JPH0726543B2 - Engine intake system - Google Patents

Engine intake system

Info

Publication number
JPH0726543B2
JPH0726543B2 JP60096659A JP9665985A JPH0726543B2 JP H0726543 B2 JPH0726543 B2 JP H0726543B2 JP 60096659 A JP60096659 A JP 60096659A JP 9665985 A JP9665985 A JP 9665985A JP H0726543 B2 JPH0726543 B2 JP H0726543B2
Authority
JP
Japan
Prior art keywords
passage
intake
engine
control valve
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60096659A
Other languages
Japanese (ja)
Other versions
JPS61255214A (en
Inventor
昌巳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP60096659A priority Critical patent/JPH0726543B2/en
Publication of JPS61255214A publication Critical patent/JPS61255214A/en
Publication of JPH0726543B2 publication Critical patent/JPH0726543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10229Fluid connections to the air intake system; their arrangement of pipes, valves or the like the intake system acting as a vacuum or overpressure source for auxiliary devices, e.g. brake systems; Vacuum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0294Actuators or controllers therefor; Diagnosis; Calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は乗用車等に搭載されるエンジンの吸気装置に関
するものである。
The present invention relates to an intake device for an engine mounted on a passenger car or the like.

〔従来の技術〕[Conventional technology]

近年、乗用車等に搭載されるエンジンにおいては、低公
害、低燃費に加えて高出力という相反する条件を満たす
ことが要求されるようになったきた。
In recent years, engines mounted on passenger cars and the like have been required to satisfy the contradictory conditions of high output in addition to low pollution and fuel consumption.

一般に、この種のエンジンにおいて、空気の燃焼室への
吸入効率を向上させることは出力を増加させるうえでき
わめて重要である。例えば、最高出力を増加させようと
する場合、吸気通路の断面積を大きくすることによっ
て、エンジンの高回転速度域において吸気慣性効果を利
用し、吸入効率を向上させるようにしている。
Generally, in this type of engine, improving the efficiency of intake of air into the combustion chamber is extremely important for increasing the output. For example, when the maximum output is to be increased, the intake passage effect is increased in the high engine speed range by increasing the cross-sectional area of the intake passage to improve the intake efficiency.

ところで、このように吸気通路の断面積を大きくする
と、エンジンの他の回転速度域において吸入される空気
の流速が低下するため、大きなトルクが得られなくな
る。そこで、本出願人はこれに応えるものとして、エン
ジンの高回転以外の回転速度域においても大きなトルク
が得られるエンジンの吸気装置を、特願昭55−182223号
として先に提案している。これは、燃焼室に二つの吸気
通路を連通させ、一方の吸気通路を開閉する制御弁を設
けたもので、エンジンの高回転時には前記制御弁を開い
て両方の吸気通路から吸入すると共に、それ以外の時は
制御弁を閉じて一方の吸気通路のみから吸入することに
より空気の流速が低下するのを防止し吸気慣性効果を利
用できるようにしている。
By the way, if the cross-sectional area of the intake passage is increased in this way, the flow velocity of the air sucked in other rotational speed regions of the engine decreases, so that a large torque cannot be obtained. Therefore, as a response to this, the present applicant has previously proposed, as Japanese Patent Application No. 55-182223, an engine intake device that can obtain a large torque even in a rotation speed range other than the high rotation speed of the engine. This is provided with a control valve that connects two intake passages to the combustion chamber and opens and closes one of the intake passages.When the engine is running at high speed, the control valve is opened to intake air from both intake passages. In other cases, the control valve is closed and air is sucked from only one of the intake passages to prevent the flow velocity of the air from decreasing and to utilize the intake inertia effect.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来のこの種のエンジンの吸気装置にお
いては、必ずしも広い回転速度域においてトルクを大き
くすることができないという不具合があった。これは、
中および低回転速度域では、一方の吸気通路のみから吸
入するようにしているからである。すなわち、この吸気
通路の形状を低回転において吸気慣性効果が利用できる
ように設定すると中回転では必ずしも吸気慣性効果が利
用できず、また、中回転において吸気慣性効果を利用で
きるように設定すると低回転では吸気慣性効果が利用で
きないからである。これを解決するために、吸気通路の
途中にサージタンクを設け、高回転域では前記吸気通路
を大気に開放することも考えられるが、このようにする
と、装置の大型化を招くばかりか、エンジンのレスポン
スが悪くなる。
However, the conventional intake system for an engine of this type has a problem that the torque cannot always be increased in a wide rotation speed range. this is,
This is because, in the middle and low rotation speed regions, intake is performed only from one of the intake passages. That is, if the shape of the intake passage is set so that the intake inertia effect can be used at low speed, the intake inertia effect cannot always be used at middle rotation, and if the intake inertia effect is used at middle rotation, low rotation can be achieved. This is because the intake inertia effect cannot be used in. In order to solve this, a surge tank may be provided in the middle of the intake passage to open the intake passage to the atmosphere in a high rotation range. However, if this is done, not only does the device become larger, but also the engine Response becomes worse.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような事情に鑑みなされたもので、エンジ
ンの広い回転速度域において大きなトルクが得られるエ
ンジンの吸気装置を提供するものである。本発明に係る
エンジンの吸気装置は、サージタンクと燃焼室との間を
二つの吸気通路を有する第1通路で連通し、前記吸気通
路の一方を開閉する第1制御弁を設けると共に、第1通
路の途中とサージタンクとの間を長さが短い第2通路で
連通し、この第2通路を開閉する第2制御弁を設け、第
2通路における第1通路に連通される下流部を、サージ
タンクに連通される上流部に対して通路内に隔壁を設け
ることにより第1通路の二つの吸気通路に対応する二つ
の通路によって構成したものである。
The present invention has been made in view of the above circumstances, and provides an intake device for an engine that can obtain a large torque in a wide rotational speed range of the engine. An intake system for an engine according to the present invention includes a first control valve that communicates between a surge tank and a combustion chamber with a first passage having two intake passages, and opens and closes one of the intake passages. A second control valve that connects the middle of the passage and the surge tank with a second passage having a short length and opens and closes the second passage is provided, and a downstream portion of the second passage that communicates with the first passage is By providing a partition in the passage with respect to the upstream portion communicating with the surge tank, it is configured by two passages corresponding to the two intake passages of the first passage.

〔作用〕[Action]

本発明においては、吸気通路の形状を段階的に変化させ
て吸気慣性を変化させることにより、吸気慣性効果を利
用できるエンジンの回転速度域を大きくする。
In the present invention, the rotational speed range of the engine in which the intake inertia effect can be used is increased by changing the shape of the intake passage stepwise to change the intake inertia.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により詳細に説明する。第
1図は本発明に係る吸気装置が実施されたエンジンの要
部を示す断面図、第2図は第1図のII−II線断面図で、
これらの図において符号1で示すものはエンジン本体を
示す。このエンジン本体1はシリンダ2およびシリンダ
ヘッド3を備えており、ピストン4の上方には燃焼室5
が形成されている。シリンダヘッド3には前記燃焼室5
に連通された二つの吸気通路6a,6bが形成され、二個の
吸気弁7,7を介して空気を燃焼室5に導入している。8
は燃焼室5内の燃焼ガスを二個の排気弁9,9を介して排
出する排気通路である。10は前記吸・排気弁7,9を駆動
する周知の動弁機構、11は電子制御式の燃料噴射弁、12
は点火栓である。
An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing a main part of an engine in which an intake device according to the present invention is implemented, and FIG. 2 is a sectional view taken along line II-II of FIG.
In these figures, the reference numeral 1 indicates the engine body. The engine body 1 includes a cylinder 2 and a cylinder head 3, and a combustion chamber 5 is provided above the piston 4.
Are formed. The combustion chamber 5 is provided in the cylinder head 3.
Two intake passages 6a, 6b communicated with each other are formed, and air is introduced into the combustion chamber 5 via the two intake valves 7, 7. 8
Is an exhaust passage through which the combustion gas in the combustion chamber 5 is discharged via two exhaust valves 9, 9. 10 is a well-known valve operating mechanism that drives the intake / exhaust valves 7 and 9, 11 is an electronically controlled fuel injection valve, 12
Is a spark plug.

13はシリンダヘッド3に吸気通路6a,6bに対応して連結
された弁胴、14はこの弁胴13に連結された吸気マニホー
ルドである。この吸気マニホールド14は上流側に設けら
れサージタンク15と、下流側に設けられた主管部14a
と、これらを連通する互いに分岐された第1枝管部14b
および第2枝管部14cとから構成されている。ここで、
第1枝管部14bの長さは第2枝管部14cよりも長くなるよ
うに設定されている。
Reference numeral 13 is a valve body connected to the cylinder head 3 corresponding to the intake passages 6a and 6b, and 14 is an intake manifold connected to the valve body 13. This intake manifold 14 is provided on the upstream side with a surge tank 15 and a main pipe portion 14a provided on the downstream side.
And the first branch pipe portion 14b that connects them and is branched from each other.
And the second branch pipe portion 14c. here,
The length of the first branch pipe portion 14b is set to be longer than that of the second branch pipe portion 14c.

吸気通路6a,6bは燃焼室5からシリンダヘッド3,弁胴13,
主管部14a,第1枝管部14bを通じて一連に形成されてお
り、サージタンク15の上流側に設けられた手動の絞り弁
16を介して図示しない空気清浄器から大気に連通されて
いる。すなわち、これらシリンダヘッド3,弁胴13,主管
部14a,第1枝管部14bは、2つの吸気通路6a,6bを有しサ
ージタンク15と燃焼室5とを連通する第1通路17を形成
している。また、第1通路17の途中とサージタンク15と
の間は前記第2枝管部14cによって形成された第2通路1
8で連通されており、第2通路18の長さは、第1通路17
の前記途中よりも上流側の長さに比較して短く設定され
ている。第2通路18においては、エンジンの高回転時に
空気の流体抵抗を低減するために吸気通路6aと吸気通路
6bとが合流され断面積が大きく設定されている。詳述す
ると、第2通路18における第1通路17に連通される下流
部は、サージタンク15に連通される上流部に対して通路
内に隔壁18aを設けることにより第1通路17の二つの吸
気通路6a,6bに対応する二つの通路によって構成されて
いる。吸気通路6a,6bの形状は、一方のみではエンジン
の低回転時において吸気慣性効果が得られ、両方ではエ
ンジンの中回転時において吸気慣性効果が得られるよう
に設定されている。また、第2通路18の形状は、この第
2通路18と前記吸気通路6a,6bとで形成される通路によ
って、エンジンの高回転時において吸気慣性効果が得ら
れるように設定されている。すなわち、第2通路18は隔
壁18aより上流側の一つの通路(上流部)から二つの通
路(下流部)に分かれる構造となり、通路断面積が比較
的大きい上流部がサージタンク15の一部として機能する
ようになる。このため、第2通路18の実質的な通路長
は、隔壁18aの上流側端縁近傍から第1通路17との連通
部分までとなり、前記第2枝管部14cより短くなって高
速運転に適合するようになる。
The intake passages 6a, 6b extend from the combustion chamber 5 to the cylinder head 3, the valve body 13,
A manual throttle valve which is formed in series through the main pipe portion 14a and the first branch pipe portion 14b and is provided on the upstream side of the surge tank 15.
An air purifier (not shown) communicates with the atmosphere via 16. That is, the cylinder head 3, the valve body 13, the main pipe portion 14a, and the first branch pipe portion 14b form the first passage 17 that has the two intake passages 6a and 6b and connects the surge tank 15 and the combustion chamber 5 to each other. is doing. The second passage 1 formed by the second branch pipe portion 14c is provided between the surge tank 15 and the middle of the first passage 17.
8 communicates with each other, and the length of the second passage 18 is equal to that of the first passage 17
The length is set to be shorter than the length on the upstream side of the middle of the above. In the second passage 18, the intake passage 6a and the intake passage are formed to reduce the fluid resistance of the air when the engine is rotating at high speed.
6b is merged and the cross-sectional area is set large. More specifically, the downstream portion of the second passage 18 communicating with the first passage 17 is provided with a partition wall 18a in the passage with respect to the upstream portion communicating with the surge tank 15 so that the two intake passages of the first passage 17 are provided. It is composed of two passages corresponding to the passages 6a and 6b. The shapes of the intake passages 6a and 6b are set so that only one of them has the intake inertia effect at low engine speeds, and both have the intake inertia effect at medium engine speeds. Further, the shape of the second passage 18 is set so that the passage formed by the second passage 18 and the intake passages 6a, 6b can obtain an intake inertia effect at high engine speed. That is, the second passage 18 has a structure in which one passage (upstream portion) on the upstream side of the partition wall 18a is divided into two passages (downstream portion), and the upstream portion having a relatively large passage cross-sectional area serves as a part of the surge tank 15. It will work. Therefore, the substantial passage length of the second passage 18 is from the vicinity of the upstream edge of the partition wall 18a to the communicating portion with the first passage 17, which is shorter than the second branch pipe portion 14c and suitable for high speed operation. Come to do.

各気筒ごとの吸気通路6a,6bのうち、一方の吸気通路6a
にはエンジンの低回転時に閉じる蝶形の第1制御弁19が
設置されている。実施例においては第1制御弁19は弁胴
13に設けられ、エンジンの回転速度によって制御されて
いる。すなわち、第1制御弁19の弁軸19aにはアーム20
が固定されており、アーム20はリンク21を介して第1ア
クチュエータ22に連結されている。第1アクチュエータ
22は、ケース22aと、このケース22aを大気室23と負圧室
24とに画成するダイヤフラム22bと、このダイヤフラム2
2bに接続され先端部が前記リンク21に枢着されたロッド
22cと、このロッド22cを大気室23方向に付勢するばね22
dなどから構成されている。負圧室24は負圧切換え弁25
を介し管路25aによって負圧タンク26に連通されてい
る。負圧タンク26は管路26aで吸気マニホールド14のサ
ージタンク15に連通されエンジン吸気側の負圧が蓄積さ
れている。
One of the intake passages 6a, 6b for each cylinder
Is provided with a butterfly-shaped first control valve 19 that closes when the engine is running at low speed. In the embodiment, the first control valve 19 is a valve body
It is installed in 13 and is controlled by the engine speed. That is, the arm 20 is attached to the valve shaft 19a of the first control valve 19.
Are fixed, and the arm 20 is connected to the first actuator 22 via a link 21. First actuator
22 is a case 22a, and this case 22a is an atmosphere chamber 23 and a negative pressure chamber.
The diaphragm 22b defined by 24 and this diaphragm 2
2b and its tip is pivotally attached to the link 21
22c and a spring 22 for urging the rod 22c toward the atmosphere chamber 23.
It is composed of d etc. Negative pressure chamber 24 is a negative pressure switching valve 25
Is connected to the negative pressure tank 26 via a pipe line 25a. The negative pressure tank 26 communicates with the surge tank 15 of the intake manifold 14 through the pipe line 26a, and the negative pressure on the engine intake side is accumulated.

27は第2枝管部14cに設置され第2通路18を開閉する第
2制御弁で、この第2制御弁27は第1制御弁19と同様に
蝶形に形成され、弁軸27aの一端に固定されたアーム28
を介して第2アクチュエータ30に連結されている。この
第2アクチュエータ30は第1アクチュエータ22と同様に
ケース30aと、このケース30aを大気室31と負圧室32とに
画成するダイヤフラム30bと、このダイヤフラム30bに接
続され先端部が前記アーム28に枢着されたロッド30c
と、このロッド30cを大気室31方向に付勢するばね30dな
どから構成されている。負圧室32は負圧切換え弁33を介
し管路33aによって負圧タンク34に連通されている。負
圧タンク34は管路34aで吸気マニホールド14のサージタ
ンク15に連通されている。
27 is a second control valve that is installed in the second branch pipe portion 14c to open and close the second passage 18, and this second control valve 27 is formed in a butterfly shape like the first control valve 19 and has one end of the valve shaft 27a. Arm fixed to 28
It is connected to the second actuator 30 via. Like the first actuator 22, the second actuator 30 has a case 30a, a diaphragm 30b defining the case 30a into an atmosphere chamber 31 and a negative pressure chamber 32, and a tip portion connected to the diaphragm 30b and having a front end portion formed on the arm 28. Rod 30c pivotally attached to
And a spring 30d for urging the rod 30c toward the atmosphere chamber 31 and the like. The negative pressure chamber 32 is connected to the negative pressure tank 34 through a negative pressure switching valve 33 and a pipe 33a. The negative pressure tank 34 is in communication with the surge tank 15 of the intake manifold 14 via a pipe line 34a.

35はエンジンの回転速度に応じて前記第1および第2ア
クチュエータ22,30を制御するエンジン制御コンピュー
タで、入力側は信号線36でエンジンの回転速度を検出す
る図示しない配電器等に接続されている。また、出力側
の信号線37,38はそれぞれ負圧切換え弁25,33に接続され
ている。すなわち、エンジンが低回転のときは、信号線
37,38から負圧切換え弁25,33をオフ状態とし、負圧室2
4,32を大気に開放する信号が出力される。一方、エンジ
ンの回転が上昇し中回転になると、信号線37からは負圧
切換え弁25をオン状態とし、管路25aを負圧タンク26に
連通させる信号が出力される。さらに、回転速度が上昇
し高回転となると、信号線38からは負圧切換え弁33をオ
ン状態とし、管路33aを負圧タンク34に連通させる信号
が出力される。
Reference numeral 35 is an engine control computer that controls the first and second actuators 22 and 30 according to the engine speed, and the input side is connected to a power distributor (not shown) that detects the engine speed by a signal line 36. There is. Further, the signal lines 37 and 38 on the output side are connected to the negative pressure switching valves 25 and 33, respectively. That is, when the engine is running at low speed,
The negative pressure switching valves 25 and 33 are turned off from 37 and 38, and the negative pressure chamber 2
A signal to open 4,32 to the atmosphere is output. On the other hand, when the engine speed rises to the middle speed, the signal line 37 outputs the signal for connecting the negative pressure switching valve 25 to the ON state and communicating the pipe 25a with the negative pressure tank 26. Further, when the rotation speed increases and the rotation speed becomes high, the signal line 38 outputs a signal for connecting the negative pressure switching valve 33 to the on state and communicating the pipe line 33a with the negative pressure tank 34.

このように構成されたエンジンの吸気装置においては、
エンジン本体1が低回転速度で運転されると、エンジン
制御コンピュータ35で、負圧切換え弁25,33がオフ状態
となり、第1および第2アクチュエータ22,30はいずれ
も負圧室24,32が大気に開放される。その結果、負圧室2
4,負圧室32に大気圧が作用し、第1制御弁19および第2
制御弁27はばね22d,33dの弾撥力によって閉状態に保た
れるので、空気は第1通路17の吸気通路6bのみから燃焼
室5に吸入される。
In the engine intake device configured in this way,
When the engine body 1 is operated at a low rotation speed, the engine control computer 35 causes the negative pressure switching valves 25 and 33 to be in the off state, and the first and second actuators 22 and 30 are both in the negative pressure chambers 24 and 32. Open to the atmosphere. As a result, the negative pressure chamber 2
4, atmospheric pressure acts on the negative pressure chamber 32, and the first control valve 19 and the second
Since the control valve 27 is kept in the closed state by the elastic force of the springs 22d and 33d, the air is sucked into the combustion chamber 5 only from the intake passage 6b of the first passage 17.

そして、絞り弁16が開かれてエンジンが中回転速度とな
ると、この回転が信号線36からコンピュータ35に入力さ
れ、信号線37から負圧切換え弁25をオン状態とする信号
が出力される。その結果、第1アクチュエータ22の負圧
室24に負圧タンク26の負圧が導入され、ダイヤフラム22
bはばね22dに抗して負圧側に移動する。これに伴ってロ
ッド22cが後退するため、リンク21を介してアーム20が
回動され第1制御弁19が開状態となり、空気は第1通路
17の吸気通路6a,6bを経て燃焼室5に吸入される。
Then, when the throttle valve 16 is opened and the engine has a medium rotation speed, this rotation is input to the computer 35 from the signal line 36, and a signal for turning on the negative pressure switching valve 25 is output from the signal line 37. As a result, the negative pressure of the negative pressure tank 26 is introduced into the negative pressure chamber 24 of the first actuator 22, and the diaphragm 22
b moves to the negative pressure side against the spring 22d. Since the rod 22c is retracted accordingly, the arm 20 is rotated through the link 21 and the first control valve 19 is opened, so that the air passes through the first passage.
It is sucked into the combustion chamber 5 through 17 intake passages 6a and 6b.

さらに、絞り弁16が開かれてエンジンが高回転速度とな
ると、信号線38から負圧切換え弁33をオン状態とする信
号が出力され、前記第1アクチュエータ22と同様に作用
する第2アクチュエータ30によって第2制御弁27が開状
態とされるため、空気は、断面積が大きく短い第2通路
18を通過した後、2つの吸気通路6a,6bを経て燃焼室5
に吸入される。
Further, when the throttle valve 16 is opened and the engine becomes a high rotation speed, a signal for turning on the negative pressure switching valve 33 is output from the signal line 38, and the second actuator 30 that operates in the same manner as the first actuator 22. Since the second control valve 27 is opened by the air, the air flows through the second passage having a large cross section
After passing through 18, the combustion chamber 5 is passed through the two intake passages 6a and 6b.
Inhaled into.

したがって、第1および第2制御弁19,27を開閉して空
気が吸入される吸気通路の形状を段階的に変化させるこ
とができ、これに伴って空気の吸気慣性を変化させるこ
とができる。そのため、比較的吸気流量が少ない低回転
時にであっても、断面積が小さくしかも長く形成された
吸気通路6bのみから吸入して吸気流速を高く保つことが
できるので、吸気慣性効果を利用することができる。
Therefore, the shape of the intake passage through which the air is sucked can be changed stepwise by opening and closing the first and second control valves 19 and 27, and the intake inertia of the air can be changed accordingly. Therefore, even at the time of low rotation in which the intake flow rate is relatively small, it is possible to maintain the intake flow velocity at a high level by inhaling only from the intake passage 6b having a small cross-sectional area and being formed long, so that the intake inertia effect is used. You can

また、中回転時においては、二つの吸気通路6a,6bから
吸入することで、吸気流量を増加させることができる。
さらに、高回転時においては、2つの吸気通路6a,6bを
第2通路18でバイパスして流体抵抗を減少させることが
できるので、さらに吸気流量を増大させることができ
る。このとき、段階的に吸気流量を増加させるようにし
ているので、広い回転速度域において流速を吸気慣性効
果を利用できる速さに設定し、吸入効率を向上させるこ
とができる。
In addition, at the time of middle rotation, the intake flow rate can be increased by sucking from the two intake passages 6a and 6b.
Further, at the time of high rotation, since the two intake passages 6a and 6b can be bypassed by the second passage 18 to reduce the fluid resistance, the intake flow rate can be further increased. At this time, since the intake air flow rate is increased stepwise, it is possible to improve the intake efficiency by setting the flow velocity to a speed at which the intake inertia effect can be used in a wide rotation speed range.

なお、上記実施例においては、第1制御弁19を弁胴13に
設け、吸気マニホールド14の第1枝管部14bすべてに渡
って吸気通路6a,6bを形成した例について説明したが本
発明はこれに限定されるものではない。例えば、第1制
御弁19はこれよりも上流側の吸気マニホールド14の第1
枝管部14bに設置してもよく、吸気通路6a,6bを第1枝管
部14bの上流側において合流させるようにしても同様な
作用効果を得ることができる。また、第1,第2アクチュ
エータ22,30の駆動源としてはエンジンの排気の圧力を
利用することもでき、燃焼噴射弁11の代わりにキャブレ
タで燃料を供給するエンジンに実施することもできる。
In the above embodiment, the first control valve 19 is provided on the valve body 13 and the intake passages 6a, 6b are formed over the entire first branch pipe portion 14b of the intake manifold 14, but the present invention is not limited to this. It is not limited to this. For example, the first control valve 19 may be the first control valve of the intake manifold 14 upstream of the first control valve 19.
It may be installed in the branch pipe portion 14b, or the intake pipes 6a, 6b may be joined on the upstream side of the first branch pipe portion 14b to obtain the same effect. Further, the pressure of the exhaust gas of the engine can be used as the drive source of the first and second actuators 22 and 30, and it can be implemented in an engine in which fuel is supplied by a carburetor instead of the combustion injection valve 11.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、サージタンクと燃
焼室との間を二つの吸気通路を有する第1通路で連通
し、前記吸気通路の一方を開閉する第1制御弁を設ける
と共に、第1通路の途中とサージタンクとの間を長さが
短い第2通路で連通し、この第2通路を開閉する第2制
御弁を設け、第2通路における第1通路に連通される下
流部を、サージタンクに連通される上流部に対して通路
内に隔壁を設けることにより第1通路の二つの吸気通路
に対応する二つの通路によって構成したから、エンジン
の回転速度に応じて吸気通路の形状を段階的に変化させ
吸気慣性を変化させることができる。
As described above, according to the present invention, the surge tank and the combustion chamber are connected by the first passage having the two intake passages, and the first control valve for opening and closing one of the intake passages is provided and A second control valve that opens and closes the second passage communicating between the surge tank and the middle of the first passage is provided, and a downstream portion of the second passage that communicates with the first passage is provided. Since the partition is provided in the passage for the upstream portion communicating with the surge tank, the passage is configured by two passages corresponding to the two intake passages of the first passage. Therefore, the shape of the intake passage depends on the rotation speed of the engine. Can be changed in stages to change the intake inertia.

したがって、吸気慣性効果を利用して吸入効率を向上さ
せることができるエンジンの回転速度域を大きくできる
から、エンジンの広い回転速度域において大きなトルク
が得られる。また、第2通路は隔壁より上流側の一つの
通路(上流部)から二つの通路(下流部)に分かれる構
造となり、通路断面積が比較的大きい上流部がサージタ
ンクの一部として機能するようになる。すなわち、第2
通路の実質的な通路長は、隔壁の上流側端縁近傍から第
1通路との連通部分までとなるから、サージタンクをエ
ンジン機能との干渉を避けることができる位置に配置し
たとしても、第2通路を高速運転に適合して高速運転時
に吸気慣性効果が得られるような通路長をもって形成す
ることができる。また、第2通路の上流部がサージタン
クの一部として機能するので、サージタンクの凹んだ部
分に第2通路の上流端が開口することになる関係から、
他の気筒の吸気脈動の影響を受け難くなるという利点も
ある。しかも、サージタンクの実質的な容量を増やすこ
ともできる。
Therefore, the rotational speed range of the engine in which the intake efficiency can be improved by utilizing the intake inertia effect can be increased, so that a large torque can be obtained in a wide rotational speed range of the engine. In addition, the second passage has a structure in which one passage (upstream portion) upstream of the partition wall is divided into two passages (downstream portion), and the upstream portion having a relatively large passage cross-sectional area functions as a part of the surge tank. become. That is, the second
Since the substantial passage length of the passage is from the vicinity of the upstream end edge of the partition wall to the communicating portion with the first passage, even if the surge tank is arranged at a position where interference with the engine function can be avoided, The two passages can be formed with a passage length that is suitable for high-speed operation and can obtain the intake inertia effect during high-speed operation. Further, since the upstream portion of the second passage functions as a part of the surge tank, the upstream end of the second passage is opened in the recessed portion of the surge tank.
There is also an advantage that it is less likely to be affected by the intake pulsation of other cylinders. Moreover, the substantial capacity of the surge tank can be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る吸気装置が実施されたエンジンの
要部を示す断面図、第2図は第1図のII−II線断面図で
ある。 5……燃焼室、6a,6b……吸気通路、15……サージタン
ク、17……第1通路、18……第2通路、19……第1制御
弁、22……第1アクチュエータ、27……第2制御弁、30
……第2アクチュエータ。
FIG. 1 is a sectional view showing a main part of an engine in which an intake device according to the present invention is implemented, and FIG. 2 is a sectional view taken along line II-II in FIG. 5 ... Combustion chamber, 6a, 6b ... Intake passage, 15 ... Surge tank, 17 ... First passage, 18 ... Second passage, 19 ... First control valve, 22 ... First actuator, 27 ...... Second control valve, 30
...... Second actuator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】サージタンクと燃焼室との間を二つの吸気
通路を有する第1通路で連通し、前記吸気通路の一方を
開閉する第1制御弁を設けると共に、第1通路の途中と
サージタンクとの間を第2通路で連通し、この第2通路
を開閉する第2制御弁を設けてなり、第2通路の長さを
第1通路の前記途中よりも上流側の長さに比較して短く
設定し、かつ第2通路における第1通路に連通される下
流部を、サージタンクに連通される上流部に対して通路
内に隔壁を設けることにより第1通路の二つの吸気通路
に対応する二つの通路によって構成したことを特徴とす
るエンジンの吸気装置。
1. A first control valve for communicating between a surge tank and a combustion chamber with a first passage having two intake passages, and opening and closing one of the intake passages is provided with a first control valve and a surge in the middle of the first passage. A second control valve that communicates with the tank through a second passage and opens and closes the second passage is provided, and the length of the second passage is compared with the length of the first passage upstream of the midway. By setting a short distance between the first passage of the second passage and a downstream portion of the second passage that communicates with the first passage. An intake system for an engine, characterized by comprising two corresponding passages.
JP60096659A 1985-05-09 1985-05-09 Engine intake system Expired - Fee Related JPH0726543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60096659A JPH0726543B2 (en) 1985-05-09 1985-05-09 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60096659A JPH0726543B2 (en) 1985-05-09 1985-05-09 Engine intake system

Publications (2)

Publication Number Publication Date
JPS61255214A JPS61255214A (en) 1986-11-12
JPH0726543B2 true JPH0726543B2 (en) 1995-03-29

Family

ID=14170957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60096659A Expired - Fee Related JPH0726543B2 (en) 1985-05-09 1985-05-09 Engine intake system

Country Status (1)

Country Link
JP (1) JPH0726543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112004000143B4 (en) * 2003-01-16 2014-03-27 Avl List Gmbh Inlet collector for an internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110765A (en) * 1980-12-27 1982-07-09 Yamaha Motor Co Ltd Intake unit for multiple intake valve type engine
JPS59213922A (en) * 1983-05-19 1984-12-03 Nissan Motor Co Ltd Air suction device for internal-combustion engine

Also Published As

Publication number Publication date
JPS61255214A (en) 1986-11-12

Similar Documents

Publication Publication Date Title
US4664076A (en) Intake system for internal combustion engine
JPS62210219A (en) Intake device of internal combustion engine
JPS62228622A (en) Suction device for engine
US5072583A (en) Exhaust system for internal combustion engines
JPS6335807B2 (en)
US4726340A (en) Intake system for multi-cylinder engine
JPH0259290B2 (en)
JPS5848712A (en) Air inlet device of internal-combustion engine
JPS6125916A (en) Intake-air device in engine
JPH0319892B2 (en)
JPH0726543B2 (en) Engine intake system
JP4006789B2 (en) Intake device for internal combustion engine
JPH0322518Y2 (en)
JPS6128032Y2 (en)
JPS6161918A (en) Air intake device of internal-combustion engine
JPH0320497Y2 (en)
KR100820709B1 (en) Structure of intake manifold for engine in vehicle
JPS614821A (en) Intake device for internal-combustion engine
JP2507971Y2 (en) Engine intake system
JP2995200B2 (en) Engine air supply
JPS6023466Y2 (en) Internal combustion engine intake system
JPH0640906Y2 (en) Engine intake system that uses intake inertia
JPS6231628Y2 (en)
JPS58206822A (en) Methods of driving double suction valve type internal- combustion engine
JPS6336063A (en) Vacuum actuator for controlling ignition timing of engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees