JPH07263002A - Manufacture of cylindrical sintered solid electrolytic fuel cell - Google Patents

Manufacture of cylindrical sintered solid electrolytic fuel cell

Info

Publication number
JPH07263002A
JPH07263002A JP6053425A JP5342594A JPH07263002A JP H07263002 A JPH07263002 A JP H07263002A JP 6053425 A JP6053425 A JP 6053425A JP 5342594 A JP5342594 A JP 5342594A JP H07263002 A JPH07263002 A JP H07263002A
Authority
JP
Japan
Prior art keywords
electrolyte
film
fuel cell
tube
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6053425A
Other languages
Japanese (ja)
Inventor
Junichi Kanzaki
潤一 神前
Osao Kudome
長生 久留
Katsumi Nagata
勝巳 永田
Koji Ikeda
浩二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6053425A priority Critical patent/JPH07263002A/en
Publication of JPH07263002A publication Critical patent/JPH07263002A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To make a film surface dense, and reduce dispersion of a dense degree by forming films in layers on a surface by electrolyte slurry after baking it after sticking a pre-baking electrolyte sheet to an electrode support tube in the early stage of a film forming process. CONSTITUTION:In the early stage of a film forming process, masking 1 is applied to both end parts of an electrode support tube 2, and after a pre-baking electrolyte sheet 9 is stuck to a masking 1-unapplied central part in a green condition, it is baked, and a film is formed. Next, the masking 1 is again applied to a film surface of the baked and film-formed sheet 9, and after a plug 7 is put in an opening part of the tube 2, a flexible pipe 12 is installed in an opening part on the opposite side where the plug 7 is jut. In succession, a suction pump 8 is actuated, and after it is soaked in electrolyte slurry 4 in a slurry storage tank 3 by a vertically moving device 6, the tube 2 is pulled up, and sticking electrolyte particles 5 sticking to a surface of the tube 2 are dried. A soaking, pulling-up and drying process is repeatedly operated ten times, and after it is temporarily baked, this operation is further performed, and it is regularly baked, and a dense electrolyte film is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は円筒焼結型固体電解質型
燃料電池の製造方法に関し、発電に利用することの他、
水電解やCO2 電解等の電解セルにも使用可能なSOF
C(Solid Oxide Fuel Cell )の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cylindrical sintered solid oxide fuel cell, which is used for power generation,
SOF that can be used for electrolysis cells such as water electrolysis and CO 2 electrolysis
It relates to a manufacturing method of C (Solid Oxide Fuel Cell).

【0002】[0002]

【従来の技術】従来の円筒焼結型固体電解質型燃料電池
の構成要素である電解質の成膜方法の一例を、図5を用
いて説明する。図5は燃料電池の電解質の成膜工程を示
す工程図である。同図中、符号1はマスキング、2は電
極支持管、3スラリー貯蔵槽、4は電解質スラリー、5
は付着した電解質粒子、6は上下移動装置、7は栓、8
は吸引ポンプを各々図示する。
2. Description of the Related Art An example of a method for forming an electrolyte, which is a constituent element of a conventional cylindrical sintered solid oxide fuel cell, will be described with reference to FIG. FIG. 5 is a process diagram showing a film forming process of an electrolyte of a fuel cell. In the figure, reference numeral 1 is masking, 2 is an electrode support tube, 3 slurry storage tank, 4 is electrolyte slurry, 5
Is attached electrolyte particles, 6 is a vertical moving device, 7 is a stopper, 8
Show suction pumps respectively.

【0003】〔工程1〕例えばセラミックス体で形成さ
れた電極支持管2の両端部の電解質の成膜が不要な部分
にマスキング1を施し、電極支持管2の開口部に栓7を
したのち、この栓7をした反対側の開口部に吸引ポンプ
8の吸い込み口へ連結するフレキシブルパイプ12を取
りつける。
[Step 1] Masking 1 is applied to both ends of the electrode support tube 2 made of, for example, a ceramic body, and film formation of the electrolyte is unnecessary, and after plugging the opening 7 of the electrode support tube 2 with a plug 7. A flexible pipe 12 connected to the suction port of the suction pump 8 is attached to the opening on the opposite side where the plug 7 is formed.

【0004】〔工程2〕吸引ポンプ8を作動させ、その
まま上下移動装置6により、スラリー貯蔵槽3内の電解
質スラリー4に浸漬する。
[Step 2] The suction pump 8 is operated, and the vertical movement device 6 is used as it is to immerse the electrolyte slurry 4 in the slurry storage tank 3.

【0005】〔工程3〕吸引ポンプ8の吸い込みによっ
て、電極支持管2の表面に付着した付着電解質粒子5を
乾燥させるため、上下移動装置6を用いてスラリー貯蔵
槽3内より該電極支持管2を引上げ、その後乾燥室に移
して、約90℃の温度で乾燥する。
[Step 3] In order to dry the adhered electrolyte particles 5 adhering to the surface of the electrode support tube 2 by suction of the suction pump 8, the vertical movement device 6 is used to move the electrode support tube 2 from the inside of the slurry storage tank 3. And then transferred to a drying chamber for drying at a temperature of about 90 ° C.

【0006】次の「工程4」に移る前に、上記「工程
2」及び「工程3」の操作を繰り返す所謂「ディッピン
グ(Dipping)」と称する繰り返し操作を、10
回繰り返す。
Before proceeding to the next "step 4", a repetitive operation called "dipping" in which the above-mentioned "step 2" and "step 3" are repeated is repeated 10 times.
Repeat times.

【0007】〔工程4〕ディッピング操作を10回程度
繰り返したのちに、上下移動装置6を用いて電極支持管
2を図示しない焼結室内に搬送し、ここで約1500℃
で仮焼する。
[Step 4] After repeating the dipping operation about 10 times, the electrode supporting tube 2 is conveyed to the sintering chamber (not shown) by using the vertical moving device 6, and the temperature is about 1500 ° C.
Calcined in.

【0008】この「工程4」の終了後、更に上記「工程
2」及び「工程3」の操作を繰り返す所謂「ディッピン
グ(Dipping)」と称する繰り返し操作を、10
回繰り返し、2度目の仮焼を行ったあとで、更にもう一
サイクル、合計で三サイクルの操作を施したのち、「工
程5」に進む。
After the end of this "step 4", the above-mentioned "step 2" and "step 3" are further repeated, that is, so-called "Dipping" is repeated 10 times.
After repeating the second calcination, the operation is repeated for another cycle, for a total of three cycles, and then the step 5 is performed.

【0009】〔工程5〕上記の「ディッピング(Dip
ping)10回と仮焼1回」を一サイクルとして、計
三サイクルの操作を行って電解質膜を得たのち、約16
00℃の温度で本焼して緻密な膜を得ることとしてい
る。
[Step 5] The above-mentioned "Dip (Dip)
ping) 10 times and calcination 1 time "as one cycle, a total of 3 cycles of operations are performed to obtain an electrolyte membrane, and then about 16
It is supposed that a dense film is obtained by firing at a temperature of 00 ° C.

【0010】[0010]

【発明が解決しようとする課題】ところで、固体電解質
燃料電池の電解質に対する品質上、該電解質の膜面が緻
密であり且つ所謂バラツキの無い均一さが全膜面に亙っ
て確保されているのが望ましいとされている。しかしな
がら、従来の前述した電解質膜の成膜方法では、比較的
緻密な膜は得られるものの、該得られる膜の緻密度には
バラツキがあり、問題であった。
By the way, in view of the quality of the solid electrolyte fuel cell with respect to the electrolyte, the membrane surface of the electrolyte is dense and the so-called non-uniformity is ensured over the entire membrane surface. Is said to be desirable. However, although the above-described conventional method for forming an electrolyte membrane can obtain a relatively dense membrane, there is a problem in that the density of the obtained membrane varies.

【0011】本発明は上記問題に鑑み、得られる膜の膜
面が緻密であり且つ該緻密度にバラツキの少ない円筒焼
結型固体電解質型燃料電池の製造方法を提供することを
目的とする。
In view of the above problems, it is an object of the present invention to provide a method for producing a cylindrical sintered solid oxide fuel cell in which the film surface of the obtained film is dense and there is little variation in the density.

【0012】[0012]

【課題を解決するための手段】前記目的を達成する本発
明に係る円筒焼結型固体電解質型燃料電池の製造方法
は、焼結法により成膜する円筒焼結型固体電解質型燃料
電池の製造方法において、成膜工程の初期段階に焼成前
の電解質シートを電極支持管に貼付けた後に焼結し、そ
の後該電解質シートの表面に電解質スラリーによる成膜
を重ねて施すことを特徴とする。
The method for manufacturing a cylindrical sintered solid oxide fuel cell according to the present invention, which achieves the above object, is a method for manufacturing a cylindrical sintered solid oxide fuel cell in which a film is formed by a sintering method. In the method, the electrolyte sheet before firing is attached to the electrode support tube in the initial stage of the film forming step, and then sintered, and thereafter, film formation with the electrolyte slurry is repeatedly performed on the surface of the electrolyte sheet.

【0013】以下、本発明の内容を説明する。The contents of the present invention will be described below.

【0014】本発明の円筒焼結型固体電解質型燃料電池
の製造方法は、焼結法により成膜する円筒焼結型固体電
解質型燃料電池を製造する場合において、図1に示すよ
うに成膜工程の初期段階に、焼成前の電解質シート(グ
リーンシート)9を電極支持管2にグリーンの状態で貼
付けた後に焼結し、その後、該電解質シート9の表面に
電解質スラリーによる成膜を重ねて、図3に示すような
緻密な成膜された電解質膜11をバラツキ無く施すこと
を可能とした。
The method for manufacturing a cylindrical sintered solid oxide fuel cell according to the present invention is as shown in FIG. 1 when a cylindrical sintered solid oxide fuel cell is manufactured by a sintering method. At the initial stage of the process, an electrolyte sheet (green sheet) 9 before firing is attached to the electrode support tube 2 in a green state and then sintered, and then a film of electrolyte slurry is superposed on the surface of the electrolyte sheet 9. It is possible to apply the densely formed electrolyte membrane 11 as shown in FIG. 3 without variation.

【0015】即ち、本発明方法によって得られた電解質
膜は、図3(A)の拡大図を示す図3(B)に示すよう
に、従来のものより緻密な電解質膜となる。これは、従
来の成膜方法ではディッピング工程で生じるバラツキを
解消することが出来ないのに対し、本発明においては電
解質シート9を膜のベースとして電極支持管2の貼付け
たのちに、焼結するようにしているので、該ベースの厚
さ分については少なくとも均一であるため、従来のよう
なバラツキが発生することがないことになるからであ
る。
That is, the electrolyte membrane obtained by the method of the present invention is a denser electrolyte membrane than the conventional one, as shown in FIG. 3 (B) which is an enlarged view of FIG. 3 (A). This is because the conventional film forming method cannot eliminate the variation that occurs in the dipping step, but in the present invention, the electrolyte sheet 9 is used as the base of the membrane and the electrode support tube 2 is attached and then sintered. This is because, since the thickness of the base is at least uniform, the variation unlike the conventional case does not occur.

【0016】また、図3に示すように、電解質シート膜
の焼結時に生じる微小クラック10は、該電解質シート
9の焼結膜上に従来と同様に操作して、電解質スラリー
による成膜を行うので、この際に、吸引ポンプ8に引か
れて抵抗の少ない微小クラック10内に電解質粒子が入
り込み、該空間を塞ぐので、この結果、十分に緻密な然
もバラツキのない電解質膜11を成膜することが可能と
なる。
Further, as shown in FIG. 3, the minute cracks 10 generated during the sintering of the electrolyte sheet film are formed on the sintered film of the electrolyte sheet 9 in the same manner as in the prior art to form a film with the electrolyte slurry. At this time, since the electrolyte particles enter the minute cracks 10 having a small resistance by being pulled by the suction pump 8 and block the space, as a result, a sufficiently dense electrolyte film 11 having no variation is formed. It becomes possible.

【0017】ここで、本発明において上記焼成前の電解
質シート(グリーンシート)とは、常法によって得られ
た焼成する前の電解質用組成物をシート状にしたものを
いい、本発明ではこのグリーンの状態で電極支持管9に
貼付けた後、焼成する点が従来の製造方法と異なるもの
である。
Here, in the present invention, the electrolyte sheet (green sheet) before firing means a sheet-like composition of the electrolyte composition before firing obtained by a conventional method. This is different from the conventional manufacturing method in that it is baked after being attached to the electrode support tube 9 in this state.

【0018】[0018]

【実施例】以下、本発明の好適な実施例を図1,図2を
用いて具体的に説明する。図1は本実施例に係る円筒焼
結型固体電解質型燃料電池の電解質膜の成膜工程図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be specifically described below with reference to FIGS. FIG. 1 is a process drawing of an electrolyte membrane of a cylindrical sintered solid oxide fuel cell according to this embodiment.

【0019】図1に示すように、成膜工程の初期段階に
おいて、焼成前の電解質シート(グリーンシート)9を
電極支持管2にグリーンの状態で貼付ける。ここで、グ
リーン状態で貼付ける電解質膜のシートは、本焼終了後
の膜厚が100μm,粉体濃度が75wt%〜80wt
%となるものを用いるようにした。上記のようにグリー
ン状態で貼付した電解質膜シート9は、その後従来と同
様な操作によって焼成し、次いで、焼結膜の表面に通常
の電解質スラリー4により成膜を施す点は、繰り返し回
数が一サイクル少なくなる以外を除いては従来と同様で
ある。
As shown in FIG. 1, an electrolyte sheet (green sheet) 9 before firing is attached to the electrode supporting tube 2 in a green state in the initial stage of the film forming process. Here, the electrolyte membrane sheet stuck in the green state has a film thickness of 100 μm after the main firing and a powder concentration of 75 wt% to 80 wt.
It was made to use what became%. The electrolyte membrane sheet 9 stuck in the green state as described above is then fired by the same operation as the conventional one, and the film is then formed on the surface of the sintered film by the normal electrolyte slurry 4 in that the number of repetitions is one cycle. It is the same as the conventional one except that the number is reduced.

【0020】以下、図1及び図2を用いて成膜工程を説
明する。
The film forming process will be described below with reference to FIGS.

【0021】〔工程1〕先ず、工程初期段階において、
セラミックス体で形成された電極支持管2の両端部に、
マスキング1を施す(図1参照)。
[Step 1] First, in the initial stage of the step,
At both ends of the electrode support tube 2 made of ceramics,
Masking 1 is applied (see FIG. 1).

【0022】〔工程2〕電極支持管2でマスキング1さ
れていない中央部に、焼成前の電解質シート9をグリー
ン状態で貼付けた後、約1600℃で焼結成膜する(図
1参照)。
[Step 2] An electrolyte sheet 9 before firing is attached in a green state to a central portion of the electrode supporting tube 2 where the masking 1 is not applied, and then a sintering film is formed at about 1600 ° C. (see FIG. 1).

【0023】〔工程3〕「工程2」の次に、焼結成膜さ
れた電解質シート9の膜の表面を従来通りの方法で電解
質膜を成膜するため、その準備として、再度マスキング
1を施すとともに、従来と同様に、電極支持管2の開口
部に栓7をしたのち、この栓7をした反対側の開口部に
吸引ポンプ8の吸い込み口へ連結するフレキシブルパイ
プ12を取りつける(図2(A)参照)。
[Step 3] Next to "Step 2", masking 1 is applied again in preparation for forming an electrolyte membrane on the surface of the sintered electrolyte sheet 9 by a conventional method. At the same time, similarly to the conventional case, after plugging the opening 7 of the electrode support tube 2 with the plug 7, the flexible pipe 12 connected to the suction port of the suction pump 8 is attached to the opening on the opposite side of the plug 7 (see FIG. See A)).

【0024】〔工程4〕吸引ポンプ8を作動させ、その
まま上下移動装置6により、スラリー貯蔵槽3内の電解
質スラリー4に浸漬する(図2(B)参照)。
[Step 4] The suction pump 8 is operated, and the vertical movement device 6 is used as it is to immerse the electrolyte slurry 4 in the slurry storage tank 3 (see FIG. 2B).

【0025】〔工程5〕吸引ポンプ8の吸い込みによっ
て、電極支持管2の表面に付着した付着電解質粒子5を
乾燥させるため、上下移動装置6を用いてスラリー貯蔵
槽3内より該電極支持管2を引上げ(図2(C)参
照)、その後、図示しない乾燥室に移して、約90℃の
温度で乾燥する。
[Step 5] In order to dry the adhered electrolyte particles 5 adhering to the surface of the electrode supporting tube 2 by suction of the suction pump 8, the electrode moving tube 6 is used to move the electrode supporting tube 2 from the inside of the slurry storage tank 3. Is pulled up (see FIG. 2C), and thereafter, it is transferred to a drying chamber (not shown) and dried at a temperature of about 90 ° C.

【0026】次の「工程6」に移る前に、上記「工程
4」及び「工程5」の操作を繰り返す所謂「ディッピン
グ(Dipping)」と称する繰り返し操作を、10
回繰り返す。
Before proceeding to the next "step 6", the above-mentioned "step 4" and "step 5" are repeated for 10 times.
Repeat times.

【0027】〔工程6〕上記ディッピング操作を10回
程度繰り返したのちに、上下移動装置6を用いて電極支
持管2を図示しない焼結室内に搬送し、ここで約150
0℃で仮焼する。
[Step 6] After repeating the above-mentioned dipping operation about 10 times, the electrode support tube 2 is conveyed to the sintering chamber (not shown) by using the vertical movement device 6, and here, about 150
Calcination at 0 ° C.

【0028】この「工程6」の終了後、更に上記「工程
4」及び「工程5」の操作を繰り返す所謂「ディッピン
グ(Dipping)」と称する繰り返し操作を、10
回繰り返し、2度目の仮焼を行ったあと、すなわち合計
で二サイクルの操作を施したのち、「工程7」に進む。
After the end of this "step 6", the operation of repeating "step 4" and "step 5", which is so-called "Dipping", is repeated 10 times.
After repeating the second calcination, that is, after performing a total of two cycles of operations, the process proceeds to "Step 7".

【0029】〔工程7〕上記の「ディッピング(Dip
ping)10回に付き仮焼1回の工程」を一サイクル
として、計二サイクルの操作を行って電解質膜を得たの
ち、約1600℃の温度で本焼して緻密な電解質膜を得
た。
[Step 7] The above-mentioned “Dip (Dip)
ping) 10 times of calcination 1 time as one cycle, a total of 2 cycles of operations were performed to obtain an electrolyte membrane, and then main firing was performed at a temperature of about 1600 ° C. to obtain a dense electrolyte membrane. .

【0030】この結果、該電解質シート9の表面に電解
質スラリーによる成膜を重ねた場合でも、図3に示すよ
うな緻密な膜をバラツキ無く施すことを可能とした。す
なわち、従来の成膜方法ではディッピング(Dippi
ng)工程で生じる「バラツキ」を無くすことが出来な
いのに対して、電解質シート9の膜をベースとして、電
極支持管2に貼付し焼結する方法を採っているので、ベ
ースの厚さ分については少なくとも均一である為に、従
来のような「バラツキ」が解消されることとなった。
As a result, even when the electrolyte slurry is formed on the surface of the electrolyte sheet 9, a dense film as shown in FIG. 3 can be applied without variation. That is, in the conventional film forming method, dipping (Dippi) is performed.
ng), it is not possible to eliminate the “variation” that occurs in the process, while the method of attaching the film of the electrolyte sheet 9 to the electrode support tube 2 and sintering the film is used. In regards to the above, since "uniformity" is at least uniform, the "variation" as in the past has been resolved.

【0031】また、電解質シート9の膜の焼結時に生じ
る微小クラック10は電解質シート9の焼結膜上に従来
と同様な操作により電解質スラリー4による成膜を行う
ので、図3に示すように、該電解質膜の成膜の際に、吸
引ポンプ8に引かれて抵抗の少ない微小クラック10が
発生した場合でも、該微小クラック10内に電解質が入
り込み、該空間を塞ぐので、この結果、十分に緻密なし
かも「バラツキ」の少ない電解質膜11を得ることが出
来る。
Further, since the minute cracks 10 generated during the sintering of the film of the electrolyte sheet 9 are formed on the sintered film of the electrolyte sheet 9 by the electrolyte slurry 4 by the same operation as the conventional one, as shown in FIG. Even when the suction pump 8 pulls the micro cracks 10 with a small resistance to form the electrolyte membrane, the electrolyte enters the micro cracks 10 and closes the space. It is possible to obtain the electrolyte membrane 11 that is precise and has little "variation".

【0032】図4には、本実施例による成膜方法で得ら
れた電解質膜のガス拡散係数の計測値を従来方法によっ
て得られた膜と併せて示すものであるが、同図に示すよ
うに本実施例のものは従来のものよりガス拡散係数が2
0%以下の値を示しており、膜が緻密であることが実証
された。
FIG. 4 shows the measured values of the gas diffusion coefficient of the electrolyte membrane obtained by the film forming method according to this embodiment together with the membrane obtained by the conventional method. As shown in FIG. In addition, the gas diffusion coefficient of this embodiment is 2 than that of the conventional one.
It showed a value of 0% or less, demonstrating that the film was dense.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
電解質膜の膜面が緻密であり、且つバラツキの無い均一
さが全膜面に亙って確保されるので、固体電解質燃料電
池の電解質膜に対する品質上の確保が出来、電池の性能
の向上が図れる。
As described above, according to the present invention,
Since the membrane surface of the electrolyte membrane is dense and the uniformity without variation is secured over the entire membrane surface, it is possible to secure the quality of the electrolyte membrane of the solid oxide fuel cell and improve the cell performance. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る固体電解質型燃料電池の成膜工程
図である。
FIG. 1 is a film forming process diagram of a solid oxide fuel cell according to the present invention.

【図2】本発明に係る固体電解質型燃料電池の成膜工程
図である。
FIG. 2 is a film forming process diagram of a solid oxide fuel cell according to the present invention.

【図3】本実施例に係る電解質膜断面拡大図である。FIG. 3 is an enlarged cross-sectional view of an electrolyte membrane according to this example.

【図4】本実施例に係る性能図である。FIG. 4 is a performance diagram according to the present embodiment.

【図5】従来技術に係る固体電解質型燃料電池の成膜工
程図である。
FIG. 5 is a film forming process diagram of a solid oxide fuel cell according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 マスキング 2 電極支持管 3 スラリー貯蔵槽 4 電解質スラリー 5 付着した電解質粒子 6 上下移動装置 7 栓 8 吸引ポンプ 9 電解質膜のシート膜 11 成膜された電解質膜 1 Masking 2 Electrode Support Tube 3 Slurry Storage Tank 4 Electrolyte Slurry 5 Electrolyte Particles Attached 6 Vertical Moving Device 7 Plug 8 Suction Pump 9 Sheet Film of Electrolyte Membrane 11 Deposited Electrolyte Membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 浩二 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Ikeda 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焼結法により成膜する円筒焼結型固体電
解質型燃料電池の製造方法において、成膜工程の初期段
階に焼成前の電解質シートを電極支持管に貼付けた後に
焼結し、その後該電解質シートの表面に電解質スラリー
による成膜を重ねて施すことを特徴とする円筒焼結型固
体電解質型燃料電池の製造方法。
1. In a method for manufacturing a cylindrical sintered solid oxide fuel cell in which a film is formed by a sintering method, an electrolyte sheet before firing is attached to an electrode support tube and then sintered at an initial stage of the film forming step, Then, a method for producing a cylindrical sintered solid oxide fuel cell is characterized in that a film of an electrolyte slurry is overlaid on the surface of the electrolyte sheet.
JP6053425A 1994-03-24 1994-03-24 Manufacture of cylindrical sintered solid electrolytic fuel cell Withdrawn JPH07263002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6053425A JPH07263002A (en) 1994-03-24 1994-03-24 Manufacture of cylindrical sintered solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6053425A JPH07263002A (en) 1994-03-24 1994-03-24 Manufacture of cylindrical sintered solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH07263002A true JPH07263002A (en) 1995-10-13

Family

ID=12942491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6053425A Withdrawn JPH07263002A (en) 1994-03-24 1994-03-24 Manufacture of cylindrical sintered solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH07263002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534400A (en) * 2007-07-25 2010-11-04 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Interlocking structures for high temperature electrochemical devices and their preparation and use.
JP2013045772A (en) * 2011-08-25 2013-03-04 Robert Bosch Gmbh Inactive support type cylindrical fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534400A (en) * 2007-07-25 2010-11-04 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Interlocking structures for high temperature electrochemical devices and their preparation and use.
JP2013045772A (en) * 2011-08-25 2013-03-04 Robert Bosch Gmbh Inactive support type cylindrical fuel cell

Similar Documents

Publication Publication Date Title
CA2461097A1 (en) Ceramic laminated sintered bodies, a method of producing the same, electrochemical cells, conductive interconnectors for the same and electrochemical devices
JPH07263002A (en) Manufacture of cylindrical sintered solid electrolytic fuel cell
JPH08185882A (en) Manufacture of solid electrolytic fuel cell
JPH11335885A (en) Production of platinum electrode
JP2006222068A (en) Ceramic heater and its manufacturing method
JP2002282629A (en) Method for manufacturing multilayer-structured ceramic filter
JP2011165652A (en) Method of manufacturing interconnector for fuel cell, and interconnector for fuel cell
JP4811776B2 (en) SOLID ELECTROLYTE FUEL CELL FUEL ELECTRODE AND METHOD FOR PRODUCING THE SAME
JP3340367B2 (en) Fuel cell material coating apparatus, fuel cell material coating method, and fuel cell material film forming method using the same
JP4232614B2 (en) Solid oxide fuel cell
JPH03147843A (en) Manufacture of electrostatic chuck
US6849296B2 (en) Leakage free ceramic films for porous surfaces
JP3776977B2 (en) Vacuum drying equipment
JP3389469B2 (en) Solid oxide fuel cell
JPS63128566A (en) Solid electrolyte fuel battery and manufacture thereof
JP3166333B2 (en) Ceramic coating method
JP3924199B2 (en) Manufacturing method of fuel cell
JPH1116583A (en) Film forming method for solid electrolyte, film forming method for fuel electrode, and film forming method for solid electrolyte and fuel electrode
JPH0973906A (en) Fuel electrode of solid electrolytic electrochemical cell
JP3182780B2 (en) Method of forming dense ceramic layer
JP2001332273A (en) Ceramics membrane and manufacturing method therefor
JP2007056298A (en) Method of forming dielectric film
JPH02199023A (en) Production of oxide superconducting thick film
JPH0891840A (en) Production of thick zirconia film
JP2000133857A (en) Method of forming electrode of piezoelectric element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605