レンズ成分の間は空気間隔である。
そして、前記第1レンズ成分L1 の像側面は非球面であ
り、前記第3レンズ成分L3 は、物体側より順に、両凹
負レンズL3nと、両凸正レンズL3pとの接合レンズであ
る。
As shown in FIG. 3, the first lens group G1 having positive refracting power has, in order from the object side, the first lens component L1 having negative refracting power and having a biconcave shape, and the first lens component L1 having positive refracting power. From the second lens component L2 having a convex shape, the third lens component L3 having a negative refractive power and having a concave surface facing the object side, and the fourth lens component L4 having a positive refractive power and having a biconvex shape. Become, first
There is an air space between the lens component and the fourth lens component.
The image side surface of the first lens component L1 is an aspherical surface, and the third lens component L3 is a cemented lens of a biconcave negative lens L3n and a biconvex positive lens L3p in order from the object side.

【0035】一方、負屈折力の第2レンズ群G2は、物
体側から順に、正屈折力を有し物体側に凹面を向けたメ
ニスカス形状の第5レンズ成分L5 と、負屈折力を有し
物体側に凹面を向けたメニスカス形状の第6レンズ成分
L6 とからなり、第5レンズ成分L5 の物体側面は非球
面である。また、絞りSは第1レンズ群G1 と第2レン
ズ群G2 の間に位置し、ズーミングに際しては第1レン
ズ群G1 と一体で移動する。
On the other hand, the second lens unit G2 having a negative refractive power has, in order from the object side, a positive meniscus fifth lens component L5 having a meniscus shape with a concave surface facing the object side, and a negative refractive power. The sixth lens component L6 has a meniscus shape with a concave surface facing the object side, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0036】以下の表3に、本発明の実施例3の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
In Table 3 below, the values of specifications and the numerical values corresponding to the conditions of Example 3 of the present invention are listed. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0037】[0037]

【表3】 実施例3の諸元値 f=28.4〜54.9 F=4.0〜7.8 2ω=
76.9〜43.9゜ (第2面非球面係数) k=0.1185×102 C4 =0.8629×10-4 C6 =0.5315×
10-6 C8 =-0.6674 ×10-8 C10=0.2603×10-9 (第11面非球面係数) k=0.2729×10 C4 =0.4247×10-4 C6 =0.8959
×10-7 C8 =0.1758×10-8 C10=0.1048×10-10 変倍における間隔の変化を以下に示す。 f 28.3813 40.1860 54.8791 d10 11.7219 6.1185 2.5116 B.f 7.3009 21.0225 38.1014 条件対応数値を以下に示す。 (1)f1 /fL2=0.916 (2)f1 /fL4=1.20 (3)D/f1 =0.631 (4)f1 /fL3=-0.531 (5)f1 /fL1=-0.912 (6)DL3/fW =0.133 (7)N3n−N3p=0.31635 (8)ν3p−ν3n=36.3 〔実施例4〕実施例4の各レンズ群の具体的なレンズ構
成を図4に示す。
Table 3 Specifications of Example 3 f = 28.4 to 54.9 F = 4.0 to 7.8 2ω =
76.9 to 43.9 ° (Second surface aspherical coefficient) k = 0.1185 × 10 2 C4 = 0.8629 × 10 -4 C6 = 0.5315 ×
10 -6 C8 = -0.6674 × 10 -8 C10 = 0.2603 × 10 -9 (11th surface aspherical coefficient) k = 0.2729 × 10 C4 = 0.4247 × 10 -4 C6 = 0.8959
× 10 -7 C8 = 0.1758 × 10 -8 C10 = 0.1048 × 10 -10 The following shows the change in the interval during zooming. f 28.3813 40.1860 54.8791 d10 11.7219 6.1185 2.5116 Bf 7.3009 21.0225 38.1014 The numerical values corresponding to the conditions are shown below. (1) f1 / fL2 = 0.916 (2) f1 / fL4 = 1.20 (3) D / f1 = 0.631 (4) f1 / fL3 = -0.531 (5) f1 / fL1 = -0.912 (6) DL3 / fw = 0.133 (7) N3n-N3p = 0.31635 (8) ν3p-ν3n = 36.3 [Example 4] FIG. 4 shows a specific lens configuration of each lens group of Example 4.

【0038】図4に示される如く、正屈折力の第1レン
ズ群G1 は、物体側から順に、負屈折力を有し少なくと
も光軸近傍において両凹形状の第1レンズ成分L1 と、
正屈折力を有し両凸形状の第2レンズ成分L2 と、負屈
折力を有し物体側に凹面を向けたメニスカス形状の第3
レンズ成分L3 と、正屈折力を有し両凸形状の第4レン
ズ成分L4 とからなり、第1レンズ成分乃至第4レンズ
成分の間は空気間隔である。そして、前記第1レンズ成
分L1 の物体側面と像側面はともに非球面であり、前記
第3レンズ成分L3 は、物体側より順に、両凹負レンズ
L3nと、両凸正レンズL3pとの接合レンズである。
As shown in FIG. 4, the first lens group G1 having a positive refracting power has, in order from the object side, a first lens component L1 having a negative refracting power and having a biconcave shape at least near the optical axis,
A biconvex second lens component L2 having a positive refractive power and a meniscus third lens component L2 having a negative refractive power and having a concave surface facing the object side.
It is composed of a lens component L3 and a biconvex fourth lens component L4 having a positive refractive power, and there is an air gap between the first lens component to the fourth lens component. The object side surface and the image side surface of the first lens component L1 are aspherical surfaces, and the third lens component L3 is a cemented lens of a biconcave negative lens L3n and a biconvex positive lens L3p in order from the object side. Is.

【0039】一方、負屈折力の第2レンズ群G2 は、物
体側から順に、正屈折力を有し物体側に凹面を向けたメ
ニスカス形状の第5レンズ成分L5 と、負屈折力を有し
物体側に凹面を向けたメニスカス形状の第6レンズ成分
L6 とからなり、第5レンズ成分L5 の物体側面は非球
面である。また、絞りSは第1レンズ群G1 と第2レン
ズ群G2 の間に位置し、ズーミングに際しては第1レン
ズ群G1 と一体で移動する。
On the other hand, the second lens unit G2 having a negative refractive power has, in order from the object side, a fifth meniscus lens component L5 having a positive refractive power and having a concave surface facing the object side, and a negative refractive power. The sixth lens component L6 has a meniscus shape with a concave surface facing the object side, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0040】以下の表4に、本発明の実施例4の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
In Table 4 below, the values of the parameters and the numerical values corresponding to the conditions of Example 4 of the present invention are listed. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0041】[0041]

【表4】 実施例4の諸元値 f=28.4〜54.9 F=4.0〜7.8 2ω=
76.5〜43.8゜ (第1面非球面係数) k=-0.9900 ×102 C4 =0.7634×10-4 C6 =-0.5
937 ×10-6 C8 =-0.7162 ×10-8 C10=0.1393×10-9 (第2面非球面係数) k=0.9927×10 C4 =0.1441×10-3 C6 =-0.1
408 ×10-7 C8 =-0.2213 ×10-7 C10=-0.1571 ×10-9 (第11面非球面係数) k=-0.5380 ×10 C4 =0.4378×10-4 C6 =0.21
81×10-6 C8 =0.7409×10-9 C10=0.2559×10-10 変倍における間隔の変化を以下に示す。 f 28.3809 40.1857 54.8780 d10 10.7184 6.0346 3.0198 B.f 6.7654 19.1990 34.6740 条件対応数値を以下に示す。 (1)f1 /fL2=1.12 (2)f1 /fL4=1.09 (3)D/f1 =0.706 (4)f1 /fL3=-0.717 (5)f1 /fL1=-0.786 (6)DL3/fW =0.155 (7)N3n−N3p=0.31635 (8)ν3p−ν3n=36.3 〔実施例5〕実施例5の各レンズ群の具体的なレンズ構
成を図5に示す。
Table 4 Specifications of Example 4 f = 28.4 to 54.9 F = 4.0 to 7.8 2ω =
76.5 to 43.8 ° (First surface aspherical coefficient) k = -0.9900 × 10 2 C4 = 0.7634 × 10 -4 C6 = -0.5
937 × 10 -6 C8 = -0.7162 × 10 -8 C10 = 0.1393 × 10 -9 (second surface aspherical coefficient) k = 0.9927 × 10 C4 = 0.1441 × 10 -3 C6 = -0.1
408 × 10 -7 C8 = -0.2213 × 10 -7 C10 = -0.1571 × 10 -9 (11th surface aspherical coefficient) k = -0.5380 × 10 C4 = 0.4378 × 10 -4 C6 = 0.21
81 × 10 −6 C8 = 0.7409 × 10 −9 C10 = 0.2559 × 10 −10 The following shows the change in the interval during zooming. f 28.3809 40.1857 54.8780 d10 10.7184 6.0346 3.0198 Bf 6.7654 19.1990 34.6740 The numerical values corresponding to the conditions are shown below. (1) f1 / fL2 = 1.12 (2) f1 / fL4 = 1.09 (3) D / f1 = 0.706 (4) f1 / fL3 = -0.717 (5) f1 / fL1 = -0.786 (6) DL3 / fW = 0.155 (7) N3n-N3p = 0.31635 (8) ν3p-ν3n = 36.3 [Example 5] FIG. 5 shows a specific lens configuration of each lens group of Example 5.

【0042】図5に示される如く、正屈折力の第1レン
ズ群G1 は、物体側から順に、負屈折力を有し少なくと
も光軸近傍において両凹形状の第1レンズ成分L1 と、
正屈折力を有し両凸形状の第2レンズ成分L2 と、負屈
折力を有し物体側に凹面を向けたメニスカス形状の第3
レンズ成分L3 と、正屈折力を有し両凸形状の第4レン
ズ成分L4 とからなり、第1レンズ成分乃至第4レンズ
成分の間は空気間隔である。そして、前記第1レンズ成
分L1 の物体側面と像側面はともに非球面であり、前記
第3レンズ成分L3 は、物体側より順に、両凹負レンズ
L3nと、両凸正レンズL3pとの接合レンズである。
As shown in FIG. 5, the first lens group G1 having a positive refracting power has, in order from the object side, a first lens component L1 having a negative refracting power and having a biconcave shape at least near the optical axis.
A biconvex second lens component L2 having a positive refractive power and a meniscus third lens component L2 having a negative refractive power and having a concave surface facing the object side.
It is composed of a lens component L3 and a biconvex fourth lens component L4 having a positive refractive power, and there is an air gap between the first lens component to the fourth lens component. The object side surface and the image side surface of the first lens component L1 are aspherical surfaces, and the third lens component L3 is a cemented lens of a biconcave negative lens L3n and a biconvex positive lens L3p in order from the object side. Is.

【0043】一方、負屈折力の第2レンズ群G2 は、物
体側から順に、正屈折力を有し物体側に凹面を向けたメ
ニスカス形状の第5レンズ成分L5 と、負屈折力を有し
物体側に凹面を向けたメニスカス形状の第6レンズ成分
L6 とからなり、第5レンズ成分L5 の物体側面は非球
面である。また、絞りSは第1レンズ群G1 と第2レン
ズ群G2 の間に位置し、ズーミングに際しては第1レン
ズ群G1 と一体で移動する。
On the other hand, the second lens unit G2 having a negative refractive power has, in order from the object side, a positive meniscus fifth lens component L5 having a meniscus shape with a concave surface facing the object side, and a negative refractive power. The sixth lens component L6 has a meniscus shape with a concave surface facing the object side, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0044】以下の表5に、本発明の実施例5の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
Table 5 below shows the values of specifications and the numerical values corresponding to the conditions of the fifth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0045】[0045]

【表5】 実施例5の諸元値 f=28.4〜54.9 F=4.0〜7.8 2ω=
77.0〜43.9゜ (第1面非球面係数) k=-0.8987 ×103 C4 =0.1354×10-4 C6 =0.20
47×10-6 C8 =-0.7638 ×10-8 C10=0.7882×10-10 (第2面非球面係数) k=0.1213×102 C4 =0.8422×10-4 C6 =0.50
91×10-6 C8 =-0.1451 ×10-7 C10=0.1213×10-9 (第11面非球面係数) k=-0.6527 ×10 C4 =0.4368×10-4 C6 =0.
2725×10-6 C8 =0.7977×10-10 C10=0.2741×10-10 変倍における間隔の変化を以下に示す。 f 28.3818 40.1871 54.8810 d10 10.6697 6.0156 3.0198 B.f 6.7117 19.0783 34.4708 条件対応数値を以下に示す。 (1)f1 /fL2=1.01 (2)f1 /fL4=1.04 (3)D/f1 =0.712 (4)f1 /fL3=-0.617 (5)f1 /fL1=-0.712 (6)DL3/fW =0.155 (7)N3n−N3p=0.22883 (8)ν3p−ν3n=7.7 〔実施例6〕実施例6の各レンズ群の具体的なレンズ構
成を図6に示す。
Table 5 Specifications of Example 5 f = 28.4 to 54.9 F = 4.0 to 7.8 2ω =
77.0 to 43.9 ° (1st surface aspherical surface coefficient) k = -0.8987 × 10 3 C4 = 0.1354 × 10 -4 C6 = 0.20
47 x 10 -6 C8 = -0.7638 x 10 -8 C10 = 0.7882 x 10 -10 (second surface aspherical coefficient) k = 0.1213 x 10 2 C4 = 0.842 2 x 10 -4 C6 = 0.50
91 x 10 -6 C8 = -0.1451 x 10 -7 C10 = 0.1213 x 10 -9 (11th surface aspherical coefficient) k = -0.6527 x10 C4 = 0.4368 x 10 -4 C6 = 0.
2725 × 10 -6 C 8 = 0.7977 × 10 -10 C 10 = 0.2741 × 10 -10 The following shows the change in the interval during zooming. f 28.3818 40.1871 54.8810 d10 10.6697 6.0156 3.0198 Bf 6.7117 19.0783 34.4708 The numerical values corresponding to the conditions are shown below. (1) f1 / fL2 = 1.01 (2) f1 / fL4 = 1.04 (3) D / f1 = 0.712 (4) f1 / fL3 = -0.617 (5) f1 / fL1 = -0.712 (6) DL3 / fw = 0.155 (7) N3n-N3p = 0.22883 (8) ν3p-ν3n = 7.7 [Example 6] FIG. 6 shows a specific lens configuration of each lens group of Example 6.

【0046】図6に示される如く、正屈折力の第1レン
ズ群G1 は、物体側から順に、負屈折力を有し少なくと
も光軸近傍において両凹形状の第1レンズ成分L1 と、
正屈折力を有し両凸形状の第2レンズ成分L2 と、負屈
折力を有し物体側に凹面を向けたメニスカス形状の第3
レンズ成分L3 と、正屈折力を有し両凸形状の第4レン
ズ成分L4 とからなり、第1レンズ成分乃至第4レンズ
成分の間は空気間隔である。そして、前記第1レンズ成
分L1 の物体側面と像側面はともに非球面であり、前記
第3レンズ成分L3 は、物体側より順に、両凹負レンズ
L3nと、両凸正レンズL3pとの接合レンズである。
As shown in FIG. 6, the first lens unit G1 having a positive refracting power has, in order from the object side, a first lens component L1 having a negative refracting power and having a biconcave shape at least near the optical axis,
A biconvex second lens component L2 having a positive refractive power and a meniscus third lens component L2 having a negative refractive power and having a concave surface facing the object side.
It is composed of a lens component L3 and a biconvex fourth lens component L4 having a positive refractive power, and there is an air gap between the first lens component to the fourth lens component. The object side surface and the image side surface of the first lens component L1 are aspherical surfaces, and the third lens component L3 is a cemented lens of a biconcave negative lens L3n and a biconvex positive lens L3p in order from the object side. Is.

【0047】一方、負屈折力の第2レンズ群G2 は、物
体側から順に、正屈折力を有し物体側に凹面を向けたメ
ニスカス形状の第5レンズ成分L5 と、負屈折力を有し
物体側に凹面を向けたメニスカス形状の第6レンズ成分
L6 とからなり、第5レンズ成分L5 の物体側面は非球
面である。また、絞りSは第1レンズ群G1 と第2レン
ズ群G2 の間に位置し、ズーミングに際しては第1レン
ズ群G1 と一体で移動する。
On the other hand, the second lens unit G2 having negative refracting power has, in order from the object side, a fifth meniscus lens component L5 having positive refracting power and a concave surface facing the object side, and negative refracting power. The sixth lens component L6 has a meniscus shape with a concave surface facing the object side, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0048】以下の表6に、本発明の実施例6の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
Table 6 below lists the values of specifications and the numerical values corresponding to the conditions of the sixth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0049】[0049]

【表6】 実施例6の諸元値 f=28.4〜54.9 F=4.0〜7.8 2ω=
77.0〜43.9゜ (第1面非球面係数) k=-0.4009 ×103 C4 =0.6736×10-5 C6 =0.51
73×10-7 C8 =-0.8493 ×10-9 C10=0.1111×10-10 (第2面非球面係数) k=0.1164×102 C4 =0.5483×10-4 C6 =0.17
29×10-6 C8 =-0.4906 ×10-8 C10=0.8360×10-10 (第11面非球面係数) k=-0.6775 ×10 C4 =0.4204×10-4 C6 =0.27
86×10-6 C8=-0.2928 ×10-9 C10=0.3002×10-10 変倍における間隔の変化を以下に示す。 f 28.3812 40.1844 54.8748 d10 10.8869 6.1007 3.0198 B.f 6.7264 19.2410 34.8167 条件対応数値を以下に示す。 (1)f1/fL2=1.43 (2)f1 /fL4=1.34 (3)D/f1 =0.770 (4)f1 /fL3=-0.847 (5)f1 /fL1=-0.692 (6)DL3/fW =0.190 (7)N3n−N3p=0.22883 (8)ν3p−ν3n=7.7 〔実施例7〕実施例7の各レンズ群の具体的なレンズ構
成を図7に示す。
Table 6 Specifications of Example 6 f = 28.4 to 54.9 F = 4.0 to 7.8 2ω =
77.0 to 43.9 ° (First surface aspherical surface coefficient) k = -0.4009 × 10 3 C4 = 0.6736 × 10 -5 C6 = 0.51
73 x 10 -7 C8 = -0.8493 x 10 -9 C10 = 0.1111 x 10 -10 (second surface aspherical coefficient) k = 0.1164 x 10 2 C4 = 0.5483 x 10 -4 C6 = 0.17
29 x 10 -6 C8 = -0.4906 x 10 -8 C10 = 0.8360 x 10 -10 (11th surface aspherical coefficient) k = -0.6775 x10 C4 = 0.4204 x 10 -4 C6 = 0.27
86 × 10 −6 C8 = −0.2928 × 10 −9 C10 = 0.300 × 10 −10 The following shows the change in the interval during zooming. f 28.3812 40.1844 54.8748 d10 10.8869 6.1007 3.0198 Bf 6.7264 19.2410 34.8167 The values corresponding to the conditions are shown below. (1) f1 / fL2 = 1.43 (2) f1 / fL4 = 1.34 (3) D / f1 = 0.770 (4) f1 / fL3 = -0.847 (5) f1 / fL1 = -0.692 (6) DL3 / fW = 0.190 (7) N3n−N3p = 0.22883 (8) ν3p−ν3n = 7.7 [Example 7] FIG. 7 shows a specific lens configuration of each lens group of Example 7.

【0050】図7に示される如く、正屈折力の第1レン
ズ群G1 は、物体側から順に、負屈折力を有し物体側に
凸面を向けたメニスカス形状の第1レンズ成分L1 と、
正屈折力を有し両凸形状の第2レンズ成分L2 と、負屈
折力を有し物体側に凹面を向けたメニスカス形状の第3
レンズ成分L3 と、正屈折力を有し両凸形状の第4レン
ズ成分L4 とからなり、第1レンズ成分乃至第4レンズ
成分の間は空気間隔である。そして、前記第1レンズ成
分L1 の像側面は非球面であり、前記第3レンズ成分L
3 は、物体側より順に、両凹負レンズL3nと、両凸正レ
ンズL3pとの接合レンズである。
As shown in FIG. 7, the first lens group G1 having a positive refractive power has, in order from the object side, a first lens component L1 having a negative refractive power and having a meniscus shape having a convex surface directed toward the object side.
A biconvex second lens component L2 having a positive refractive power and a meniscus third lens component L2 having a negative refractive power and having a concave surface facing the object side.
It is composed of a lens component L3 and a biconvex fourth lens component L4 having a positive refractive power, and there is an air gap between the first lens component to the fourth lens component. The image side surface of the first lens component L1 is an aspherical surface, and the third lens component L1
Reference numeral 3 denotes a cemented lens in which a biconcave negative lens L3n and a biconvex positive lens L3p are cemented in order from the object side.

【0051】一方、負屈折力の第2レンズ群G2 は、物
体側から順に、正屈折力を有し物体側に凹面を向けたメ
ニスカス形状の第5レンズ成分L5 と、負屈折力を有し
物体側に凹面を向けたメニスカス形状の第6レンズ成分
L6 とからなり、第5レンズ成分L5 の物体側面は非球
面である。また、絞りSは第1レンズ群G1 と第2レン
ズ群G2 の間に位置し、ズーミングに際しては第1レン
ズ群G1 と一体で移動する。
On the other hand, the second lens unit G2 having a negative refractive power has, in order from the object side, a fifth meniscus lens component L5 having a positive refractive power and a concave surface facing the object side, and a negative refractive power. The sixth lens component L6 has a meniscus shape with a concave surface facing the object side, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0052】以下の表7に、本発明の実施例7の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
Table 7 below lists values of specifications and numerical values corresponding to conditions of Example 7 of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0053】[0053]

【表7】 実施例7の諸元値 f=28.4〜54.9 F=4.0〜7.7 2ω=
76.3〜44.9゜ (第2面非球面係数) k=0.2990×10 C4 =0.5275×10-4 C6 =0.61
19×10-6 C8 =0.2883×10-8 C10=0.9026×10-10 (第11面非球面係数) k=-0.9183 C4 =0.3001×10-4 C6=0.311
8×10-6 C8 =-0.1809 ×10-8 C10=0.2062×10-10 変倍における間隔の変化を以下に示す。 f 28.3883 40.1899 54.8767 d10 12.1985 6.3465 2.5791 B.f 6.4615 20.2858 37.4898 条件対応数値を以下に示す。 (1)f1 /fL2=1.02 (2)f1 /fL4=0.726 (3)D/f1 =0.770 (4)f1 /fL3=-0.337 (5)f1 /fL1=-0.586 (6)DL3/fW =0.173 (7)N3n−N3p=0.24000 (8)ν3p−ν3n=26.8 〔実施例8〕実施例8の各レンズ群の具体的なレンズ構
成を図8に示す。
Table 7 Specifications of Example 7 f = 28.4 to 54.9 F = 4.0 to 7.7 2ω =
76.3-44.9 ° (Second surface aspherical surface coefficient) k = 0.2990 x 10 C4 = 0.5275 x 10 -4 C6 = 0.61
19 x 10 -6 C8 = 0.2883 x 10 -8 C10 = 0.9026 x 10 -10 (11th surface aspherical coefficient) k = -0.9183 C4 = 0.3001 x 10 -4 C6 = 0.311
8 × 10 −6 C8 = −0.1809 × 10 −8 C10 = 0.2062 × 10 −10 The following shows the change in the interval during zooming. f 28.3883 40.1899 54.8767 d10 12.1985 6.3465 2.5791 Bf 6.4615 20.2858 37.4898 The values corresponding to the conditions are shown below. (1) f1 / fL2 = 1.02 (2) f1 / fL4 = 0.726 (3) D / f1 = 0.770 (4) f1 / fL3 = -0.337 (5) f1 / fL1 = -0.586 (6) DL3 / fw = 0.173 (7) N3n−N3p = 0.24000 (8) ν3p−ν3n = 26.8 [Embodiment 8] FIG. 8 shows a specific lens configuration of each lens group of Embodiment 8.

【0054】図8に示される如く、正屈折力の第1レン
ズ群G1 は、物体側から順に、負屈折力を有し物体側に
凸面を向けたメニスカス形状の第1レンズ成分L1 と、
正屈折力を有し両凸形状の第2レンズ成分L2 と、負屈
折力を有し物体側に凹面を向けたメニスカス形状の第3
レンズ成分L3 と、正屈折力を有し物体側に凹面を向け
たメニスカス形状の第4レンズ成分L4 とからなり、第
1レンズ成分乃至第4レンズ成分の間は空気間隔であ
る。そして、前記第4レンズ成分L4 の物体側面は非球
面であり、前記第3レンズ成分L3は、物体側より順
に、両凹負レンズL3nと、両凸正レンズL3pとの接合レ
ンズである。一方、負屈折力の第2レンズ群G2 は、物
体側から順に、正屈折力を有し物体側に凹面を向けたメ
ニスカス形状の第5レンズ成分L5 と、負屈折力を有し
物体側に凹面を向けたメニスカス形状の第6レンズ成分
L6 とからなり、第5レンズ成分L5 の物体側面は非球
面である。また、絞りSは第1レンズ群G1 と第2レン
ズ群G2 の間に位置し、ズーミングに際しては第1レン
ズ群G1 と一体で移動する。
As shown in FIG. 8, the first lens unit G1 having positive refracting power has, in order from the object side, a first meniscus lens component L1 having negative refracting power and having a convex surface directed toward the object side.
A biconvex second lens component L2 having a positive refractive power and a meniscus third lens component L2 having a negative refractive power and having a concave surface facing the object side.
It is composed of a lens component L3 and a meniscus fourth lens component L4 having a positive refracting power and a concave surface facing the object side, and there is an air gap between the first lens component to the fourth lens component. The object side surface of the fourth lens component L4 is an aspherical surface, and the third lens component L3 is a cemented lens of, in order from the object side, a biconcave negative lens L3n and a biconvex positive lens L3p. On the other hand, the second lens unit G2 having negative refractive power has, in order from the object side, a fifth meniscus lens component L5 having positive refractive power and having a concave surface facing the object side, and a negative lens having negative refractive power toward the object side. It is composed of a meniscus sixth lens component L6 having a concave surface, and the object side surface of the fifth lens component L5 is aspheric. Further, the diaphragm S is located between the first lens group G1 and the second lens group G2, and moves together with the first lens group G1 during zooming.

【0055】以下の表8に、本発明の実施例8の諸元の
値及び条件対応数値を掲げる。実施例の諸元表中のfは
焦点距離、FはFナンバー、 2ωは画角を表す。そし
て、左端の数字は物体側からの順序を表し、rはレンズ
面の曲率半径、dはレンズ面間隔、n及びνはd線(波
長λ=587.6nm)に対する屈折率及びアッベ数の値であ
る。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCnとするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。
Table 8 below shows values of specifications and numerical values corresponding to conditions of the eighth embodiment of the present invention. In the specification table of the embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10.

【0056】[0056]

【表8】 実施例8の諸元値 f=28.4〜54.9 F=3.9〜7.6 2ω=
73.4〜42.9゜ (第8面非球面係数) k=0.1000×10 C4 =-0.5080 ×10-4 C6 =-0.1
729 ×10-6 C8 =0 C10=0 (第11面非球面係数) k=0.1000×10 C4 =0.3664×10-4 C6 =0.
3448×10-6 C8 =-0.1171 ×10-8 C10=0.1821×10-10 変倍における間隔の変化を以下に示す。 f 28.3882 40.1894 54.8754 d10 12.2037 6.3517 2.5843 B.f 7.0143 20.8384 38.0417 条件対応数値を以下に示す。 (1)f1 /fL2=1.55 (2)f1 /fL4=0.974 (3)D/f1 =0.651 (4)f1 /fL3=-0.893 (5)f1 /fL1=-0.968 (6)DL3/fW =0.212 (7)N3n−N3p=0.28930 (8)ν3p−ν3n=20.7 図9、図12、図15、図18、図21、図24、図2
7、図30は、それぞれ実施例1〜実施例8の広角端で
の諸収差図であり、図10、図13、図16、図19、
図22、図25、図28、図31は、それぞれ実施例1
〜実施例8の中間焦点距離状態での諸収差図であり、図
11、図14、図17、図20、図23、図26、図2
9、図32は、それぞれ実施例1〜実施例8の望遠端で
の諸収差図である。各収差図において、Hは入射光線
高、Yは像高、dはd線(λ=587.6nm)及びgはg線
(λ=435.8nm)を示し、非点収差図において点線はメリ
ジオナル像面を、実線はサジタル像面を示している。
Table 8 Specifications of Example 8 f = 28.4 to 54.9 F = 3.9 to 7.6 2ω =
73.4-42.9 ° (Eighth surface aspherical surface coefficient) k = 0.1000 × 10 C4 = -0.5080 × 10-4 C6 = -0.1
729 x 10 -6 C8 = 0 C10 = 0 (11th surface aspherical surface coefficient) k = 0.1000 x 10 C4 = 0.3664 x 10 -4 C6 = 0.
3448 × 10 -6 C8 = -0.1171 × 10 -8 C10 = 0.1821 × 10 -10 The following shows the change in the interval during zooming. f 28.3882 40.1894 54.8754 d10 12.2037 6.3517 2.5843 Bf 7.0143 20.8384 38.0417 The numerical values corresponding to the conditions are shown below. (1) f1 / fL2 = 1.55 (2) f1 / fL4 = 0.974 (3) D / f1 = 0.651 (4) f1 / fL3 = -0.893 (5) f1 / fL1 = -0.968 (6) DL3 / fW = 0.212 (7) N3n−N3p = 0.28930 (8) ν3p−ν3n = 20.7 FIG. 9, FIG. 12, FIG. 15, FIG. 18, FIG. 21, FIG. 24, FIG.
7 and 30 are graphs showing various aberrations at the wide-angle end of Examples 1 to 8, respectively, and FIGS. 10, 13, 16, and 19.
22, FIG. 25, FIG. 28, and FIG.
21 is a diagram of various types of aberration in the intermediate focal length state of Example 8, and FIGS. 11, 14, 17, 20, 20, 23, and 26.
9 and 32 are graphs showing various aberrations of Examples 1 to 8 at the telephoto end. In each aberration diagram, H is the incident ray height, Y is the image height, d is the d line (λ = 587.6 nm) and g is the g line (λ = 435.8 nm). In the astigmatism diagram, the dotted line is the meridional image plane. The solid line shows the sagittal image plane.

【0057】各収差図から、各実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。
From each aberration diagram, it is apparent that each embodiment has various aberrations well corrected and has excellent image forming performance.

【0058】[0058]

【発明の効果】このように本発明によれば、広角端での
画角が70°以上であり、広角端でのレンズ全長が広角
端の焦点距離の1.8倍以下の小型な形状であり、構成
枚数が7枚程度と少なく低コスト化に有利で、かつ結像
性能の優れた広角ズームレンズを提供することができ
る。
As described above, according to the present invention, the angle of view at the wide-angle end is 70 ° or more, and the total lens length at the wide-angle end is 1.8 times or less than the focal length at the wide-angle end. Therefore, it is possible to provide a wide-angle zoom lens having a small number of constituent elements of about 7, which is advantageous for cost reduction and has excellent imaging performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment according to the present invention.

【図2】本発明による実施例2のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment according to the present invention.

【図3】本発明による実施例3のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment according to the present invention.

【図4】本発明による実施例4のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment according to the present invention.

【図5】本発明による実施例5のレンズ構成図。FIG. 5 is a lens configuration diagram of a fifth embodiment according to the present invention.

【図6】本発明による実施例6のレンズ構成図。FIG. 6 is a lens configuration diagram of a sixth embodiment according to the present invention.

【図7】本発明による実施例7のレンズ構成図。FIG. 7 is a lens configuration diagram of a seventh embodiment according to the present invention.

【図8】本発明による実施例8のレンズ構成図。FIG. 8 is a lens configuration diagram of Example 8 according to the present invention.

【図9】本発明による実施例1の広角端での諸収差図。FIG. 9 is a diagram of various types of aberration at the wide-angle end of Example 1 according to the present invention.

【図10】本発明による実施例1の中間焦点距離状態で
の諸収差図。
FIG. 10 is a diagram of various types of aberration in an intermediate focal length state of Example 1 according to the present invention.

【図11】本発明による実施例1の望遠端での諸収差
図。
FIG. 11 is a diagram of various types of aberration at the telephoto end according to the first exemplary embodiment of the present invention.

【図12】本発明による実施例2の広角端での諸収差
図。
FIG. 12 is a diagram of various types of aberration at the wide-angle end according to Example 2 of the present invention.

【図13】本発明による実施例2の中間焦点距離状態で
の諸収差図。
FIG. 13 is a diagram of various types of aberration in the intermediate focal length state of Example 2 according to the present invention.

【図14】本発明による実施例2の望遠端での諸収差
図。
FIG. 14 is a diagram of various types of aberration at the telephoto end of Embodiment 2 according to the present invention.

【図15】本発明による実施例3の広角端での諸収差
図。
FIG. 15 is a diagram of various types of aberration at the wide-angle end according to Example 3 of the present invention.

【図16】本発明による実施例3の中間焦点距離状態で
の諸収差図。
FIG. 16 is a diagram of various types of aberration in the intermediate focal length state of Example 3 according to the present invention.

【図17】本発明による実施例3の望遠端での諸収差
図。
FIG. 17 is a diagram of various types of aberration at the telephoto end of Embodiment 3 according to the present invention.

【図18】本発明による実施例4の広角端での諸収差
図。
FIG. 18 is a diagram of various types of aberration at the wide-angle end of Example 4 according to the present invention.

【図19】本発明による実施例4の中間焦点距離状態で
の諸収差図。
FIG. 19 is a diagram of various types of aberration in the intermediate focal length state of Example 4 according to the present invention.

【図20】本発明による実施例4の望遠端での諸収差
図。
FIG. 20 is a diagram of various types of aberration at the telephoto end of Embodiment 4 according to the present invention.

【図21】本発明による実施例5の広角端での諸収差
図。
FIG. 21 is a diagram of various types of aberration at the wide-angle end of Example 5 according to the present invention.

【図22】本発明による実施例5の中間焦点距離状態で
の諸収差図。
FIG. 22 is a diagram of various types of aberration in the intermediate focal length state of Example 5 according to the present invention.

【図23】本発明による実施例5の望遠端での諸収差
図。
FIG. 23 is a diagram of various types of aberration at the telephoto end of Embodiment 5 according to the present invention.

【図24】本発明による実施例6の広角端での諸収差
図。
FIG. 24 is a diagram of various types of aberration at the wide-angle end of Example 6 according to the present invention.

【図25】本発明による実施例6の中間焦点距離状態で
の諸収差図。
FIG. 25 is a diagram of various types of aberration in the intermediate focal length state of Example 6 according to the present invention.

【図26】本発明による実施例6の望遠端での諸収差
図。
FIG. 26 is a diagram of various types of aberration at the telephoto end of Embodiment 6 according to the present invention.

【図27】本発明による実施例7の広角端での諸収差
図。
FIG. 27 is a diagram of various types of aberration at the wide-angle end of Example 7 according to the present invention.

【図28】本発明による実施例7の中間焦点距離状態で
の諸収差図。
FIG. 28 is a diagram of various types of aberration in the intermediate focal length state of Example 7 according to the present invention.

【図29】本発明による実施例7の望遠端での諸収差
図。
FIG. 29 is a diagram of various types of aberration at the telephoto end of Embodiment 7 according to the present invention.

【図30】本発明による実施例8の広角端での諸収差
図。
FIG. 30 is a diagram of various types of aberration at the wide-angle end of Example 8 according to the present invention.

【図31】本発明による実施例8の中間焦点距離状態で
の諸収差図。
FIG. 31 is a diagram of various types of aberration in the intermediate focal length state of Example 8 according to the present invention.

【図32】本発明による実施例8の望遠端での諸収差
図。
FIG. 32 is a diagram of various types of aberration at the telephoto end of Example 8 according to the present invention.

【主要部分の符合の説明】[Explanation of the sign of the main part]

G1 ・・・ 第1レンズ群 G2 ・・・ 第2レンズ群 S ・・・ 絞り G1 ・ ・ ・ First lens group G2 ・ ・ ・ Second lens group S ・ ・ ・ Aperture

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力を持つ第1レ
ンズ群と、負の屈折力を持つ第2レンズ群を有し、前記
第1レンズ群と前記第2レンズ群との空気間隔を縮小さ
せることにより広角端から望遠端への変倍を行なうズー
ムレンズにおいて、前記第1レンズ群は、物体側から順
に、負屈折力の第1レンズ成分と正屈折力の第2レンズ
成分と正屈折力または負屈折力の第3レンズ成分と正屈
折力の第4レンズ成分を有し、前記第1レンズ群の焦点
距離をf1 、前記第2レンズ成分の焦点距離をfL2、前
記第4レンズ成分の焦点距離をfL4、前記第1レンズ群
の最も物体側のレンズ面から最も像側のレンズ面までの
軸上距離をDとするとき、以下の条件を満足することを
特徴とする広角ズームレンズ。 0 < f1/fL2 < 2.5 0.5 < f1 /fL4 < 2.0 D/f1 < 0.84
1. An air system comprising: a first lens group having a positive refractive power and a second lens group having a negative refractive power in order from the object side, wherein the first lens group and the second lens group are air. In a zoom lens that performs zooming from a wide-angle end to a telephoto end by reducing an interval, the first lens unit includes, in order from the object side, a first lens component having negative refractive power and a second lens component having positive refractive power. And a third lens component having positive refractive power or negative refractive power and a fourth lens component having positive refractive power, the focal length of the first lens unit is f1, the focal length of the second lens component is fL2, and the second lens component is fL2. When the focal length of the four lens components is fL4 and the axial distance from the most object side lens surface to the most image side lens surface of the first lens group is D, the following conditions are satisfied. Wide-angle zoom lens. 0 <f1 / fL2 <2.5 0.5 <f1 / fL4 <2.0 D / f1 <0.84
【請求項2】前記第3レンズ成分の焦点距離をfL3とす
るとき、以下の条件式を満足することを特徴とする請求
項1記載の広角ズームレンズ。 −1.5 < f1 /fL3 < 1.0
2. The wide-angle zoom lens according to claim 1, wherein the following conditional expression is satisfied when the focal length of the third lens component is fL3. -1.5 <f1 / fL3 <1.0
【請求項3】前記第1レンズ成分の焦点距離をfL1とす
るとき、以下の条件式を満足することを特徴とする請求
項1記載の広角ズームレンズ。 −2.0 < f1 /fL1 < −0.4
3. The wide-angle zoom lens according to claim 1, wherein the following conditional expression is satisfied when the focal length of the first lens component is fL1. -2.0 <f1 / fL1 <-0.4
【請求項4】広角ズームレンズの広角端の焦点距離をf
W、前記第3レンズ成分の軸上レンズ厚をDL3とすると
き、以下の条件式を満足することを特徴とする請求項1
記載の広角ズームレンズ。 0.085 < DL3/fW < 0.400
4. The focal length at the wide-angle end of the wide-angle zoom lens is f
The following conditional expression is satisfied when W and the axial lens thickness of the third lens component is DL3.
Wide-angle zoom lens described. 0.085 <DL3 / fw <0.400
【請求項5】前記第3レンズ成分は負レンズと正レンズ
との接合レンズであることを特徴とする請求項1記載の
広角ズームレンズ。
5. The wide-angle zoom lens according to claim 1, wherein the third lens component is a cemented lens of a negative lens and a positive lens.
【請求項6】前記第3レンズ成分を構成する負レンズと
正レンズの屈折率をそれぞれN3nとN3pとするとき、以
下の条件式を満足することを特徴とする請求項5記載の
広角ズームレンズ。 N3n−N3p > 0.2
6. The wide-angle zoom lens according to claim 5, wherein the following conditional expressions are satisfied when the refractive indices of the negative lens and the positive lens constituting the third lens component are N3n and N3p, respectively. . N3n-N3p> 0.2
【請求項7】前記第3レンズ成分を構成する負レンズと
正レンズのアッベ数をそれぞれν3nとν3pとするとき、
以下の条件式を満足することを特徴とする請求項5記載
の広角ズームレンズ。 ν3p−ν3n > 4
7. When the Abbe numbers of the negative lens and the positive lens constituting the third lens component are ν3n and ν3p, respectively,
The wide-angle zoom lens according to claim 5, wherein the following conditional expression is satisfied. ν3p-ν3n> 4
【請求項8】前記第2レンズ成分の物体側面が非球面で
あることを特徴とする請求項1記載の広角ズームレン
ズ。
8. The wide-angle zoom lens according to claim 1, wherein an object side surface of the second lens component is an aspherical surface.
【請求項9】前記第2レンズ成分は物体側に凸面を向け
たメニスカス形状であることを特徴とする請求項8記載
の広角ズームレンズ。
9. The wide-angle zoom lens according to claim 8, wherein the second lens component has a meniscus shape with a convex surface facing the object side.
【請求項10】前記第1レンズ成分の像側面が非球面で
あることを特徴とする請求項1記載の広角ズームレン
ズ。
10. The wide-angle zoom lens according to claim 1, wherein an image side surface of the first lens component is an aspherical surface.
【請求項11】前記第1レンズ成分の物体側面が非球面
であることを特徴とする請求項1記載の広角ズームレン
ズ。
11. The wide-angle zoom lens according to claim 1, wherein an object side surface of the first lens component is an aspherical surface.
【請求項12】前記第4レンズ成分の物体側面が非球面
であることを特徴とする請求項1記載の広角ズームレン
ズ。
12. The wide-angle zoom lens according to claim 1, wherein an object side surface of the fourth lens component is an aspherical surface.
【請求項13】前記第4レンズ成分は物体側に凹面を向
けたメニスカス形状であることを特徴とする請求項12
記載の広角ズームレンズ。
13. The fourth lens component has a meniscus shape with a concave surface facing the object side.
Wide-angle zoom lens described.
【請求項14】物体側より順に、正の屈折力を持つ第1
レンズ群と、負の屈折力を持つ第2レンズ群を有し、前
記第1レンズ群と前記第2レンズ群との空気間隔を縮小
させることにより広角端から望遠端への変倍を行なう広
角ズームレンズにおいて、前記第1レンズ群は、物体側
から順に、負屈折力の第1レンズ成分と正屈折力の第2
レンズ成分と正屈折力または負屈折力の第3レンズ成分
と正屈折力の第4レンズ成分を有し、前記第3レンズ成
分は負レンズと正レンズとの接合レンズであることを特
徴とする広角ズームレンズ。
14. A first lens element having a positive refractive power in order from the object side.
A wide-angle lens having a lens group and a second lens group having a negative refractive power, and zooming from the wide-angle end to the telephoto end by reducing an air gap between the first lens group and the second lens group. In the zoom lens, the first lens group includes, in order from the object side, a first lens component having a negative refractive power and a second lens component having a positive refractive power.
It has a lens component and a third lens component of positive refractive power or negative refractive power and a fourth lens component of positive refractive power, and the third lens component is a cemented lens of a negative lens and a positive lens. Wide-angle zoom lens.
【請求項15】前記第3レンズ成分を構成する負レンズ
と正レンズの屈折率をそれぞれN3nとN3pとするとき、
以下の条件式を満足することを特徴とする請求項14記
載の広角ズームレンズ。 N3n−N3p > 0.2
15. The refractive index of the negative lens and the positive lens constituting the third lens component are N3n and N3p, respectively,
The wide-angle zoom lens according to claim 14, wherein the following conditional expression is satisfied. N3n-N3p> 0.2
【請求項16】前記第3レンズ成分を構成する負レンズ
と正レンズのアッベ数をそれぞれν3nとν3pとすると
き、以下の条件式を満足することを特徴とする請求項1
4記載の広角ズームレンズ。 ν3p−ν3n > 4
16. The following conditional expression is satisfied when the Abbe numbers of the negative lens and the positive lens constituting the third lens component are ν3n and ν3p, respectively.
Wide-angle zoom lens described in 4. ν3p-ν3n> 4
JP6057302A 1994-02-03 1994-03-28 Wide angle zoom lens Pending JPH07270683A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6057302A JPH07270683A (en) 1994-03-28 1994-03-28 Wide angle zoom lens
US08/379,928 US5633760A (en) 1994-02-03 1995-01-27 Zoom lens
TW084100819A TW305028B (en) 1994-02-03 1995-01-28
KR1019950001892A KR950033544A (en) 1994-02-03 1995-02-03 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057302A JPH07270683A (en) 1994-03-28 1994-03-28 Wide angle zoom lens

Publications (1)

Publication Number Publication Date
JPH07270683A true JPH07270683A (en) 1995-10-20

Family

ID=13051768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057302A Pending JPH07270683A (en) 1994-02-03 1994-03-28 Wide angle zoom lens

Country Status (1)

Country Link
JP (1) JPH07270683A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306361A (en) * 1994-05-11 1995-11-21 Canon Inc Compact zoom lens
JP2000137163A (en) * 1998-11-04 2000-05-16 Asahi Optical Co Ltd Zoom lens system
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306361A (en) * 1994-05-11 1995-11-21 Canon Inc Compact zoom lens
JP2000137163A (en) * 1998-11-04 2000-05-16 Asahi Optical Co Ltd Zoom lens system
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system

Similar Documents

Publication Publication Date Title
JP3180411B2 (en) Standard zoom lens
JP3200925B2 (en) Zoom lens with wide angle of view
JPH11119098A (en) Small-sized zoom lens
JPH06337354A (en) Zoom lens
JPH05157965A (en) Wide-angle lens
JPH1152246A (en) Zoom lens
JPH1020193A (en) Zoom lens
JP3698134B2 (en) Zoom lens
US6621643B2 (en) Zoom lens system
JP3063248B2 (en) Wide-angle zoom lens
JPH07287168A (en) Zoom lens with high power variation rate
JP2007017528A (en) Zoom lens
JP4951915B2 (en) Zoom lens
JP3085823B2 (en) Aspherical zoom lens and video camera using it
JP2007212777A (en) Zoom lens
JPH10333037A (en) Zoom lens
JPH06130298A (en) Compact zoom lens
JPH05127082A (en) Small-sized zoom lens
JPH0894930A (en) Variable power lens system for copying
JPH11167062A (en) Variable power lens
JPH0772388A (en) Small-sized zoom lens
JP3029150B2 (en) Wide-angle high zoom lens
JP4720005B2 (en) Zoom lens
JPH07270683A (en) Wide angle zoom lens
JP3380009B2 (en) Zoom lens system