JPH07263537A - Formation of trench element separation - Google Patents

Formation of trench element separation

Info

Publication number
JPH07263537A
JPH07263537A JP7256794A JP7256794A JPH07263537A JP H07263537 A JPH07263537 A JP H07263537A JP 7256794 A JP7256794 A JP 7256794A JP 7256794 A JP7256794 A JP 7256794A JP H07263537 A JPH07263537 A JP H07263537A
Authority
JP
Japan
Prior art keywords
polishing
semiconductor substrate
insulating film
forming
chemical mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7256794A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tokunaga
和彦 徳永
Toshihiko Suzuki
利彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7256794A priority Critical patent/JPH07263537A/en
Publication of JPH07263537A publication Critical patent/JPH07263537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To increase a polishing speed and maintain the quality of the polished face side of a semiconductor substrate high and thereby flatten the surface by using properly an abrasive for insulating film and the one for the semiconductor substrate. CONSTITUTION:In a first process, recesses are formed on the surface of a semiconductor substrate 11 and then an insulating film 13 is so formed on the surface of the semiconductor substrate 11 that the recesses may be filled with the insulating film 13. In a second process, the surface of the insulating film 13 is eliminated by chemical mechanical polishing with an abrasive solution including a cerium oxide abrasive and thereby the semiconductor substrate 11 is exposed. In a third process, the surface, especially the surface of the semiconductor substrate 11, is eliminated by chemical mechanical polishing with an abrasive solution including a silica abrasive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の素子分離
技術に関し、特にはトレンチ素子分離の形成方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element isolation technique for a semiconductor device, and more particularly to a method for forming trench element isolation.

【0002】[0002]

【従来の技術】化学的機械研磨を用いた素子分離領域の
形成方法は、特願昭59−136943号に開示されて
いるように、化学的機械研磨を1回のみ行う方法、1回
の化学的機械研磨とフッ酸を用いたウェットエッチング
処理とを組み合わせた方法が提案されている。上記いず
れの場合も、研磨剤にはシリカ系のものまたは酸化セリ
ウム系のものが用いられている。
2. Description of the Related Art As a method of forming an element isolation region by using chemical mechanical polishing, as disclosed in Japanese Patent Application No. 59-136943, a method of performing chemical mechanical polishing only once, one chemical A method that combines a mechanical polishing and a wet etching process using hydrofluoric acid has been proposed. In any of the above cases, a silica-based or cerium oxide-based abrasive is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、シリカ
系の研磨剤を用いて研磨を行った場合には、酸化シリコ
ンの研磨に非常に時間がかかる。通常、シリカ系の研磨
剤は主としてシリコン基体を研磨するものであって、絶
縁膜である酸化シリコンに対する研磨速度が非常に遅い
ためである。一方、酸化セリウム系の研磨剤を用いて酸
化シリコンを研磨する条件で研磨を行った場合には、酸
化シリコンは短時間に研磨される。しかしながら、酸化
シリコンの研磨が進行してシリコン基体が露出したと
き、シリコン基体の研磨面側には深さが0.2μmまた
はそれ以下の深さに転移,結晶欠陥等の加工変質層が発
生する。そのため、例えばリーク電流が多くなるので、
シリコン基体を半導体装置の基体として用いることがで
きない。また、1回の化学的機械研磨のみでは、シリコ
ン基体と酸化シリコンとのエッチング速度が異なるため
に、シリコン基体の表面と酸化シリコンとの表面とを互
いに同様な高さに形成することは困難である。上記説明
したように、シリコン基体表面が平坦な素子分離構造を
形成することが困難になっている。
However, when polishing is performed using a silica-based abrasive, polishing of silicon oxide takes a very long time. This is because the silica-based polishing agent is mainly used to polish a silicon substrate, and the polishing rate for silicon oxide, which is an insulating film, is very slow. On the other hand, when the polishing is performed under the condition that the silicon oxide is polished using the cerium oxide-based polishing agent, the silicon oxide is polished in a short time. However, when the polishing of silicon oxide progresses and the silicon substrate is exposed, a work-affected layer such as a transition or a crystal defect occurs at a depth of 0.2 μm or less on the polished surface side of the silicon substrate. . Therefore, for example, since the leak current increases,
A silicon substrate cannot be used as a substrate for semiconductor devices. Further, it is difficult to form the surface of the silicon substrate and the surface of the silicon oxide at the same height by only one chemical mechanical polishing because the etching rates of the silicon substrate and the silicon oxide are different. is there. As described above, it is difficult to form an element isolation structure having a flat silicon substrate surface.

【0004】本発明は、半導体装置の素子分離におい
て、その表面を平坦化したトレンチ素子分離の形成方法
を提供することを目的とする。
An object of the present invention is to provide a method for forming a trench element isolation having a flat surface in the element isolation of a semiconductor device.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたトレンチ素子分離の形成方法であ
る。すなわち、第1工程で、半導体基体の表面側に溝を
形成した後、その溝の内部を埋め込む状態にして半導体
基体の表面に絶縁膜を形成する。次いで第2工程で、酸
化セリウム系の研磨剤を含む研磨液を用いた化学的機械
研磨によって、絶縁膜の表面側を除去して半導体基体を
露出させる。そして第3工程で、シリカ系の研磨剤を含
む研磨液を用いた化学的機械研磨によって、主として半
導体基体の表面側を除去する。上記第2工程での化学的
機械研磨では、半導体基体に対する研磨選択比を2以上
に設定するのがよい。また第3工程の化学的機械研磨で
は、絶縁膜に対する研磨選択比を2以上に設定するのが
よい。
SUMMARY OF THE INVENTION The present invention is a method of forming a trench isolation for achieving the above object. That is, in the first step, after forming a groove on the surface side of the semiconductor substrate, an insulating film is formed on the surface of the semiconductor substrate with the inside of the groove being filled. Next, in the second step, the surface side of the insulating film is removed by chemical mechanical polishing using a polishing liquid containing a cerium oxide-based polishing agent to expose the semiconductor substrate. Then, in the third step, the surface side of the semiconductor substrate is mainly removed by chemical mechanical polishing using a polishing liquid containing a silica-based polishing agent. In the chemical mechanical polishing in the second step, the polishing selection ratio with respect to the semiconductor substrate is preferably set to 2 or more. Further, in the chemical mechanical polishing in the third step, it is preferable to set the polishing selection ratio to the insulating film to 2 or more.

【0006】[0006]

【作用】上記トレンチ素子分離の形成方法では、酸化セ
リウム系の研磨剤を含む研磨液を用いて、絶縁膜を研磨
して半導体基体を露出させてから、シリカ系の研磨剤を
含む研磨液を用いて主として半導体基体の表面側を研磨
する。そのため、初めの研磨では絶縁膜が優先的に研磨
されるので、研磨によって露出した半導体基体表面より
も絶縁膜表面のほうが低くなる。そして次の研磨では半
導体基体が優先的に研磨されるので、研磨時間を調節す
ることによって、半導体基体表面と絶縁膜表面とがほぼ
同一平面上になるようになる。また第2工程の研磨で、
半導体基体に対する研磨選択比を2以上に設定すること
から、半導体基体に対して絶縁膜が優先的に研磨され
る。また第3工程の研磨で、絶縁膜に対する研磨選択比
を2以上に設定することから、絶縁膜に対して半導体基
体が優先的に研磨される。
In the trench element isolation forming method described above, a polishing liquid containing a cerium oxide-based polishing agent is used to polish the insulating film to expose the semiconductor substrate, and then a polishing liquid containing a silica-based polishing agent is used. It is mainly used to polish the surface side of the semiconductor substrate. Therefore, since the insulating film is preferentially polished in the first polishing, the surface of the insulating film is lower than the surface of the semiconductor substrate exposed by polishing. Then, in the next polishing, the semiconductor substrate is preferentially polished, so that the surface of the semiconductor substrate and the surface of the insulating film are substantially flush with each other by adjusting the polishing time. Also, in the second step of polishing,
Since the polishing selection ratio for the semiconductor substrate is set to 2 or more, the insulating film is preferentially polished for the semiconductor substrate. Further, in the polishing of the third step, since the polishing selection ratio for the insulating film is set to 2 or more, the semiconductor substrate is preferentially polished for the insulating film.

【0007】[0007]

【実施例】本発明の実施例を図1の形成工程図により説
明する。図1の(1)に示すように、第1工程を行う。
この工程では、通常のリソグラフィー技術とドライエッ
チング(例えば、反応性イオンエッチング,ECRプラ
ズマエッチング等)とによって、半導体基体(例えばシ
リコン基体)11の表面側における素子分離領域の形成
部分に溝12を形成する。以下、半導体基体11はシリ
コン基体11と記す。また図ではシリコン基体11と記
す。なお、図では、エッチングマスクに用いたレジスト
膜の図示は省略した。そして溝12を形成した後、アッ
シング処理またはウェットエッチングによって、上記レ
ジストからなるエッチングマスクを除去する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to the process chart of FIG. As shown in (1) of FIG. 1, the first step is performed.
In this step, the groove 12 is formed in the portion where the element isolation region is formed on the surface side of the semiconductor substrate (for example, silicon substrate) 11 by the ordinary lithography technique and dry etching (for example, reactive ion etching, ECR plasma etching, etc.). To do. Hereinafter, the semiconductor substrate 11 will be referred to as the silicon substrate 11. Also, in the figure, it is referred to as a silicon substrate 11. In the figure, the resist film used as the etching mask is not shown. Then, after forming the groove 12, the etching mask made of the resist is removed by ashing treatment or wet etching.

【0008】その後、化学的気相成長(以下CVDと記
す)法,蒸着法,スパッタ法等に代表される成膜技術に
よって、上記溝12の内部を埋め込む状態にしてシリコ
ン基体11の表面に絶縁膜13を形成する。この絶縁膜
13は、例えば酸化シリコンからなる。
After that, the inside of the groove 12 is filled with the film by a film forming technique typified by a chemical vapor deposition (hereinafter referred to as CVD) method, a vapor deposition method, a sputtering method and the like, and the surface of the silicon substrate 11 is insulated. The film 13 is formed. The insulating film 13 is made of, for example, silicon oxide.

【0009】なお、図示はしないが、素子分離機能を確
実にするため、絶縁膜13を形成する前に犠牲酸化を行
ってもよい。また、絶縁膜13を成膜する前に溝12の
内壁に熱酸化膜(図示せず)を形成してもよい。
Although not shown, sacrificial oxidation may be performed before forming the insulating film 13 in order to ensure the element isolation function. Further, before forming the insulating film 13, a thermal oxide film (not shown) may be formed on the inner wall of the groove 12.

【0010】次いで図1の(2)に示す第2工程を行
う。この工程では、酸化セリウム系の研磨剤を含む研磨
液を用いた化学的機械研磨(例えばメカノケミカルポリ
シング)を行って、絶縁膜13の2点鎖線で示す部分を
研磨する。そして、シリコン基体11の表面11aを露
出させる。このとき、絶縁膜13は表面11aよりも少
しだけ低く研磨される。上記化学的機械研磨では、例え
ば、研磨砥粒には粒径が300nm〜600nm程度の
酸化セリウム(CeO2 )を用い、研磨液にはアルカリ
性溶液(pH=10〜11程度)を用いる。またポリシ
ングクロスには、硬度としてAsker−Cが60〜9
0程度のものを用いる。
Next, the second step shown in FIG. 1B is performed. In this step, chemical mechanical polishing (for example, mechanochemical polishing) using a polishing liquid containing a cerium oxide-based polishing agent is performed to polish the portion of the insulating film 13 indicated by the chain double-dashed line. Then, the surface 11a of the silicon substrate 11 is exposed. At this time, the insulating film 13 is polished slightly lower than the surface 11a. In the chemical mechanical polishing, for example, cerium oxide (CeO 2 ) having a particle size of about 300 nm to 600 nm is used as the polishing abrasive grains, and an alkaline solution (pH = about 10 to 11) is used as the polishing liquid. Asker-C has a hardness of 60 to 9 on the polishing cloth.
The one of about 0 is used.

【0011】その後図1の(3)に示す第3工程を行
う。この工程では、シリカ系の研磨剤を含む研磨液を用
いた化学的機械研磨(例えばメカノケミカルポリシン
グ)を行って、主としてシリコン基体11の表面側(2
点鎖線で示す部分)を研磨する。そして、シリコン基体
11の表面11bと溝12内の絶縁膜13の表面13b
とをほぼ同一高さに形成する。上記化学的機械研磨で
は、例えば、研磨砥粒には粒径が10nm〜20nm程
度のコロイダルシリカを用い、研磨液にはシリコン基体
11に対してエッチング性を有するアルカリ性溶液(例
えばpH=10〜11程度)を用いる。このアルカリ性
溶液としては、例えばアンモニア水を用いる。
Thereafter, the third step shown in FIG. 1C is performed. In this step, chemical mechanical polishing (for example, mechanochemical polishing) using a polishing liquid containing a silica-based polishing agent is performed, and the surface side of the silicon substrate 11 (2
The part indicated by the dotted line) is polished. The surface 11b of the silicon substrate 11 and the surface 13b of the insulating film 13 in the groove 12
And are formed almost at the same height. In the chemical mechanical polishing, for example, colloidal silica having a particle size of about 10 nm to 20 nm is used as the polishing abrasive grains, and an alkaline solution having an etching property with respect to the silicon substrate 11 (for example, pH = 10 to 11) is used as the polishing liquid. Degree) is used. Ammonia water, for example, is used as the alkaline solution.

【0012】上記トレンチ素子分離の形成方法では、酸
化セリウム系の研磨剤を含む研磨液を用いて、絶縁膜1
3を研磨してシリコン基体11の表面を露出させてか
ら、シリカ系の研磨剤を含む研磨液を用いて主としてシ
リコン基体11の表面側を研磨する。そのため、初めの
研磨では絶縁膜13が優先的に研磨されるので、研磨に
よって露出したシリコン基体11の表面よりも絶縁膜1
2の表面のほうが低くなる。そして次の研磨ではシリコ
ン基体11が優先的に研磨されるので、研磨時間を調節
することによって、シリコン基体11の表面11bと絶
縁膜13の表面11bとがほぼ同一平面になる。
In the method for forming the trench element isolation, the insulating film 1 is formed by using a polishing liquid containing a cerium oxide-based polishing agent.
After polishing 3 to expose the surface of the silicon substrate 11, the surface side of the silicon substrate 11 is mainly polished using a polishing liquid containing a silica-based polishing agent. Therefore, since the insulating film 13 is preferentially polished in the first polishing, the insulating film 1 is more than the surface of the silicon substrate 11 exposed by polishing.
The surface of 2 becomes lower. Since the silicon substrate 11 is preferentially polished in the next polishing, the surface 11b of the silicon substrate 11 and the surface 11b of the insulating film 13 are substantially flush with each other by adjusting the polishing time.

【0013】また上記第2工程の研磨では、シリコン基
体11に対する研磨選択比を2以上に設定して行うこと
が好ましい。研磨の選択比を高める方法としては、例え
ば、フッ酸とフッ化アンモニウムと酢酸との混合液のよ
うなシリコンに対して酸化シリコンを選択的にエッチン
グするような液を研磨液に用いる。このように、シリコ
ン基体11に対する研磨選択比を2以上に設定すること
から、シリコン基体11に対して絶縁膜13が優先的に
研磨される。
The polishing in the second step is preferably performed by setting the polishing selection ratio with respect to the silicon substrate 11 to 2 or more. As a method of increasing the polishing selection ratio, for example, a liquid such as a mixed liquid of hydrofluoric acid, ammonium fluoride and acetic acid that selectively etches silicon oxide with respect to silicon is used as the polishing liquid. In this way, since the polishing selection ratio for the silicon substrate 11 is set to 2 or more, the insulating film 13 is preferentially polished for the silicon substrate 11.

【0014】さらに上記第3工程の研磨では、絶縁膜1
3に対する研磨選択比を2以上に設定して行うことが好
ましい。研磨の選択比を高める方法としては、例えば、
フッ硝酸のような酸化シリコンに対してシリコンを選択
的にエッチングするような液を研磨液に用いる。このよ
うに、絶縁膜13に対する研磨選択比を2以上に設定す
ることから、絶縁膜13に対してシリコン基体11が優
先的に研磨される。
Further, in the polishing in the third step, the insulating film 1
It is preferable to set the polishing selection ratio to 3 to 2 or more. As a method of increasing the selection ratio of polishing, for example,
A liquid such as hydrofluoric nitric acid that selectively etches silicon with respect to silicon oxide is used as the polishing liquid. In this way, since the polishing selection ratio with respect to the insulating film 13 is set to 2 or more, the silicon substrate 11 is preferentially polished with respect to the insulating film 13.

【0015】[0015]

【発明の効果】以上、説明したように本発明によれば、
第2工程の絶縁膜の研磨は、研磨速度が速い酸化セリウ
ム系の研磨剤を用いた化学的機械研磨で行うので、絶縁
膜を優先的に研磨することができる。また第3工程の半
導体基体の研磨は、シリカ系の研磨剤を用いた化学的機
械研磨で行うので、半導体基体を優先的に研磨すること
ができる。そのため、研磨時間を調節することによっ
て、半導体基体表面と絶縁膜表面とをほぼ同一平面に形
成することができる。さらに第2工程で研磨された半導
体基体表面を研磨するため、先の研磨で形成された加工
変質層を除去することができる。そのため、半導体基体
は高品質になるので、そこに形成された素子の性能の向
上が図れる。
As described above, according to the present invention,
Since the polishing of the insulating film in the second step is performed by chemical mechanical polishing using a cerium oxide-based polishing agent having a high polishing rate, the insulating film can be preferentially polished. Further, since the polishing of the semiconductor substrate in the third step is performed by chemical mechanical polishing using a silica-based polishing agent, the semiconductor substrate can be preferentially polished. Therefore, the surface of the semiconductor substrate and the surface of the insulating film can be formed on substantially the same plane by adjusting the polishing time. Further, since the surface of the semiconductor substrate polished in the second step is polished, the work-affected layer formed by the previous polishing can be removed. Therefore, since the semiconductor substrate has high quality, the performance of the element formed therein can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の形成工程図である。FIG. 1 is a process drawing of an example.

【符号の説明】[Explanation of symbols]

11 半導体基体 12 溝 13 絶縁膜 11 semiconductor substrate 12 groove 13 insulating film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基体の表面側に溝を形成した後、
該溝の内部を埋め込む状態にして該半導体基体の表面に
絶縁膜を形成する第1工程と、 酸化セリウム系の研磨剤を含む研磨液を用いた化学的機
械研磨によって、前記絶縁膜の表面側を除去して前記半
導体基体を露出させる第2工程と、 シリカ系の研磨剤を含む研磨液を用いた化学的機械研磨
によって、主として前記半導体基体の表面側を除去する
第3工程とからなることを特徴とするトレンチ素子分離
の形成方法。
1. After forming a groove on the surface side of a semiconductor substrate,
The first step of forming an insulating film on the surface of the semiconductor substrate while filling the inside of the groove, and the surface side of the insulating film by chemical mechanical polishing using a polishing liquid containing a cerium oxide-based polishing agent. And exposing the semiconductor substrate, and a third step of mainly removing the surface side of the semiconductor substrate by chemical mechanical polishing using a polishing liquid containing a silica-based polishing agent. A method for forming a trench element isolation, characterized by.
【請求項2】 請求項1記載のトレンチ素子分離の形成
方法において、 前記第2工程の化学的機械研磨は、半導体基体に対する
研磨選択比を2以上に設定して行うことを特徴とするト
レンチ素子分離の形成方法。
2. The method for forming a trench device according to claim 1, wherein the chemical mechanical polishing in the second step is performed by setting a polishing selection ratio with respect to a semiconductor substrate to 2 or more. Method of forming isolation.
【請求項3】 請求項1または請求項2記載のトレンチ
素子分離の形成方法において、 前記第3工程の化学的機械研磨は、絶縁膜に対する研磨
選択比を2以上に設定して行うことを特徴とするトレン
チ素子分離の形成方法。
3. The method for forming a trench element isolation according to claim 1, wherein the chemical mechanical polishing in the third step is performed by setting a polishing selection ratio with respect to the insulating film to 2 or more. And method for forming trench isolation.
JP7256794A 1994-03-16 1994-03-16 Formation of trench element separation Pending JPH07263537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7256794A JPH07263537A (en) 1994-03-16 1994-03-16 Formation of trench element separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7256794A JPH07263537A (en) 1994-03-16 1994-03-16 Formation of trench element separation

Publications (1)

Publication Number Publication Date
JPH07263537A true JPH07263537A (en) 1995-10-13

Family

ID=13493084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7256794A Pending JPH07263537A (en) 1994-03-16 1994-03-16 Formation of trench element separation

Country Status (1)

Country Link
JP (1) JPH07263537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204184B1 (en) 1998-03-30 2001-03-20 Hitachi, Ltd. Method of manufacturing semiconductor devices
JP2003517720A (en) * 1999-03-29 2003-05-27 スピードファム−アイピーイーシー コーポレイション Two-step CMP for damascene structures on semiconductor wafers
JP2004266276A (en) * 2003-02-28 2004-09-24 Samsung Electronics Co Ltd Method for forming trench, and method for manufacturing semiconductor using the same
CN100464394C (en) * 2005-07-11 2009-02-25 富士通微电子株式会社 Manufacture of semiconductor device with cmp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204184B1 (en) 1998-03-30 2001-03-20 Hitachi, Ltd. Method of manufacturing semiconductor devices
US6380085B2 (en) 1998-03-30 2002-04-30 Hitachi, Ltd. Method of manufacturing semiconductor devices
US6498100B2 (en) 1998-03-30 2002-12-24 Hitachi, Ltd. Method of manufacturing semiconductor devices
JP2003517720A (en) * 1999-03-29 2003-05-27 スピードファム−アイピーイーシー コーポレイション Two-step CMP for damascene structures on semiconductor wafers
JP4750948B2 (en) * 1999-03-29 2011-08-17 スピードファム−アイピーイーシー コーポレイション Two-step CMP for damascene structures on semiconductor wafers
JP2004266276A (en) * 2003-02-28 2004-09-24 Samsung Electronics Co Ltd Method for forming trench, and method for manufacturing semiconductor using the same
CN100464394C (en) * 2005-07-11 2009-02-25 富士通微电子株式会社 Manufacture of semiconductor device with cmp

Similar Documents

Publication Publication Date Title
JP4593521B2 (en) Trench element isolation method for integrated circuit device using high selectivity CMP
US6159822A (en) Self-planarized shallow trench isolation
JPH07101662B2 (en) Method for forming defect-free thin semiconductor layers
JPH06318687A (en) Forming method for soi wafer
JP2870054B2 (en) Method for manufacturing semiconductor device
JPH069194B2 (en) Integrated circuits from wafers with improved flatness
US6171929B1 (en) Shallow trench isolator via non-critical chemical mechanical polishing
US20060261041A1 (en) Method for manufacturing metal line contact plug of semiconductor device
JP3163719B2 (en) Method for manufacturing semiconductor device having polishing step
JP3443358B2 (en) Method for manufacturing semiconductor device
JPS63117423A (en) Method of etching silicon dioxide
JPH07263537A (en) Formation of trench element separation
JPH07235590A (en) Manufacture of semiconductor device
JPS59136943A (en) Element isolation process of semiconductor device
US6110795A (en) Method of fabricating shallow trench isolation
KR100300876B1 (en) Device Separation Method Using Chemical Mechanical Planarization
JP3271111B2 (en) Method of forming trench element isolation region
JPH0555358A (en) Manufacture of semiconductor device
JP2002184856A (en) Method for isolating semiconductor element
US6428387B1 (en) Method for chemical mechanical polishing using a high selective slurry
JPH08279605A (en) Manufacture of laminated substrate
KR100451499B1 (en) Device Separating Method of Semiconductor Device
KR19990048785A (en) Method of Cleaning Semiconductor Devices
JP2556373B2 (en) Dry etching method
JP3104388B2 (en) Dry etching method