JPH07260725A - Organic carbon measuring device, and ultrapure water producing device with the device built-in - Google Patents

Organic carbon measuring device, and ultrapure water producing device with the device built-in

Info

Publication number
JPH07260725A
JPH07260725A JP6049659A JP4965994A JPH07260725A JP H07260725 A JPH07260725 A JP H07260725A JP 6049659 A JP6049659 A JP 6049659A JP 4965994 A JP4965994 A JP 4965994A JP H07260725 A JPH07260725 A JP H07260725A
Authority
JP
Japan
Prior art keywords
water
organic carbon
conductivity
ultrapure water
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6049659A
Other languages
Japanese (ja)
Inventor
Madoka Tanabe
円 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP6049659A priority Critical patent/JPH07260725A/en
Publication of JPH07260725A publication Critical patent/JPH07260725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To measure an organic carbon quantity with a miniature and inexpensive device without needing any preparation and calibration of a reaction reagent in a short time by performing ultraviolet oxidation treatment of deionized water to obtain oxidized water, and measuring the conductivity of the deionized water and the oxidized water. CONSTITUTION:A deionized treatment part 1 is composed of an ion-exchange device or the like using ion-exchanging resin or the like. Conductivity of deionized water obtained in the deionized treatment part 1 is measured in a conductivity measuring part 3, and the output is transmitted to a comparison operation part 4. Thereafter, the deionized water is supplied to an ultraviolet oxidation treatment part 5 and ultraviolet analysis of organism is performed while the deionized water passes through the oxidizing treatment part 5. The conductivity of oxidized water is measured in another conductivity measuring part 6 and its output is transmitted to the comparison operation part 4. In the operation part 4, their output signals from the conductivity measuring parts 3, 6 are compared with each other, and a signal corresponding to the difference is taken out from an output line 7 in response to organism carbon concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電子産業におい
て半導体洗浄用等に利用される超純水等に含有される有
機体炭素の測定装置、及びこの装置を組込んだ超純水製
造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring organic carbon contained in ultrapure water used for cleaning semiconductors in the electronics industry, and an apparatus for producing ultrapure water incorporating this apparatus. Regarding

【0002】[0002]

【従来の技術】純水又は超純水の主要な水質評価項目の
一つとして、有機体炭素(正確には全有機体炭素、以下
TOCということもある)が挙げられる。純水又は超純
水製造装置の健全な運転管理のために、装置内所定の各
所に有機体炭素測定装置(以下TOC計ということもあ
る)を設置し、TOCを監視することが望ましい。装置
の末端における最終の水質の監視が必要であることは言
うまでもないが、近年、原水使用と排水処分にかかるコ
ストの低減や、環境保護の面から、超純水の使用場所で
の使用により生じた排水の中で比較的汚染の軽微な排水
を回収して再利用する排水回収系を持った純水又は超純
水製造装置が増えてきている。そして、この排水回収系
には回収排水中の有機体炭素を常時監視して、異常時に
備える機能が求められている。
2. Description of the Related Art As one of the main water quality evaluation items of pure water or ultrapure water, there is organic carbon (to be exact, total organic carbon, sometimes referred to as TOC hereinafter). For sound operation management of the pure water or ultrapure water production apparatus, it is desirable to install an organic carbon measuring device (hereinafter also referred to as a TOC meter) at each predetermined place in the device and monitor the TOC. Needless to say, it is necessary to monitor the final water quality at the end of the equipment, but in recent years, the use of ultrapure water at the location where ultrapure water is used has resulted from the reduction of costs for raw water use and wastewater disposal and environmental protection. There is an increasing number of pure water or ultrapure water production apparatuses having a wastewater recovery system that recovers and reuses slightly polluted wastewater. Further, this wastewater recovery system is required to have a function of constantly monitoring the organic carbon in the recovered wastewater and preparing for an abnormality.

【0003】図9は、排水回収系を備えた従来の超純水
製造装置の一例を示すブロック図である。
FIG. 9 is a block diagram showing an example of a conventional ultrapure water production system equipped with a wastewater recovery system.

【0004】市水、工業用水等の原水を凝集濾過器、活
性炭濾過器等を組合わせてなる前処理装置70で前処理
後、脱気装置、イオン交換装置、逆浸透膜装置、紫外線
殺菌装置、紫外線酸化装置、限外濾過膜装置等を適宜組
合わせてなる超純水製造系71により処理されて超純水
が製造され、使用場所72に供給される。使用場所で、
例えば洗浄機械用に使用され、洗浄機械から排出された
排水は各洗浄機械毎に設けられた分別機構(1)及び回
収経路,,,の入口に備えられた分別機構
(2),(3)により経路,,又はへ分別さ
れ、超純水製造系71の原水として直接回収されるか
(経路)、あるいは純水用排水回収系73を備えた経
路、雑用水用排水回収系74を備えた経路、又は廃
水処理系75を備えた経路へ送られる。純水用排水回
収系73によって処理された処理水は超純水製造系71
の原水として超純水製造系71の前段に返送して使用さ
れる。雑用水用排水回収系74による処理水はユーティ
リティ設備76、例えばクーリングタワーやその他工場
内の雑用水として使用される。更に、廃水処理系75に
送られた水は所定の処理後、放流される。
After pretreatment of raw water such as city water and industrial water with a pretreatment device 70 which is a combination of a coagulation filter, an activated carbon filter, etc., a deaeration device, an ion exchange device, a reverse osmosis membrane device, an ultraviolet sterilizer , Ultra-pure water is produced by being processed by an ultra-pure water production system 71 which is an appropriate combination of an ultraviolet oxidation device, an ultrafiltration membrane device, etc., and is supplied to a place of use 72. At the place of use,
For example, wastewater used for a washing machine and drained from the washing machine is provided with a sorting mechanism (1) provided for each washing machine and a collecting path ,,, sorting mechanisms (2), (3) Or the waste water recovery system 74 for miscellaneous water is provided, or is directly recovered as raw water of the ultrapure water production system 71 (path), or is provided with the waste water recovery system 73 for pure water. To a route or a route equipped with a wastewater treatment system 75. The treated water treated by the pure water waste water recovery system 73 is the ultrapure water production system 71.
The raw water is returned to the previous stage of the ultrapure water production system 71 and used. The treated water from the waste water recovery system 74 for miscellaneous water is used as utility water in utility facilities 76, such as a cooling tower and other factories. Furthermore, the water sent to the wastewater treatment system 75 is discharged after a predetermined treatment.

【0005】ところで、経路〜のような分別は、ま
ず超純水の使用場所72、つまり洗浄機械の設置してあ
る場所において、排水の汚染の程度に応じて、例えば図
10に示すような自動弁80〜83によって配管84,
85を切換える分別機構により1次洗浄排水77と2次
洗浄排水78に分別される。すなわち、多槽式の自動洗
浄装置においては、まずウエハキャリアが薬液槽より洗
浄槽へ移行したタイミングをキャッチする。そして、ク
イックダンプリンス等のバッチ洗浄方式では、洗浄カウ
ンタを使用し、オーバーフローリンス等の連続洗浄方式
では、タイマを使用して、ドレンパン等からの排水の行
き先を自動弁により切換える。一槽式の自動洗浄装置に
おいても同様の機構を持たせて行われる。切換えのタイ
ミングについては、洗浄方法、使用薬品等によりまちま
ちとなるため、十分に検討調査することが必要である。
このようにして、分別された1次洗浄排水77と2次洗
浄排水78は、後述する分別機構(2),(3)により
各回収系の処理能力に応じた水質毎に更に分別される。
ここで経路〜における一般的な水質を表1に例示す
る。
By the way, in the sorting of the routes 1 to 3, first, at a place 72 where the ultrapure water is used, that is, a place where a cleaning machine is installed, an automatic operation as shown in FIG. The pipes 84,
It is separated into a primary cleaning drainage 77 and a secondary cleaning drainage 78 by a sorting mechanism that switches 85. That is, in the multi-tank type automatic cleaning apparatus, first, the timing at which the wafer carrier is transferred from the chemical liquid tank to the cleaning tank is caught. In a batch cleaning method such as quick dump rinse, a cleaning counter is used, and in a continuous cleaning method such as overflow rinse, a timer is used to switch the destination of drainage from a drain pan or the like by an automatic valve. The same mechanism is also provided in the one-tank type automatic cleaning device. The switching timing will vary depending on the cleaning method, chemicals used, etc., so it is necessary to thoroughly study and investigate.
In this way, the separated primary cleaning wastewater 77 and secondary cleaning wastewater 78 are further separated by water quality according to the treatment capacity of each recovery system by the separating mechanisms (2) and (3) described later.
Here, Table 1 exemplifies the general water quality in the routes 1 to 3.

【0006】[0006]

【表1】 1次洗浄排水77は2次洗浄排水78と比較して高導電
率、高TOC(すなわち、不純物含有量が大)であり、
主として雑用水用排水回収系74において回収され、表
1に例示した基準を超える場合は、廃水処理系75に送
られる。2次洗浄排水78は低導電率、低TOCのもの
であるので、直接経路を通り、あるいは純水用排水回
収系73を介して経路を通り、超純水製造系の原水と
して再利用される。
[Table 1] The primary cleaning wastewater 77 has higher conductivity and higher TOC (that is, a large impurity content) as compared with the secondary cleaning wastewater 78,
It is mainly recovered in the waste water recovery system 74 for miscellaneous water, and when it exceeds the standards exemplified in Table 1, it is sent to the waste water treatment system 75. Since the secondary cleaning wastewater 78 has low conductivity and low TOC, it is reused as raw water for the ultrapure water production system through the direct route or the route through the pure water drainage recovery system 73. .

【0007】これら排水回収して処理をする分別処理系
Xの各経路〜のうち、超純水製造系71の原水とし
て直接回収される経路の水質管理が最も重要である。
特に気を付けなければならないのは、洗浄機械で使用さ
れることの多い、メチルアルコール、エチルアルコー
ル、イソプロピルアルコール等の低分子の非イオン性の
アルコール系薬品である。これらの薬品は超純水製造系
内に通常用いられているイオン交換装置や逆浸透膜装置
(RO)では容易に除去し難いものであるので、超純水
製造系内にこれらの有機薬品を酸化分解するための紫外
線酸化装置が設置されていない場合は、その混入は絶対
に避けなければならない。そのために、2次洗浄排水7
8の配管にTOC計(不図示)と自動弁を設置した分別
機構(2)を設け、経路を切換えることによってTOC
濃度の高い排水が超純水製造系71に直接流入するのを
防ぐものである。この用途に用いるTOC計は、基準よ
り高いTOCを検出したときに迅速に流路を切換えるこ
とができるように十分に速い応答時間で排水中のTOC
を連続測定できるものであることが望ましい。しかしな
がら、従来のTOC計の応答時間は一般に10分以上で
あった。すなわち、数値として表示されているTOC値
は10分以上前に計測点を通過した排水の測定値であ
る。そこで、このような計測遅れをカバーするために、
分別機構(2)には図11に例示する分別装置が必要に
なる。図11に示される装置は10分以上の滞留時間を
持った水槽91〜93を3基使用し、それぞれ張り込み
・TOC計測・分別先への排出というように互いに一定
時間づつずらして使い分けることにより、排水のTOC
を確認した後、回収できるようにした装置である。しか
し、このような装置は水槽91〜93を設置するための
面積を要し、また洗浄機械94の設置された超純水の使
用場所からの排水の自動弁95〜97による流路の切換
えや、各水槽出口の自動弁98〜103の切換え操作が
必要であり、その結果非常に複雑な装置となる。なお、
本図においては、水槽91は排水が流入している状態
を、水槽92はTOCを測定している状態を、水槽93
はTOC測定の終了した排水を排出している状態を示し
ており、またLSAはレベル計を、TOCはTOC計を
示している。
Among these routes of the separation treatment system X for collecting and treating waste water, the water quality control of the route directly recovered as raw water of the ultrapure water production system 71 is the most important.
Of particular note are low molecular weight nonionic alcoholic chemicals such as methyl alcohol, ethyl alcohol, isopropyl alcohol, which are often used in cleaning machines. Since these chemicals are difficult to remove easily with an ion exchange device or a reverse osmosis membrane device (RO) that is usually used in the ultrapure water production system, these organic chemicals should be added to the ultrapure water production system. If no UV oxidizer for oxidative decomposition is installed, its inclusion must be absolutely avoided. Therefore, secondary cleaning drainage 7
A TOC meter (not shown) and a sorting mechanism (2) equipped with an automatic valve are installed in the pipe of No. 8 and the TOC is changed by switching the route.
It is intended to prevent the highly concentrated waste water from directly flowing into the ultrapure water production system 71. The TOC meter used for this purpose has a sufficiently fast response time so that the flow path can be switched quickly when a TOC higher than the standard is detected.
It is desirable to be able to measure continuously. However, the response time of the conventional TOC meter is generally 10 minutes or more. That is, the TOC value displayed as a numerical value is the measured value of the wastewater that passed the measurement point 10 minutes or more ago. Therefore, in order to cover such measurement delay,
The sorting mechanism (2) requires the sorting device illustrated in FIG. 11. The apparatus shown in FIG. 11 uses three water tanks 91 to 93 each having a residence time of 10 minutes or more, and by using the water tanks 91 to 93 by staggering them, measuring the TOC, and discharging to the sorting destination, the water tanks 91 to 93 are shifted by a certain period of time. Wastewater TOC
It is a device that can be collected after confirming. However, such an apparatus requires an area for installing the water tanks 91 to 93, and switching of the flow paths by the automatic valves 95 to 97 for draining water from the place of use of the ultrapure water in which the cleaning machine 94 is installed and the like. It is necessary to switch the automatic valves 98 to 103 at the outlet of each water tank, resulting in a very complicated device. In addition,
In this figure, a water tank 91 shows a state in which drainage is flowing, a water tank 92 shows a state in which TOC is measured, and a water tank 93.
Indicates a state in which the wastewater after the TOC measurement is being discharged, LSA indicates a level meter, and TOC indicates a TOC meter.

【0008】上述した装置は複雑であるので、より簡便
には図12に示す装置とすることもできる。この装置の
場合は10分以上の滞留時間を持った一つの水槽111
でTOC測定を行い、異常時に流路を切換えるものであ
る。なお、112は洗浄機械である。
Since the above-mentioned device is complicated, the device shown in FIG. 12 can be used more simply. In the case of this device, one water tank 111 having a residence time of 10 minutes or more
The TOC measurement is carried out at, and the flow path is switched when an abnormality occurs. In addition, 112 is a washing machine.

【0009】この装置は、図11に示される装置と比較
して、水槽の数は1/3となるものの、やはり10分以
上の滞留水槽が必要であり、また異常排水流入時におけ
る拡散や、ショートパスによる超純水製造系への高濃度
排水の混入は避けられない。
Although this device has one-third the number of water tanks as compared with the device shown in FIG. 11, it still requires a retention water tank for 10 minutes or more, and also has a tendency to diffuse when abnormal drainage flows in, It is unavoidable that high-concentration wastewater is mixed into the ultrapure water production system by a short path.

【0010】TOCの比較的高い1次洗浄排水を回収す
る雑用水用排水回収系74においても、あまりにTOC
の高い水の流入はユーティリティ設備内でのスライム発
生の原因になるので、TOCにより分別することが望ま
しいが、TOCによる分別のためには前述の水槽を備え
た分別機構を設置する必要があり、その実施は前述のよ
うに困難であった。
Even in the wastewater wastewater recovery system 74 for recovering the primary cleaning wastewater having a relatively high TOC, the TOC is too high.
Since high inflow of water causes slime generation in the utility equipment, it is desirable to sort by TOC, but for sorting by TOC, it is necessary to install a sorting mechanism equipped with the above-mentioned water tank, The implementation was difficult as mentioned above.

【0011】TOCによる分別にかかわる上記の問題
は、TOC計の応答時間が長いことに起因するものであ
り、TOC計の改良が望まれていた背景である。
The above-mentioned problems related to sorting by the TOC are caused by the long response time of the TOC meter, which is the background to the desire for improvement of the TOC meter.

【0012】以下に従来のTOC計について説明する。The conventional TOC meter will be described below.

【0013】従来の有機体炭素測定装置は、試料水中に
含有されている有機物の酸化方法や生成した二酸化炭素
の検出方法によりいくつかに分類される。JIS K0
551には有機体炭素1000ppb以下の試料水を測
定対象とした、燃焼酸化−赤外線式自動計測器や紫外線
酸化−赤外線式自動計測器が規定されており、またこの
規格に沿った計器が市販されているが、これらの計器は
応答時間が5分以上、あるいは15分以上を要すること
や、反応試薬の調製作業や反応試薬の補給に伴う校正作
業を必要とし、更にキャリアガスとして空気や窒素ガス
を供給しなければならず、また一般に大型で高価である
ために、監視計器として純水または超純水製造装置内の
各所に配置して使用することはコスト的に困難であっ
た。近年、JIS規格に規定されてはいないが、より簡
便なTOC計として、紫外線酸化処理部と導電率測定部
を備えた方式の計器が販売されている。この計器は、試
料水に紫外線を照射して試料水中に含有されている有機
物を有機酸あるいは二酸化炭素に酸化分解し、紫外線照
射の前後あるいは照射中の導電率の変化を測定すること
によりTOC濃度を計算して表示するものである。この
ようなTOC計として、アナテル製A100P SE型
TOC計や、T&Cテクニカル製TAC−102P型T
OC計が市販されている。これらのTOC計は反応試薬
やキャリアガスや一般の使用者による校正作業も必要と
せず、小型で、比較的安価なため使用しやすい計器と言
えるが、導電率が約1μS/cm以上の、すなわち比較
的イオン成分の多い試料水のTOCを測定する場合に
は、紫外線酸化処理前後の導電率の変化分が紫外線酸化
処理前の導電率と比較して小さ過ぎるため、つまり測定
する変化分に対してバックグラウンドが大き過ぎるた
め、測定誤差が大きくなり過ぎ、測定困難になる。した
がって、試料水の導電率は、一般に1μS/cm以下で
ある必要があり、導電率の高い試料水の測定をすること
ができない欠点がある。また更に、これら紫外線酸化−
導電率式自動計測器の中でも紫外線酸化処理の方法がバ
ッチ式のものと連続式のものとがあり、応答時間が異な
っている。バッチ式のアナテル製A100P SE型T
OC計は5〜10分程度の応答時間を要する。連続式の
T&Cテクニカル製TAC−102P型TOC計は10
秒以内の応答時間である。監視計器としては、応答時間
の速い連続紫外線酸化−導電率式自動計測器の方が有利
である。
The conventional organic carbon measuring apparatus is classified into several types according to the method of oxidizing the organic matter contained in the sample water and the method of detecting the generated carbon dioxide. JIS K0
551 defines a combustion oxidation-infrared automatic measuring instrument and an ultraviolet oxidation-infrared automatic measuring instrument for measuring sample water having an organic carbon of 1000 ppb or less, and a meter according to this standard is commercially available. However, these instruments require a response time of 5 minutes or longer, or 15 minutes or longer, and require calibration work for preparation of reaction reagents and replenishment of reaction reagents. Further, air or nitrogen gas is used as a carrier gas. However, since it is generally large in size and expensive, it is difficult in terms of cost to arrange and use it as a monitoring instrument in various places in the pure water or ultrapure water production apparatus. In recent years, as a simpler TOC meter, which is not stipulated in the JIS standard, an instrument of a type including an ultraviolet oxidation processing section and a conductivity measuring section is sold. This instrument irradiates the sample water with ultraviolet rays to oxidize and decompose organic substances contained in the sample water into organic acids or carbon dioxide, and measures the change in conductivity before and after the irradiation with ultraviolet rays or during the irradiation to measure the TOC concentration. Is calculated and displayed. As such a TOC meter, A100P SE type TOC meter manufactured by Anatelle or TAC-102P type TC manufactured by T & C Technical
OC meters are commercially available. These TOC meters can be said to be easy-to-use instruments because they do not require reaction reagents, carrier gas, or calibration work by general users, and are easy to use because they are relatively inexpensive. When measuring the TOC of sample water with a relatively large amount of ionic components, the change in conductivity before and after the UV oxidation treatment is too small compared to the conductivity before the UV oxidation treatment. Since the background is too large, the measurement error becomes too large and the measurement becomes difficult. Therefore, the conductivity of the sample water generally needs to be 1 μS / cm or less, and there is a drawback that the sample water having a high conductivity cannot be measured. Furthermore, these UV oxidation-
Among the automatic conductivity type measuring instruments, there are a batch type and a continuous type for the method of ultraviolet oxidation treatment, and the response times are different. Batch type Anatel A100P SE type T
The OC meter requires a response time of about 5 to 10 minutes. Continuous T & C Technical TAC-102P TOC meter is 10
The response time is within seconds. As a monitoring instrument, a continuous ultraviolet oxidation-conductivity type automatic measuring instrument having a fast response time is more advantageous.

【0014】TOC計には以上のような種類があり、そ
れぞれ長所や短所を持ち合わせているが、超純水のTO
C計としては、燃焼酸化−赤外線式自動計測器や紫外線
酸化−赤外線式自動計測器及び紫外線酸化−導電率式自
動計測器のいずれをも使用可能である。しかし、排水等
の純度の低い(導電率の高い)水のTOC測定には導電
率式のものは使用できないので、赤外線式のものを使用
することになる。しかし、これらの計器は応答時間が5
分以上あるいは15分以上を要することや、反応試薬の
調製作業や反応試薬の補給に伴う校正作業を必要とし、
更にキャリアガスとして空気や窒素ガスを供給しなけれ
ばならない上に、一般に大型で高価であるという問題が
あるにもかかわらず、燃焼酸化−赤外線式自動計測器を
使用せざるを得ない状況にあった。したがって、前述し
た排水を分別するためには図11や図12に示したよう
な滞留水槽を有する設備を超純水製造装置に組込む必要
があった。
The TOC meters have the above-mentioned types, each of which has advantages and disadvantages.
As the C meter, any of a combustion oxidation-infrared type automatic measuring device, an ultraviolet oxidation-infrared type automatic measuring device, and an ultraviolet oxidation-conductivity type automatic measuring device can be used. However, since the conductivity type cannot be used for TOC measurement of low-purity (high conductivity) water such as waste water, the infrared type is used. However, these instruments have a response time of 5
Minutes or more, or 15 minutes or more, and the work of preparing reaction reagents or the calibration work accompanying the supply of reaction reagents,
Furthermore, despite the fact that air and nitrogen gas must be supplied as a carrier gas and, in addition, there is the problem that they are generally large and expensive, there is no choice but to use a combustion oxidation-infrared type automatic measuring instrument. It was Therefore, in order to separate the above-mentioned wastewater, it was necessary to incorporate the equipment having the accumulated water tank as shown in FIG. 11 and FIG. 12 into the ultrapure water production apparatus.

【0015】[0015]

【発明が解決しようとする課題】本発明者は上記問題を
解決するために種々の検討を行った結果、試料水中の有
機体炭素量の測定に当たり、試料水中の導電率を高める
原因となるイオン成分をあらかじめ除去した後、紫外線
酸化分解前後の導電率の測定を行うことにより、前記バ
ックグラウンドの問題を解決し得ることを知得し本発明
を完成するに至ったものである。
As a result of various studies to solve the above problems, the present inventor has found that when measuring the amount of organic carbon in sample water, the ions that cause an increase in conductivity in the sample water. By removing the components in advance and measuring the electric conductivity before and after the ultraviolet oxidative decomposition, the inventors have learned that the background problem can be solved and have completed the present invention.

【0016】したがって、本発明の第1の目的は、応答
時間が短く、反応試薬の調製や使用者による校正を必要
とせず、小型で安価な、かつ、導電率が1μS/cm以
上の試料水の有機体炭素量を測定可能な有機体炭素測定
装置を提供することにある。更に、本発明の第2の目的
は、排水回収系を有する超純水製造装置において、純水
用排水回収装置の入口に大型の滞留水槽を必要としな
い、簡便で安全な分別機構を有する超純水製造装置を提
供することにある。また更に本発明の第3の目的は、紫
外線酸化装置を有する超純水製造装置において、該紫外
線酸化装置の使用電力を低減可能な超純水製造装置を提
供することにある。
Therefore, the first object of the present invention is that the response time is short, the preparation of reaction reagents and the calibration by the user are not necessary, the sample water is small and inexpensive, and the conductivity is 1 μS / cm or more. An object of the present invention is to provide an organic carbon measuring device capable of measuring the amount of organic carbon. A second object of the present invention is to provide an ultrapure water production system having a wastewater recovery system, which has a simple and safe separation mechanism that does not require a large accumulated water tank at the inlet of the pure water wastewater recovery system. It is to provide a pure water production apparatus. Further, a third object of the present invention is to provide an ultrapure water production system having an ultraviolet oxidation system, which is capable of reducing the power consumption of the ultraviolet oxidation system.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に第1の本発明は、試料水を脱イオン処理して脱イオン
水とする脱イオン処理部と、脱イオン水を紫外線酸化処
理して酸化処理水とする紫外線酸化処理部と、前記脱イ
オン水及び酸化処理水の導電率を測定する導電率測定部
と、前記測定した2つの導電率を比較処理して有機体炭
素濃度に応じた信号を出力する比較演算部とからなるこ
とを特徴とする有機体炭素測定装置を提案するもので、
脱イオン水及び酸化処理水の導電率の測定を異なる導電
率計で測定すること、脱イオン水及び酸化処理水の導電
率を同一の導電率計で測定すること、試料水が1μS/
cm以上の導電率を有するものであること、試料水が純
水、又は超純水であること、前記脱イオン処理部が、陽
イオン交換樹脂を用いた陽イオン交換装置と、陰イオン
交換樹脂を用いた陰イオン交換装置で構成されるもので
あること、前記脱イオン処理部が、陽イオン交換樹脂と
陰イオン交換樹脂を含む混床式イオン交換装置であるこ
と、前記脱イオン処理部が、陽イオン交換膜及び陰イオ
ン交換膜間にイオン交換体を配置してなる電気式脱イオ
ン水製造装置であることを含む。
In order to achieve the above object, the first aspect of the present invention is to provide a deionization treatment unit for deionizing sample water to obtain deionized water, and an ultraviolet oxidation treatment for deionized water. UV-oxidation treatment part which is treated as oxidation treated water, a conductivity measurement part which measures the conductivity of the deionized water and the oxidation treated water, and the two measured conductivities are compared and processed according to the organic carbon concentration. It proposes an organic carbon measuring device characterized in that it comprises a comparison operation part for outputting a signal.
Measure the conductivity of deionized water and oxidized treated water with different conductivity meters, measure the conductivity of deionized water and oxidized treated water with the same conductivity meter, and sample water is 1 μS /
having a conductivity of at least cm, the sample water being pure water or ultrapure water, the deionization treatment section being a cation exchange device using a cation exchange resin, and an anion exchange resin. And a deionization treatment unit, the deionization treatment unit is a mixed bed type ion exchange device containing a cation exchange resin and an anion exchange resin, the deionization treatment unit , An electric deionized water production apparatus comprising an ion exchanger arranged between the cation exchange membrane and the anion exchange membrane.

【0018】また、第2の本発明は、前処理装置と、当
該前処理装置の処理水を更に処理して超純水となす超純
水製造系と、当該超純水製造系で製造された超純水を使
用場所において使用することにより発生する排水中の有
機体炭素を測定する上記有機体炭素測定装置と、当該有
機体炭素測定装置の出力に基づいて前記排水を分別する
分別機構を備え、当該分別機構によって分別された排水
を各排水毎に処理する複数の処理経路からなる分別処理
系とを有することを特徴とする超純水製造装置である。
The second aspect of the present invention is a pretreatment device, an ultrapure water production system for further treating the treated water of the pretreatment device to obtain ultrapure water, and an ultrapure water production system. And an organic carbon measuring device for measuring organic carbon in wastewater generated by using ultrapure water at a place of use, and a separation mechanism for separating the wastewater based on the output of the organic carbon measuring device. An ultrapure water production system comprising: a separation treatment system including a plurality of treatment paths that treat the wastewater separated by the separation mechanism for each wastewater.

【0019】更に、第3の本発明は、有機物を分解する
ための紫外線酸化装置を備えた超純水製造装置におい
て、前記紫外線酸化装置の前段に設けた前記有機体炭素
測定装置と当該測定装置の出力に応じて前記紫外線酸化
装置の紫外線ランプの出力を調節する手段とを設けてな
ることを特徴とする超純水製造装置であり、有機体炭素
測定装置と、当該測定装置の出力に応じて紫外線酸化装
置の紫外線ランプの出力を調節する手段とを、超純水製
造系に設けてなることを含む。
Furthermore, a third aspect of the present invention is an ultrapure water producing apparatus equipped with an ultraviolet oxidation device for decomposing organic matter, wherein the organic carbon measuring device and the measuring device are provided before the ultraviolet oxidizing device. Is a device for adjusting the output of the ultraviolet lamp of the ultraviolet oxidation device according to the output of the ultrapure water production device, the organic carbon measuring device, depending on the output of the measuring device And means for adjusting the output of the ultraviolet lamp of the ultraviolet oxidizer are provided in the ultrapure water production system.

【0020】以下、本発明を図面を参照して詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0021】図1(A)は本発明の有機体炭素測定装置
の一実施態様を示すフロー図で、図中、1は脱イオン処
理部である。流入管2から流入する試料水は脱イオン処
理部1でイオン性の化学種を除去されて脱イオン水とな
り、これにより後述する導電率測定の際のバックグラウ
ンドが低下される。
FIG. 1 (A) is a flow chart showing an embodiment of the organic carbon measuring apparatus of the present invention, in which 1 is a deionization processing section. The sample water flowing in from the inflow pipe 2 is deionized in the deionization treatment unit 1 to be deionized water, which reduces the background in the conductivity measurement described later.

【0022】脱イオン処理部1は、具体的にはイオン交
換樹脂、イオン交換繊維等のイオン交換体を用いたイオ
ン交換装置、電気式脱イオン水製造装置等で構成でき
る。イオン交換装置としては、陽イオン交換体と陰イオ
ン交換体とを組合わせてなる公知のイオン交換装置を使
用することができる。
The deionization treatment section 1 can be specifically constituted by an ion exchange apparatus using an ion exchange resin, an ion exchange fiber or other ion exchanger, or an electric deionized water producing apparatus. As the ion exchange device, a known ion exchange device in which a cation exchanger and an anion exchanger are combined can be used.

【0023】具体的には、H形の強酸性陽イオン交換樹
脂及び/又は弱酸性陽イオン交換樹脂を筒内に充填して
なる陽イオン交換筒と、OH形の強塩基性陰イオン交換
樹脂及び/又は弱塩基性陰イオン交換樹脂を筒内に充填
してなる陰イオン交換筒とからなる2床式のイオン交換
装置や、前記H形の陽イオン交換樹脂と前記OH形の陰
イオン交換樹脂とを容量比で例えば1:1〜1:2の割
合で混合した混合樹脂を筒内に充填した混床式イオン交
換装置等が好適に用いられる。
Specifically, a cation-exchange column formed by filling a H-type strong acid cation exchange resin and / or a weakly acidic cation exchange resin into the column, and an OH-type strong basic anion exchange resin. And / or a two-bed type ion exchange device comprising an anion exchange column filled with a weakly basic anion exchange resin, and the H type cation exchange resin and the OH type anion exchange unit. A mixed bed type ion exchange device or the like in which a mixed resin in which a resin is mixed in a volume ratio of, for example, 1: 1 to 1: 2 is filled in a cylinder is suitably used.

【0024】なお、上記イオン交換装置としては、イオ
ン交換装置への試料水の通水量が規定量に達するか、あ
るいは当該イオン交換装置に使用されているイオン交換
樹脂の能力が低下した場合に、充填されているイオン交
換樹脂を、あらかじめ他所でH形あるいはOH形に調整
した他のイオン交換樹脂と交換して使用に供する、いわ
ゆるカートリッジ式のイオン交換装置が好ましい。
As the above-mentioned ion exchange device, when the amount of sample water flowing to the ion exchange device reaches a specified amount or when the capacity of the ion exchange resin used in the ion exchange device is lowered, A so-called cartridge type ion exchange device is preferred, in which the filled ion exchange resin is used by exchanging it with another ion exchange resin which has been previously adjusted to H type or OH type at another place.

【0025】前記電気式脱イオン水製造装置は、基本的
にはアニオン交換膜とカチオン交換膜とで形成される隙
間に、例えばカチオン交換樹脂とアニオン交換樹脂とを
充填して脱塩室とし、当該脱塩室内に被処理水を通過さ
せるとともに、前記両イオン交換膜を介して被処理水の
流れに対して直角方向に直流電流を作用させて、両イオ
ン交換膜の外側に流れている濃縮水中に被処理水中のイ
オンを電気的に排除しながら脱イオン水を製造するもの
で、たとえ脱塩室内にイオン交換樹脂等のイオン交換体
を充填したとしても、酸、アルカリ等の再生薬品を一切
使用せずに脱イオン水を製造することができるものであ
る。
In the electric deionized water producing apparatus, a desalting chamber is basically prepared by filling, for example, a cation exchange resin and an anion exchange resin in a gap formed by the anion exchange membrane and the cation exchange membrane, Concentration flowing to the outside of both ion exchange membranes by allowing the treated water to pass through the desalination chamber and applying a direct current in the direction perpendicular to the flow of the treated water through the both ion exchange membranes. Deionized water is produced by electrically removing the ions in the water to be treated, and even if the ion exchanger such as an ion exchange resin is filled in the desalting chamber, a regenerating chemical such as acid or alkali is used. It is possible to produce deionized water without using it at all.

【0026】電気式脱イオン製造装置としては、公知
(例えば、特開平4−71624、特開平4−1662
15号)のものがそのまま使用できる。
Known as an electric deionization production apparatus (for example, JP-A-4-71624 and JP-A-4-1662).
No. 15) can be used as it is.

【0027】上記のようなイオン交換装置や電気式脱イ
オン水製造装置を用いることにより、試料水中に残存す
る微量のイオンが除去される。
By using the ion exchange device and the electric deionized water producing device as described above, the trace amount of ions remaining in the sample water is removed.

【0028】次いで、脱イオン処理部1で脱イオンされ
て得られた脱イオン水は第1導電率測定部3で導電率が
測定され、その出力が比較演算部4に送られる。
Next, the conductivity of the deionized water obtained by deionizing in the deionization processing unit 1 is measured by the first conductivity measuring unit 3, and the output thereof is sent to the comparison calculation unit 4.

【0029】その後、脱イオン水は紫外線酸化処理部5
に送られ、脱イオン水が当該酸化処理部5内を通過する
間に有機物の紫外線酸化分解が行われる。すなわち、有
機物は炭酸、低分子量有機酸等のイオン性化学種に変換
され、これにより前記脱イオン水は導電性の高められた
酸化処理水となる。
Thereafter, the deionized water is treated with the ultraviolet oxidation treatment section 5.
And the deionized water is oxidatively decomposed by ultraviolet light while the deionized water passes through the oxidation treatment section 5. That is, the organic matter is converted into ionic chemical species such as carbonic acid and low molecular weight organic acid, whereby the deionized water becomes oxidized treated water with enhanced conductivity.

【0030】紫外線酸化分解の程度は、完全に炭酸にな
るまで分解しても良いが、低分子有機酸の段階で停めて
も良い。
The degree of UV oxidative decomposition may be such that it is completely carbonic acid, but it may be stopped at the stage of low molecular weight organic acid.

【0031】なお、紫外線照射には波長185nm付近
の紫外線を照射できる低圧紫外線ランプが用いられる。
A low-pressure ultraviolet lamp capable of irradiating ultraviolet rays having a wavelength of around 185 nm is used for ultraviolet ray irradiation.

【0032】紫外線酸化処理は、市販の装置を適宜用い
て行うことができる。
The ultraviolet oxidation treatment can be carried out by appropriately using a commercially available device.

【0033】前記酸化処理水は、次いで第2導電率測定
部6でその導電率が測定され、その出力が比較演算部4
へ送られる。導電率測定部は市販の導電率計で構成でき
る。比較演算部4においては、前記第1及び第2導電率
測定部からの出力信号が比較され、その差に相当する信
号がTOC濃度に応じて出力線7から取り出される。な
お、8は酸化処理水の排出管である。
Then, the conductivity of the oxidized water is measured by the second conductivity measuring section 6, and the output is compared and calculated by the comparing and calculating section 4.
Sent to. The conductivity measuring section can be composed of a commercially available conductivity meter. In the comparison calculation unit 4, the output signals from the first and second conductivity measuring units are compared, and a signal corresponding to the difference is taken out from the output line 7 according to the TOC concentration. In addition, 8 is a discharge pipe of the oxidation treated water.

【0034】なお、上記構成においては、紫外線酸化処
理部5において紫外線ランプを常時点灯しながら、試料
水を連続的に測定装置に供給することによって試料水の
TOCを連続して測定することが可能である。
In the above construction, the TOC of the sample water can be continuously measured by continuously supplying the sample water to the measuring device while the ultraviolet lamp is always turned on in the ultraviolet oxidation processing section 5. Is.

【0035】上記構成は脱イオン処理部の後段に市販の
TOC計を接続することによっても簡単に構成できる。
このようなTOC計としては具体的にはT&Cテクニカ
ル社製のTOC・MΩモニターのTAC−102P等が
ある。
The above construction can be easily constructed by connecting a commercially available TOC meter in the latter stage of the deionization processing section.
Specific examples of such a TOC meter include TAC-102P, which is a TOC / MΩ monitor manufactured by T & C Technical Co., Ltd.

【0036】図1(B)は本発明の有機体炭素測定装置
の他の態様を示すものである。
FIG. 1B shows another embodiment of the organic carbon measuring apparatus of the present invention.

【0037】試料水は流入管2から脱イオン処理部1に
流入し、ここで脱イオン水となった後、紫外線酸化処理
部5に送られる。なお、この際紫外線酸化処理部5の酸
化処理水の排出管15中に設けた自動弁13を開けて脱
イオン水を紫外線酸化処理部5に連続して供給するとと
もに、紫外線酸化処理部5から排出される脱イオン水は
自動弁13を介して排出管15から排出するようにし、
かつこのときには紫外線酸化処理部5内の紫外線ランプ
を消灯して有機物の酸化がなされないようにしておく。
その後、自動弁13を閉じて紫外線酸化処理部5内に所
定量の脱イオン水を捕集し、しかる後に導電率測定部1
0でこの捕集した脱イオン水の導電率が測定され、その
出力が比較演算部11に送られ記憶される。次いで、紫
外線酸化処理部5内の紫外線ランプが点灯され、脱イオ
ン水の紫外線酸化分解が行われ、所望の分解段階の酸化
処理水になると、再び導電率測定部10により酸化処理
水の導電率が測定され、その出力が比較演算部11に送
られ、前に測定された脱イオン水の導電率の出力と比較
演算処理がなされる。そして出力線14からTOC濃度
に対応する出力信号が取り出されるものである。
The sample water flows into the deionization treatment section 1 through the inflow pipe 2, becomes deionized water there, and is then sent to the ultraviolet oxidation treatment section 5. At this time, the automatic valve 13 provided in the discharge pipe 15 of the oxidation treatment water of the ultraviolet oxidation treatment unit 5 is opened to continuously supply the deionized water to the ultraviolet oxidation treatment unit 5, and the ultraviolet oxidation treatment unit 5 The deionized water to be discharged is discharged from the discharge pipe 15 via the automatic valve 13,
At this time, the ultraviolet lamp in the ultraviolet oxidation processing unit 5 is turned off so that the organic substances are not oxidized.
After that, the automatic valve 13 is closed to collect a predetermined amount of deionized water in the ultraviolet oxidation treatment section 5, and then the conductivity measuring section 1 is collected.
At 0, the conductivity of the collected deionized water is measured, and the output is sent to the comparison calculation unit 11 and stored therein. Then, the ultraviolet lamp in the ultraviolet oxidation treatment unit 5 is turned on, and the ultraviolet oxidation decomposition of the deionized water is performed. When the oxidation treatment water of a desired decomposition stage is reached, the conductivity measuring unit 10 conducts the conductivity of the oxidation treatment water again. Is measured and the output thereof is sent to the comparison calculation unit 11 to be compared with the output of the conductivity of the deionized water measured previously. Then, an output signal corresponding to the TOC density is taken out from the output line 14.

【0038】その後、自動弁13を開くことにより、脱
イオン処理部1から脱イオン水が紫外線酸化処理部5に
再び供給され、これにより当該酸化処理部5内の酸化処
理水が排出管15から外部に排出され、最初の状態に復
帰して次のTOC測定に備えるものである。
Then, by opening the automatic valve 13, deionized water is supplied again from the deionization treatment unit 1 to the ultraviolet oxidation treatment unit 5, whereby the oxidation treatment water in the oxidation treatment unit 5 is discharged from the discharge pipe 15. It is discharged to the outside and returned to the initial state to prepare for the next TOC measurement.

【0039】ここで、脱イオン処理部1以外は市販のT
OC計(例えばアナテル(株)製A100P SE型T
OC計)がそのまま使用でき、この前段に脱イオン処理
部を付設することによって本発明の有機体炭素測定装置
が構成できる。
Here, except for the deionization unit 1, a commercially available T
OC meter (for example, A100P SE type T manufactured by Anatel Co., Ltd.)
The OC meter) can be used as it is, and the organic carbon measuring apparatus of the present invention can be constructed by additionally providing a deionization treatment section in front of this.

【0040】なお、上述の説明で明らかなごとく、図1
(B)に示した有機体炭素測定装置においては、紫外線
酸化処理部5における有機物の酸化分解をバッチ式に行
うので、図1(A)の場合と異なり、TOCの連続測定
は困難である。
As is apparent from the above description, FIG.
In the organic carbon measuring device shown in (B), since the oxidative decomposition of the organic substances in the ultraviolet oxidation treatment section 5 is carried out in a batch system, unlike the case of FIG. 1 (A), continuous measurement of TOC is difficult.

【0041】[0041]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0042】(実施例1)図2(A)に示す構成の有機
体炭素測定装置を製造した。すなわち、H形の強酸性陽
イオン交換樹脂(商品名、アンバーライトIR−12
4)を充填した単床式の陽イオン交換筒31(CER
筒)と、OH形の強塩基性陰イオン交換樹脂(商品名、
アンバーライトIRA−402BL)を充填した単床式
の陰イオン交換筒32(AER筒)と、連続紫外線酸化
−導電率式自動計測器として、T&Cテクニカル製TA
C−102P型TOC計33とを順次連結して本発明の
測定装置を構成した。イオン交換筒の樹脂量は各々10
0mlであった。
Example 1 An organic carbon measuring device having the structure shown in FIG. 2A was manufactured. That is, H-type strongly acidic cation exchange resin (trade name, Amberlite IR-12
4) Single bed type cation exchange cylinder 31 (CER)
Cylinder) and OH type strong basic anion exchange resin (trade name,
A single bed type anion exchange tube 32 (AER tube) filled with Amberlite IRA-402BL) and a continuous ultraviolet oxidation-conductivity type automatic measuring instrument as TA manufactured by T & C Technical
The C-102P TOC meter 33 was sequentially connected to form the measuring apparatus of the present invention. The amount of resin in the ion exchange tube is 10 each
It was 0 ml.

【0043】図2(B)はTAC−102P型TOC計
33の概略構成を説明するためのフロー図で、流入管2
0を通り第1導電率計21に供給された試料水は、ここ
で導電率を測定され、アンプ22を介して差動アンプ2
3に出力信号が送られる。試料水は次いで波長185n
mの紫外線を透過させ得る石英製スパイラル管24に送
られ、ここを通過する間に当該スパイラル管24のスパ
イラル部の中心に挿入された紫外線ランプ25の紫外線
が照射される。これにより試料水中の有機物は酸化分解
され、酸化処理水が得られる。酸化処理水は次いで第2
導電率計26で導電率が測定され、アンプ27を介して
前記差動アンプ23に出力される。差動アンプ23は前
記両アンプ22,27の出力を比較演算し、TOC濃度
に対応する出力信号を引出線28に送出する。前記出力
信号は不図示の演算部でTOC濃度に換算され、表示装
置(不図示)にTOC濃度として表示される。
FIG. 2B is a flow chart for explaining the schematic structure of the TAC-102P TOC meter 33.
The conductivity of the sample water supplied to the first conductivity meter 21 through 0 is measured here, and the differential amplifier 2 is supplied through the amplifier 22.
The output signal is sent to 3. Sample water has a wavelength of 185n
m of ultraviolet light is transmitted to the quartz spiral tube 24, and while passing therethrough, the ultraviolet light of the ultraviolet lamp 25 inserted in the center of the spiral portion of the spiral tube 24 is irradiated. As a result, the organic matter in the sample water is oxidatively decomposed and oxidatively treated water is obtained. Oxidized water is second
The conductivity is measured by the conductivity meter 26 and output to the differential amplifier 23 via the amplifier 27. The differential amplifier 23 compares the outputs of the two amplifiers 22 and 27 and outputs an output signal corresponding to the TOC concentration to the lead line 28. The output signal is converted into a TOC concentration by a calculation unit (not shown) and displayed as a TOC concentration on a display device (not shown).

【0044】上記有機体炭素測定装置を用いて試料水の
TOC測定を行った。試料水としては、導電率が0.0
6μS/cm以下の純水にNaClを添加して導電率を
2μS/cmとした純水に、試薬のメタノールをTOC
濃度が100ppbとなるように計算量添加したものを
用いた。試料水を100ml/minで測定装置に供給
した。CER筒31、及びAER筒32による脱イオン
処理によって、TAC−102P33の入口における試
料水(脱イオン水)の導電率は0.06μS/cm以下
となった。この試料水のTOC測定値は98〜101p
pbの範囲の値を示し、前記計算量と良く一致した。ま
た応答時間は60秒であった。
The TOC of the sample water was measured using the above organic carbon measuring device. As sample water, conductivity is 0.0
To the pure water with a conductivity of 2 μS / cm by adding NaCl to pure water of 6 μS / cm or less, the reagent methanol was added to TOC.
The amount added was calculated so that the concentration would be 100 ppb. Sample water was supplied to the measuring device at 100 ml / min. By the deionization treatment by the CER cylinder 31 and the AER cylinder 32, the conductivity of the sample water (deionized water) at the inlet of the TAC-102P33 became 0.06 μS / cm or less. TOC measurement value of this sample water is 98 to 101p
The values in the range of pb are shown and are in good agreement with the calculated amount. The response time was 60 seconds.

【0045】なお、上記実施例における二つのイオン交
換筒の通水順序は、これに限らず逆でも支障はない。充
填するイオン交換樹脂の種類もこれに限らず弱酸性陽イ
オン交換樹脂や弱塩基性陰イオン交換樹脂が使用できる
が、得られる脱イオン処理水の純度の点から強酸性、及
び強塩基性樹脂を使用することが望ましい。
The order of water passage between the two ion-exchange tubes in the above embodiment is not limited to this, and the order may be reversed without any problem. The type of ion exchange resin to be filled is not limited to this, but weakly acidic cation exchange resins and weakly basic anion exchange resins can be used, but from the viewpoint of the purity of deionized water to be obtained, strong acidic and strongly basic resins can be used. Is preferred.

【0046】(比較例1)TAC−102Pの入口に直
接前記試料水を供給しTOCを測定したところ、TOC
値は65〜130ppbの範囲で大きくバラつき、前記
計算量と比較して著しく不正確であった。
Comparative Example 1 TOC was measured by directly supplying the sample water to the inlet of TAC-102P and measuring TOC.
The value greatly varied within the range of 65 to 130 ppb, and was significantly inaccurate as compared with the calculated amount.

【0047】この原因は、試料水の導電率が2μS/c
mと高過ぎるため、紫外線酸化前後の導電率差に比して
バックグラウンドが大き過ぎて測定誤差が大きくなった
ためである。
This is because the conductivity of the sample water is 2 μS / c.
This is because the value is too high as m, and the background is too large compared to the difference in conductivity before and after the oxidation with ultraviolet light, resulting in a large measurement error.

【0048】(実施例2)図3に示すように、脱イオン
処理部として混床式イオン交換筒35(MB筒)を用い
た以外は実施例1と同じ構成とした。
(Embodiment 2) As shown in FIG. 3, the constitution was the same as that of Embodiment 1 except that a mixed bed type ion exchange cylinder 35 (MB cylinder) was used as the deionization processing section.

【0049】MB筒はH形の強酸性陽イオン交換樹脂
(商品名、アンバーライトIR−124)を100ml
と、OH形の強塩基性陰イオン交換樹脂(商品名、アン
バーライトIRA−402BL)を100mlとを混合
したものである。
The MB cylinder is 100 ml of H-type strongly acidic cation exchange resin (trade name, Amberlite IR-124).
And 100 ml of OH type strongly basic anion exchange resin (trade name, Amberlite IRA-402BL).

【0050】本構成においても、実施例1と同様に前記
試料中のメタノールに由来するTOCを精度良く測定で
きた。
Also in this configuration, the TOC derived from methanol in the sample could be measured with high accuracy as in Example 1.

【0051】(実施例3)図4に示すように、脱イオン
処理部を陽イオン交換膜及び陰イオン交換膜間にイオン
交換体を配置してなる電気式脱イオン水製造装置36
(EDI)としたものである。このような仕組みの電気
式脱イオン水製造装置で入手し易いものとして、市販の
ミリポア製Milli−RX12型小型純水装置に組込
まれている電気式脱イオン水製造装置がある。なお、当
該Milli−RX12型小型純水装置には、電気式脱
イオン水製造装置の前段に逆浸透膜装置が組込まれてい
るので、本実施例ではMilli−RX12型小型純水
装置の配管を組替えて逆浸透膜装置を使用しないように
し、電気式脱イオン水製造装置のみを使用した。
(Embodiment 3) As shown in FIG. 4, an electric deionized water producing apparatus 36 having a deionization treatment section in which an ion exchanger is arranged between a cation exchange membrane and an anion exchange membrane.
(EDI). As an electric deionized water producing apparatus having such a structure, which is easily available, there is an electric deionized water producing apparatus incorporated in a commercially available Millipore-made Milli-RX12 type small-sized pure water apparatus. Since the reverse osmosis membrane device is incorporated in the Milli-RX12 type small-sized pure water device in the preceding stage of the electric deionized water production device, the pipe of the Milli-RX12 type small-sized pure water device is used in this embodiment. The reverse osmosis membrane device was not used by changing the combination, and only the electric deionized water producing device was used.

【0052】EDI36の入口に実施例1と同じ試料水
を供給流量200ml/minで供給して脱イオン水を
得、この脱イオン水をTAC−102Pへ供給流量10
0ml/minで供給した。その結果、TAC−102
Pへの供給水、すなわち脱イオン水の純度は0.5μS
/cmとなり、試料水中のメタノールに由来するTOC
を精度良く測定できた。
The same sample water as in Example 1 was supplied to the inlet of the EDI 36 at a supply flow rate of 200 ml / min to obtain deionized water. The deionized water was supplied to the TAC-102P at a flow rate of 10
It was supplied at 0 ml / min. As a result, TAC-102
The water supplied to P, that is, the purity of deionized water, is 0.5 μS
/ Cm, TOC derived from methanol in sample water
Could be measured accurately.

【0053】なお、実施例1〜3に示したように、紫外
線酸化−導電率式有機体炭素測定装置に脱イオン処理部
を付加した構成とした 本発明の有機体炭素測定装置に
より、導電率が1μS/cm以上の試料水の測定が可能
となったが、本発明の有機体炭素測定装置で測定される
TOC値には、当然のことながら脱イオン処理によって
除去可能なイオン性有機物に由来する有機体炭素は含ま
れない。イオン性の有機物は勿論TOC成分であるが、
本測定装置が、水質監視装置として好適に用いられる、
例えば純水や超純水製造装置に組込まれる場合には、前
述のごとくイオン性の有機体炭素は超純水製造装置自体
に通常組込まれているイオン交換装置や逆浸透膜装置等
で本来容易に除去されるものであるから、このようなイ
オン性の有機物の量を監視できないとしても得られる超
純水の水質にはほとんど影響はない。これに対して、低
分子のアルコール等の非イオン性の有機物は、前記イオ
ン交換装置や逆浸透膜装置では除去し難いものであるた
め、このような非イオン性の有機物が、超純水製造装置
の超純水製造系に混入した場合は除去されずに最終的に
得られる超純水中に残留する虞れがある。したがって、
超純水製造装置等において、有機物のうち、監視するべ
き最も重要な成分はイオン交換や逆浸透処理では容易に
除去し難い低分子の非イオン性のアルコール系薬品であ
り、本発明の有機体炭素測定装置はこれらを選択的に監
視できるものである。
As shown in Examples 1 to 3, the conductivity was measured by the organic carbon measuring apparatus of the present invention, which was constructed by adding a deionization treatment section to the ultraviolet oxidation-conductivity type organic carbon measuring apparatus. It was possible to measure sample water of 1 μS / cm or more. However, the TOC value measured by the organic carbon measuring device of the present invention is naturally derived from ionic organic substances that can be removed by deionization treatment. It does not contain organic carbon. Of course, ionic organic substances are TOC components,
This measuring device is preferably used as a water quality monitoring device,
For example, when it is incorporated into pure water or ultrapure water production equipment, ionic organic carbon as described above is originally easy to be incorporated into the ion exchange equipment or reverse osmosis membrane equipment that is usually incorporated in the ultrapure water production equipment itself. Therefore, even if the amount of such ionic organic substances cannot be monitored, there is almost no effect on the quality of the ultrapure water obtained. On the other hand, since nonionic organic substances such as low molecular weight alcohols are difficult to remove by the ion exchange device or the reverse osmosis membrane device, such nonionic organic substances are produced in ultrapure water. If it is mixed in the ultrapure water production system of the apparatus, it may not be removed and may remain in the ultrapure water finally obtained. Therefore,
In an ultrapure water production device, the most important component to be monitored among organic substances is a low-molecular nonionic alcohol-based chemical that is difficult to remove easily by ion exchange or reverse osmosis treatment. The carbon measuring device can selectively monitor these.

【0054】(実施例4)図5に、本発明の有機体炭素
測定装置を組込んだ超純水製造装置の一実施例のフロー
図を示す。図5に示した超純水製造装置は、図9に示し
た従来の超純水製造装置における分別機構(2)及び
(3)の部分に、本発明の有機体炭素測定装置41,4
2を組込んだもので、図9に示した超純水製造装置と同
一の部分には同一の符号を付してその説明を省略する。
(Embodiment 4) FIG. 5 shows a flow chart of an embodiment of an ultrapure water production system incorporating the organic carbon measuring apparatus of the present invention. The ultrapure water production system shown in FIG. 5 has the organic carbon measuring devices 41, 4 of the present invention in the separation mechanisms (2) and (3) of the conventional ultrapure water production system shown in FIG.
2 is incorporated, the same parts as those of the ultrapure water production system shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted.

【0055】本実施例の超純水製造装置においては、滞
留水槽114、当該滞留水槽114に試料水供給ポンプ
62を介して接続された有機体炭素測定装置42、及び
導電率計44とで構成された第1の分別機構(図9にお
ける分別機構(3)に相当)と、滞留水槽113、当該
滞留水槽113に試料水供給ポンプ61を介して接続さ
れた有機体炭素測定装置41とで構成された第2の分別
機構(図9における分別機構(2)に相当)とによって
1次洗浄排水77と2次洗浄排水78とをそれぞれ表1
に示した水質毎に分別し、経路〜にそれぞれ供給す
るものである。なお、本例の有機体炭素測定装置41,
42は、脱イオン処理部として混床式イオン交換筒(M
B筒)を用いた、実施例2に示した構成のものと同じで
ある。
The ultrapure water production system of this embodiment comprises a stagnant water tank 114, an organic carbon measuring device 42 connected to the stagnant water tank 114 via a sample water supply pump 62, and a conductivity meter 44. The first separation mechanism (corresponding to the separation mechanism (3) in FIG. 9), the accumulated water tank 113, and the organic carbon measuring device 41 connected to the accumulated water tank 113 via the sample water supply pump 61. Table 1 shows the primary cleaning wastewater 77 and the secondary cleaning wastewater 78, respectively, according to the second sorting mechanism (corresponding to the sorting mechanism (2) in FIG. 9).
The water is separated according to the water quality shown in, and is supplied to each of the routes. In addition, the organic carbon measuring device 41 of this example,
42 is a mixed bed type ion exchange tube (M
This is the same as the configuration shown in the second embodiment using the B cylinder).

【0056】本例の超純水製造装置によれば、有機体炭
素測定装置41あるいは42の応答時間が前述のごとく
約1分程度であるので、滞留水槽113あるいは114
の滞留時間も1分程度でよく、従来の燃焼酸化−赤外線
式等のTOC計を用いた分別機構より滞留水槽の容量を
大幅に小さくできるとともに、排水を表1に示した水質
毎に時間遅れなく正確に分別することができる。
According to the ultrapure water producing system of this example, since the response time of the organic carbon measuring system 41 or 42 is about 1 minute as described above, the accumulated water tank 113 or 114
The retention time is about 1 minute, and the capacity of the retention tank can be significantly reduced compared to the conventional combustion oxidation-infrared type TOC meter separation mechanism. Can be accurately separated.

【0057】なお、前述したごとく、上記本発明の有機
体炭素測定装置41,42ではイオン性の有機物の大部
分が脱イオン処理部である混床式イオン交換筒(MB
筒)によって除去されるために、その測定値にはイオン
性の有機物に由来する有機体炭素はほとんど含まれず、
したがって、イオン性の有機物に関しては監視すること
が不可能であるが、当該イオン性の有機物が分別後の経
路あるいは経路の洗浄排水中に存在したとしても、
当該有機物は超純水製造系71内あるいは純水用排水回
収系73内に設置されている不図示のイオン交換装置や
逆浸透膜装置、あるいは活性炭濾過装置等によって容易
に除去されるので、超純水製造系71によって製造され
る超純水の水質には何ら影響はない。また、有機体炭素
測定装置41で検出され、経路を経由して純水用排水
回収系73内に持ち込まれた非イオン性の有機物は、当
該純水用排水回収系73内に設置された紫外線酸化装
置、あるいは当該純水用排水回収系73の処理水が送ら
れる超純水製造系71内に設置された紫外線酸化装置に
よって有機酸、あるいはCO2 に分解され、その後活性
炭濾過装置やイオン交換装置、あるいは逆浸透膜装置等
の水処理装置によって除去される。
As described above, in the organic carbon measuring apparatus 41, 42 of the present invention, most of the ionic organic matter is the deionization processing section, which is a mixed bed type ion exchange tube (MB).
(Cylinder), the measured value contains almost no organic carbon derived from ionic organic matter,
Therefore, it is impossible to monitor the ionic organic matter, but even if the ionic organic matter is present in the route after separation or in the cleaning wastewater of the route,
The organic matter is easily removed by an unillustrated ion exchange device, reverse osmosis membrane device, activated carbon filtration device, or the like installed in the ultrapure water production system 71 or the pure water drainage recovery system 73. There is no effect on the water quality of the ultrapure water produced by the pure water production system 71. In addition, the nonionic organic substances detected by the organic carbon measuring device 41 and brought into the pure water waste water recovery system 73 via the route are ultraviolet rays installed in the pure water waste water recovery system 73. It is decomposed into an organic acid or CO 2 by an oxidizer or an ultraviolet oxidizer installed in the ultrapure water production system 71 to which the treated water of the pure water waste water recovery system 73 is sent, and then it is activated carbon filter or ion exchange. Or a water treatment device such as a reverse osmosis membrane device.

【0058】なお、図中2点鎖線X内が分別処理系の構
成を示している。
The inside of the two-dot chain line X in the figure shows the configuration of the separation processing system.

【0059】(実施例5)図6に本発明の超純水製造装
置の他の実施例のフロー図を示す。
(Embodiment 5) FIG. 6 shows a flow chart of another embodiment of the ultrapure water production system of the present invention.

【0060】本実施例は実施例4の装置から滞留水槽1
13及び114を取り去るとともに、有機体炭素測定装
置として、実施例3に示した、脱イオン処理部として電
気式脱イオン水製造装置(EDI)を備えた有機体炭素
測定装置52及び53を用いたものである。本例の装置
の場合、分別機構(1)によって分別された2次洗浄排
水78を、回収経路,に導く配管54の途中に、本
発明の有機体炭素測定装置52を分岐して接続したもの
であり、有機体炭素測定装置52への試料水の導入は、
配管54内を流れる2次洗浄排水の圧力を利用して行
う。また、1次洗浄排水の場合も同様であり、当該洗浄
排水を回収経路,に導くための配管55の途中に本
発明の有機体炭素測定装置53を分岐して接続してあ
る。この装置においては、有機体炭素測定装置52の配
管54への接続点Aから当該配管54が回収経路と
に分岐する分岐点Bに至るまでの配管54の長さ、及び
有機体炭素測定装置53の配管55への接続点Cから、
当該配管55が回収経路とに分岐する分岐点Dに至
るまでの配管55の長さを長くして、これらの配管内に
おいて有機体炭素測定装置52及び53の応答時間(約
1分程度)を越える滞留時間を持たせることにより、前
記実施例4のような滞留水槽を設けなくとも排水の分別
を行うことができる。
In this embodiment, the accumulated water tank 1 is used in the apparatus of the fourth embodiment.
13 and 114 were removed, and as the organic carbon measuring device, the organic carbon measuring devices 52 and 53 having the electric deionized water producing device (EDI) as the deionization processing unit shown in Example 3 were used. It is a thing. In the case of the device of this example, the organic carbon measuring device 52 of the present invention is branched and connected in the middle of the pipe 54 for guiding the secondary cleaning wastewater 78 separated by the separating mechanism (1) to the recovery route. The introduction of the sample water into the organic carbon measuring device 52 is
This is performed by using the pressure of the secondary cleaning drainage flowing in the pipe 54. The same applies to the case of the primary cleaning wastewater, and the organic carbon measuring device 53 of the present invention is branched and connected in the middle of the pipe 55 for guiding the cleaning wastewater to the recovery path. In this device, the length of the pipe 54 from the connection point A of the organic carbon measuring device 52 to the pipe 54 to the branch point B where the pipe 54 branches to the recovery route, and the organic carbon measuring device 53. From the connection point C to the pipe 55 of
The length of the pipe 55 up to the branch point D where the pipe 55 branches to the recovery route is increased, and the response time (about 1 minute) of the organic carbon measuring devices 52 and 53 in these pipes is increased. By allowing the retention time to exceed, drainage can be separated without providing a retention water tank as in the fourth embodiment.

【0061】なお、他の構成は実施例4と実質的に同一
である。
The other structure is substantially the same as that of the fourth embodiment.

【0062】(実施例6)図7に本発明の超純水製造装
置の更に他の実施例のフロー図を示す。
(Embodiment 6) FIG. 7 shows a flow chart of still another embodiment of the ultrapure water production system of the present invention.

【0063】この例の超純水製造装置は、イオン交換装
置や活性炭濾過装置では容易に除去し難い非イオン性の
有機物に由来するTOCを選択的に監視することのでき
る本発明の有機体炭素測定装置の特長を活かしたもの
で、実施例5の装置において、有機体炭素測定装置52
の出力をフィードバックして純水用排水回収系73内に
設置されている紫外線酸化装置(UVOX)の紫外線ラン
プの出力を調節する構成としたものであり、点線56は
制御回路を示している。なお、本例の純水用排水回収系
73は、図7に示したごとく活性炭濾過装置(CF)、
弱塩基性陰イオン交換樹脂を用いた陰イオン交換装置
(WA)、混床式イオン交換装置(MB)及び紫外線酸
化装置(UVOX)をこの順に上流側から配置した構成の
ものである。
The ultrapure water producing apparatus of this example is an organic carbon of the present invention capable of selectively monitoring TOC derived from a nonionic organic substance which is difficult to be easily removed by an ion exchange apparatus or an activated carbon filtration apparatus. Utilizing the features of the measuring device, the organic carbon measuring device 52 in the device of Example 5 is used.
The output of the above is fed back to adjust the output of the ultraviolet lamp of the ultraviolet oxidizer (UV OX ) installed in the pure water waste water recovery system 73, and the dotted line 56 indicates the control circuit. . In addition, the waste water recovery system 73 for pure water of the present example is, as shown in FIG. 7, an activated carbon filter (CF),
An anion exchange device (WA) using a weakly basic anion exchange resin, a mixed bed ion exchange device (MB), and an ultraviolet oxidation device (UV OX ) are arranged in this order from the upstream side.

【0064】本例の超純水製造装置においては、有機体
炭素測定装置52のTOC検出値の高低に応じて純水用
排水回収系73内のUVOXの紫外線ランプの出力を増減
する、更に有機体炭素測定装置52でTOCがほとんど
検出されない場合は紫外線ランプをOFFにする制御を
行うことによって、紫外線ランプの寿命の延長と電力消
費量の削減を図るものである。
In the ultrapure water producing system of this example, the output of the UV OX ultraviolet lamp in the wastewater recovery system 73 for pure water is increased or decreased according to the level of TOC detected by the organic carbon measuring system 52. When TOC is hardly detected by the organic carbon measuring device 52, the ultraviolet lamp is controlled to be turned off to extend the life of the ultraviolet lamp and reduce the power consumption.

【0065】上述のような制御は、燃焼酸化−赤外線
式、あるいは紫外線酸化−赤外線式等の従来の有機体炭
素測定装置を用いた場合にも可能であるが、これら従来
の有機体炭素測定装置では、純水用排水回収系73内に
設置されている前記活性炭濾過装置(CF)やイオン交
換装置(WA及びMB)によって容易に除去され、した
がって紫外線酸化装置(UVOX)の負荷とならない有機
酸等のイオン性の有機物と、上記活性炭濾過装置やイオ
ン交換装置ではほとんど除去されず、したがって紫外線
酸化装置で酸化分解して下流の超純水製造系71への混
入を阻止しなければならないメチルアルコールやイソプ
ロピルアルコール等の低分子の非イオン性有機物(な
お、これらは使用場所72において用いられた有機薬品
に由来するものである)との両方が測定されるため、結
果的には、有機体炭素測定装置でTOCがほぼ常時検出
される状態となる。その結果、たとえ上述のような制御
方法を採用したとしても、紫外線酸化装置の紫外線ラン
プを常時点灯して洗浄排水中に含まれる有機物の酸化分
解に備えなければならず、紫外線ランプの寿命の延長や
電力消費量の削減はほとんど望めない。
The above-mentioned control is possible even when a conventional organic carbon measuring apparatus such as a combustion oxidation-infrared type or an ultraviolet oxidation-infrared type is used, but these conventional organic carbon measuring apparatuses are also available. Then, the organic matter that is easily removed by the activated carbon filtration device (CF) and the ion exchange device (WA and MB) installed in the pure water waste water recovery system 73, and therefore does not become a load of the ultraviolet oxidation device (UV OX ). Methyl, which is ionic organic matter such as acid, is hardly removed by the above-mentioned activated carbon filtration device or ion exchange device, and therefore must be oxidatively decomposed by the ultraviolet oxidation device and prevented from being mixed into the downstream ultrapure water production system 71. Low molecular weight nonionic organic substances such as alcohol and isopropyl alcohol (these are derived from the organic chemicals used at the place of use 72). ) And both are measured, the result is a state in which TOC is almost always detected by the organic carbon measuring device. As a result, even if the above control method is adopted, it is necessary to constantly turn on the ultraviolet lamp of the ultraviolet oxidation device to prepare for the oxidative decomposition of the organic matter contained in the cleaning wastewater, which extends the life of the ultraviolet lamp. There is little hope of reducing electricity consumption.

【0066】これに対して、本発明の有機体炭素測定装
置52は、紫外線酸化装置(UVOX)によって、酸化分
解しなければならない非イオン性の有機物に由来する有
機体炭素を選択的に測定することができるので、このよ
うな有機体炭素測定装置52の出力に応じて紫外線酸化
装置(UVOX)の紫外線ランプの出力を調節したり、あ
るいは紫外線ランプのON−OFFを行うことにより、
極めて効率のよい紫外線酸化を行うことができ、その結
果、紫外線ランプの寿命の延長や電力消費量の削減が可
能となるのである。
On the other hand, the organic carbon measuring apparatus 52 of the present invention selectively measures the organic carbon derived from the nonionic organic matter which must be oxidatively decomposed by the ultraviolet oxidizer (UV OX ). Therefore, by adjusting the output of the ultraviolet lamp of the ultraviolet oxidizer (UV OX ) according to the output of the organic carbon measuring device 52 or by turning on and off the ultraviolet lamp,
It is possible to perform extremely efficient UV oxidation, and as a result, it is possible to extend the life of the UV lamp and reduce the power consumption.

【0067】なお、他の構成は実施例5と実質的に同一
である。
The other structure is substantially the same as that of the fifth embodiment.

【0068】(実施例7)図8に本発明の超純水製造装
置のまた更に他の実施例のフロー図を示す。
(Embodiment 7) FIG. 8 shows a flow chart of still another embodiment of the ultrapure water production system of the present invention.

【0069】この例の超純水製造装置は、前記実施例4
(図5)の超純水製造装置において、超純水製造系71
を、2床3塔式イオン交換装置(2B3T)、逆浸透膜
装置(RO)、真空脱気装置(VD)、紫外線酸化装置
(UVOX)、及び混床式イオン交換装置(MB)をこの
順に接続してなる1次純水製造系と、当該1次純水製造
系から得られる1次純水を一旦タンク(TK)に受けた
後、これを更に処理して超純水となす、紫外線殺菌装置
(UVST)、混床式カートリッジポリシャー(CP)及
び限外濾過膜装置(UF)をこの順に直列接続してなる
2次純水製造系とで構成するとともに、前記真空脱気装
置(VD)と前記紫外線酸化装置(UV OX)とを連通す
る配管59の途中に、実施例2に示したのと同じ構成の
本発明の有機体炭素測定装置57を組込み、更に当該有
機体炭素測定装置57の出力を前記紫外線酸化装置(U
OX)にフィードバックしてこの紫外線酸化装置(UV
OX)の紫外線ランプの出力を調節する構成としたもので
あり、点線58は制御回路を示している。また、本例の
超純水製造装置の純水用排水回収系73は、図に示すご
とく、活性炭濾過装置(CF)、陰イオン交換装置(W
A)、及び混床式イオン交換装置(MB)をこの順に接
続した構成のもので、当該回収系73内には紫外線酸化
装置が備えられていない。なお、図8において、符号6
3は前記有機体炭素測定装置57に試料水を供給するポ
ンプを示しており、また、符号64は超純水製造系71
から使用場所72に送給された超純水のうち、使用場所
72で使用されなかった余剰の超純水を前記タンク(T
K)に戻すための循環配管を示している。
The ultrapure water producing system of this example is the same as that of the fourth embodiment.
In the ultrapure water production system (FIG. 5), the ultrapure water production system 71
, 2 beds, 3 towers type ion exchange device (2B3T), reverse osmosis membrane
Equipment (RO), Vacuum Degassing Equipment (VD), UV Oxidation Equipment
(UVOX), And a mixed bed type ion exchange device (MB)
Primary pure water production system which is connected in order and the primary pure water production
The primary pure water obtained from the system was once received in the tank (TK)
After that, this is further processed into ultrapure water, an ultraviolet sterilizer
(UVST), Mixed bed cartridge polisher (CP) and
And ultrafiltration membrane device (UF) are connected in series in this order.
The vacuum degassing equipment is configured with a secondary pure water production system.
Device (VD) and the ultraviolet oxidation device (UV OX) Communicate with
In the middle of the pipe 59 having the same structure as that shown in the second embodiment.
Incorporating the organic carbon measuring device 57 of the present invention,
The output of the airframe carbon measurement device 57 is the ultraviolet oxidation device (U
VOX) Feedback to this UV oxidizer (UV
OX) The configuration of adjusting the output of the ultraviolet lamp
Yes, the dotted line 58 indicates the control circuit. Also, in this example
The pure water waste water recovery system 73 of the ultrapure water production system is as shown in the figure.
Toku, activated carbon filtration device (CF), anion exchange device (W
A) and mixed bed type ion exchanger (MB) are connected in this order.
The recovery system 73 has a continuous structure and is not subject to ultraviolet oxidation.
No equipment is provided. In FIG. 8, reference numeral 6
3 is a port for supplying the sample water to the organic carbon measuring device 57.
And a reference numeral 64 is an ultrapure water production system 71.
Place of use among the ultrapure water sent from
Excess ultrapure water not used in 72 is added to the tank (T
The circulation piping for returning to K) is shown.

【0070】本例の超純水製造装置の場合、上述のごと
く純水用排水回収系73内に紫外線酸化装置が備えられ
ていないので、当該排水回収系73内に混入した低分子
の非イオン性有機物は、当該排水回収系73内で分解さ
れずに超純水製造系71内にそのまま持ち込まれ、その
後、当該超純水製造系71内に設置されている紫外線酸
化装置(UVOX)によって有機酸あるいはCO2 に酸化
分解される。その際、紫外線酸化装置(UVOX)の紫外
線ランプの出力を、前記有機体炭素測定装置57の出力
に基づいて前記実施例6の場合と同様な制御を行うもの
であり、このような制御によって超純水製造系71内に
設置されている紫外線酸化装置(UVOX)のランプの寿
命の延長及び電力消費量の削減が達成できる。
In the case of the ultrapure water production system of this example, since the pure water wastewater recovery system 73 is not equipped with an ultraviolet oxidation device as described above, the low-molecular non-ion mixed in the wastewater recovery system 73 is used. The organic matter is directly brought into the ultrapure water production system 71 without being decomposed in the wastewater recovery system 73, and thereafter, by an ultraviolet oxidation device (UV OX ) installed in the ultrapure water production system 71. It is oxidatively decomposed into organic acid or CO 2 . At that time, the output of the ultraviolet lamp of the ultraviolet oxidizer (UV OX ) is controlled based on the output of the organic carbon measuring device 57 in the same manner as in the case of the sixth embodiment, and by such control. It is possible to extend the life of the lamp of the ultraviolet oxidation device (UV OX ) installed in the ultrapure water production system 71 and reduce the power consumption.

【0071】なお、前記紫外線酸化装置(UVOX)によ
る酸化分解によって生成した有機酸あるいはCO2 は、
当該紫外線酸化装置(UVOX)の後段の混床式イオン交
換装置(MB)によって除去される。
The organic acid or CO 2 produced by the oxidative decomposition by the UV oxidizer (UV OX ) is
It is removed by a mixed bed type ion exchange device (MB) after the ultraviolet oxidation device (UV OX ).

【0072】他の構成は実施例4と実質的に同一である
ので説明を省略する。
Since the other structure is substantially the same as that of the fourth embodiment, the description thereof will be omitted.

【0073】なお、上記実施例4〜7においては、いず
れも実施例2あるいは実施例3に示したのと同じ、すな
わち実施例1の(A)に相当するタイプの有機体炭素測
定装置を使用した超純水製造装置の例について説明した
が、このようなタイプの有機体炭素測定装置に代えて、
図1(B)のようなタイプの有機体炭素測定装置を使用
することもできる。
In each of the above Examples 4 to 7, the same organic carbon measuring device as that shown in Example 2 or Example 3, that is, the type corresponding to (A) of Example 1 was used. The example of the ultrapure water producing device was explained, but instead of the organic carbon measuring device of this type,
An organic carbon measuring device of the type shown in FIG. 1 (B) can also be used.

【0074】その場合、図1(B)のタイプの有機体炭
素測定装置は、TOCの測定をバッチで行う方式のもの
であって通常一回の測定に5〜15分間程度の時間を必
要とするので、洗浄排水の分別回収に際して、従来と同
様に滞留時間が10分程度の滞留水槽を必要とするとい
う難点はあるが、従来は洗浄排水の導電率が高過ぎるた
めに適用が困難であった、しかし従来から使用されてい
る燃焼酸化−赤外線式TOCメータや、紫外線酸化−赤
外線式TOCメータに比べて著しく安価な紫外線酸化−
導電率測定方式のTOCメータを、超純水製造装置の分
別処理系に適用することが可能になったという点におい
て、産業上大きな意義を有するものである。
In this case, the organic carbon measuring apparatus of the type shown in FIG. 1 (B) is of a system in which the TOC is measured in batch, and usually one measurement requires about 5 to 15 minutes. Therefore, there is a problem in that a separated water tank with a residence time of about 10 minutes is required in the case of separate collection of cleaning wastewater, but it is difficult to apply because the conductivity of cleaning wastewater is too high in the past. However, the combustion oxidation-infrared TOC meter and the ultraviolet oxidation-ultraviolet oxidation which are remarkably cheaper than the conventionally used combustion oxidation-infrared TOC meter-
The TOC meter of the conductivity measuring system has a great industrial significance in that it can be applied to the separation processing system of the ultrapure water production system.

【0075】[0075]

【発明の効果】本発明の有機体炭素測定装置は、前段に
脱イオン処理部を有しているので、有機又は無機のイオ
ン種濃度の高い試料水でも測定でき、そのため、超純水
製造装置の分別処理系における洗浄排水のTOC測定に
も何ら問題なく適用することができる。また実施例1に
示したごとく、応答時間が約60秒程度というような応
答時間の速い有機体炭素測定装置を構成することもでき
るため、これを組込んだ超純水製造装置はその分別処理
系において滞留用水槽が、不要もしくは従来より著しく
小さくなり、設置面積の減少、コストダウンとなる。更
に、本発明の有機体炭素測定装置の出力で超純水製造装
置内に組込まれている紫外線酸化装置の出力を制御する
ことにより、当該紫外線酸化装置の電力消費量の削減、
及び紫外線ランプの寿命の延長を図ることができる。
Since the organic carbon measuring apparatus of the present invention has the deionization treatment section in the preceding stage, it can measure even sample water having a high concentration of organic or inorganic ionic species. It can be applied to the TOC measurement of the cleaning wastewater in the separation treatment system of No problem without any problem. Further, as shown in Example 1, it is also possible to construct an organic carbon measuring device having a quick response time of about 60 seconds, so that an ultrapure water producing device incorporating this device can carry out the separation treatment. In the system, the stagnant water tank becomes unnecessary or becomes significantly smaller than the conventional one, resulting in a reduction in installation area and cost. Further, by controlling the output of the ultraviolet oxidizer incorporated in the ultrapure water producing apparatus by the output of the organic carbon measuring apparatus of the present invention, reduction of the power consumption of the ultraviolet oxidizer,
Also, the life of the ultraviolet lamp can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の有機体炭素測定装置の一実施
態様を示すフロー図、(B)は他の態様を示すフロー図
である。
FIG. 1A is a flow chart showing one embodiment of an organic carbon measuring apparatus of the present invention, and FIG. 1B is a flow chart showing another embodiment.

【図2】(A)は本発明の有機体炭素測定装置の一実施
例の構成を示すフロー図、(B)はTAC−102Pの
構成を示すフロー図である。
FIG. 2A is a flow diagram showing the configuration of an embodiment of the organic carbon measuring device of the present invention, and FIG. 2B is a flow diagram showing the configuration of TAC-102P.

【図3】本発明の有機体炭素測定装置の他の実施例の構
成を示すフロー図である。
FIG. 3 is a flowchart showing the configuration of another embodiment of the organic carbon measuring device of the present invention.

【図4】本発明の有機体炭素測定装置の更に他の実施例
の構成を示すフロー図である。
FIG. 4 is a flowchart showing the configuration of still another embodiment of the organic carbon measuring device of the present invention.

【図5】本発明の超純水製造装置の一実施例の構成を示
すフロー図である。
FIG. 5 is a flow diagram showing the configuration of an embodiment of the ultrapure water production system of the present invention.

【図6】本発明の超純水製造装置の他の実施例の構成を
示すフロー図である。
FIG. 6 is a flowchart showing the configuration of another embodiment of the ultrapure water production system of the present invention.

【図7】本発明の超純水製造装置の更に他の実施例の構
成を示すフロー図である。
FIG. 7 is a flowchart showing the configuration of still another embodiment of the ultrapure water production system of the present invention.

【図8】本発明の超純水製造装置のまた更に他の実施例
の構成を示すフロー図である。
FIG. 8 is a flow chart showing the configuration of still another embodiment of the ultrapure water production system of the present invention.

【図9】従来の超純水製造装置の一例を示すフロー図で
ある。
FIG. 9 is a flow chart showing an example of a conventional ultrapure water production system.

【図10】従来の、超純水の使用場所で排出される排水
の分別機構の構成を示すフロー図である。
FIG. 10 is a flow chart showing a configuration of a conventional separation mechanism for waste water discharged at a place where ultrapure water is used.

【図11】従来の、滞留用水槽を有する分別機構の構成
を示すフロー図である。
FIG. 11 is a flow diagram showing a configuration of a conventional separation mechanism having a retention water tank.

【図12】従来の、滞留用水槽を有する分別機構の他の
構成を示すフロー図である。
FIG. 12 is a flow chart showing another configuration of a conventional sorting mechanism having a retention water tank.

【符号の説明】[Explanation of symbols]

1 脱イオン処理部 2 流入管 3 第1導電率測定部 4 比較演算部 5 紫外線酸化処理部 6 第2導電率測定部 7 出力線 DESCRIPTION OF SYMBOLS 1 Deionization processing unit 2 Inflow pipe 3 First conductivity measuring unit 4 Comparison calculation unit 5 Ultraviolet oxidation processing unit 6 Second conductivity measuring unit 7 Output line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 N 503 B 504 B G01N 33/18 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C02F 9/00 N 503 B 504 B G01N 33/18 B

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 試料水を脱イオン処理して脱イオン水と
する脱イオン処理部と、脱イオン水を紫外線酸化処理し
て酸化処理水とする紫外線酸化処理部と、前記脱イオン
水及び酸化処理水の導電率を測定する導電率測定部と、
前記測定した2つの導電率を比較処理して有機体炭素濃
度に応じた信号を出力する比較演算部とからなることを
特徴とする有機体炭素測定装置。
1. A deionization treatment unit that deionizes sample water to deionize water, an ultraviolet oxidation treatment unit that deoxidizes deionized water to form oxidation-treated water, and the deionized water and oxidation. A conductivity measuring unit for measuring the conductivity of the treated water,
An organic carbon measuring device comprising: a comparison calculation unit that compares the two measured electric conductivities and outputs a signal corresponding to the organic carbon concentration.
【請求項2】 脱イオン水及び酸化処理水の導電率の測
定を異なる導電率計で測定する請求項1に記載の有機体
炭素測定装置。
2. The organic carbon measuring device according to claim 1, wherein the conductivity of the deionized water and the oxidation-treated water are measured by different conductivity meters.
【請求項3】 脱イオン水及び酸化処理水の導電率を同
一の導電率計で測定する請求項1に記載の有機体炭素測
定装置。
3. The organic carbon measuring device according to claim 1, wherein the conductivity of deionized water and the oxidation treated water are measured by the same conductivity meter.
【請求項4】 試料水が1μS/cm以上の導電率を有
する請求項1に記載の有機体炭素測定装置。
4. The organic carbon measuring device according to claim 1, wherein the sample water has a conductivity of 1 μS / cm or more.
【請求項5】 試料水が純水、又は超純水である請求項
1に記載の有機体炭素測定装置。
5. The organic carbon measuring device according to claim 1, wherein the sample water is pure water or ultrapure water.
【請求項6】 前記脱イオン処理部が、陽イオン交換樹
脂を用いた陽イオン交換装置と、陰イオン交換樹脂を用
いた陰イオン交換装置で構成される請求項1に記載の有
機体炭素測定装置。
6. The organic carbon measurement according to claim 1, wherein the deionization processing unit is composed of a cation exchange device using a cation exchange resin and an anion exchange device using an anion exchange resin. apparatus.
【請求項7】 前記脱イオン処理部が、陽イオン交換樹
脂と陰イオン交換樹脂を含む混床式イオン交換装置であ
る請求項1に記載の有機体炭素測定装置。
7. The organic carbon measuring device according to claim 1, wherein the deionization treatment section is a mixed bed type ion exchange device containing a cation exchange resin and an anion exchange resin.
【請求項8】 前記脱イオン処理部が、陽イオン交換膜
及び陰イオン交換膜間にイオン交換体を配置してなる電
気式脱イオン水製造装置である請求項1に記載の有機体
炭素測定装置。
8. The organic carbon measurement according to claim 1, wherein the deionization treatment unit is an electric deionized water production apparatus in which an ion exchanger is arranged between a cation exchange membrane and an anion exchange membrane. apparatus.
【請求項9】 前処理装置と、当該前処理装置の処理水
を更に処理して超純水となす超純水製造系と、当該超純
水製造系で製造された超純水を使用場所において使用す
ることにより発生する排水中の有機体炭素を測定する請
求項1乃至8のいずれかに記載の有機体炭素測定装置
と、当該有機体炭素測定装置の出力に基づいて前記排水
を分別する分別機構を備え、当該分別機構によって分別
された排水を各排水毎に処理する複数の処理経路からな
る分別処理系とを有することを特徴とする超純水製造装
置。
9. A pretreatment device, an ultrapure water production system that further treats the treated water of the pretreatment device to obtain ultrapure water, and a place where the ultrapure water produced by the ultrapure water production system is used. The organic carbon measuring device according to any one of claims 1 to 8 which measures the organic carbon in the wastewater generated by using the organic carbon measuring device, and the wastewater is separated based on the output of the organic carbon measuring device. An ultrapure water production system comprising: a separation mechanism, and a separation treatment system including a plurality of treatment paths for treating the wastewater separated by the separation mechanism for each wastewater.
【請求項10】 有機物を分解するための紫外線酸化装
置を備えた超純水製造装置において、前記紫外線酸化装
置の前段に設けた請求項1乃至8のいずれかに記載の有
機体炭素測定装置と当該測定装置の出力に応じて前記紫
外線酸化装置の紫外線ランプの出力を調節する手段とを
設けてなることを特徴とする超純水製造装置。
10. The apparatus for measuring organic carbon according to claim 1, wherein the apparatus for ultrapure water production is equipped with an ultraviolet oxidation device for decomposing organic matter, and is provided before the ultraviolet oxidation device. A means for adjusting the output of the ultraviolet lamp of the ultraviolet oxidizer according to the output of the measuring apparatus, and the ultrapure water producing apparatus.
【請求項11】 有機体炭素測定装置と、当該測定装置
の出力に応じて紫外線酸化装置の紫外線ランプの出力を
調節する手段とを超純水製造系に設けてなる請求項10
に記載の超純水製造装置。
11. The ultrapure water production system is provided with an organic carbon measuring device and means for adjusting the output of the ultraviolet lamp of the ultraviolet oxidation device according to the output of the measuring device.
The apparatus for producing ultrapure water according to 1.
JP6049659A 1994-03-22 1994-03-22 Organic carbon measuring device, and ultrapure water producing device with the device built-in Pending JPH07260725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6049659A JPH07260725A (en) 1994-03-22 1994-03-22 Organic carbon measuring device, and ultrapure water producing device with the device built-in

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6049659A JPH07260725A (en) 1994-03-22 1994-03-22 Organic carbon measuring device, and ultrapure water producing device with the device built-in

Publications (1)

Publication Number Publication Date
JPH07260725A true JPH07260725A (en) 1995-10-13

Family

ID=12837317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6049659A Pending JPH07260725A (en) 1994-03-22 1994-03-22 Organic carbon measuring device, and ultrapure water producing device with the device built-in

Country Status (1)

Country Link
JP (1) JPH07260725A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046974A (en) * 2000-12-13 2002-06-21 주식회사 노무라코리아 Apparatus and method for detecting impurities
JP2002214178A (en) * 2001-01-22 2002-07-31 Japan Organo Co Ltd Concentration measurement and management method for water treatment chemical, and device therefor
JP2005288213A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Method and device for fractionating waste water
JP2005351881A (en) * 2004-05-13 2005-12-22 National Institute Of Advanced Industrial & Technology Coexistent anion treatment device and method
JP2006090732A (en) * 2004-09-21 2006-04-06 Dkk Toa Corp Method and instrument for measuring total organic carbon content
JP2006087988A (en) * 2004-09-21 2006-04-06 National Institute Of Advanced Industrial & Technology Photoreaction device containing photoreaction tube and water quality monitoring device using the same
JP2011141234A (en) * 2010-01-08 2011-07-21 Japan Organo Co Ltd Apparatus and method for measuring dissolved hydrogen concentration
JP2013202587A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultra-pure water producing apparatus
JP2014205109A (en) * 2013-04-12 2014-10-30 オルガノ株式会社 Apparatus and method for drainage treatment
CN105417807A (en) * 2015-12-14 2016-03-23 上海康雷分析仪器有限公司 Laboratory ultra-pure water device with trace TOC detection function
WO2017168625A1 (en) * 2016-03-30 2017-10-05 都市拡業株式会社 Water reforming effect determination device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266946A (en) * 1985-05-22 1986-11-26 Fujitsu Ltd Detection of oxidizing agent
JPS63108724A (en) * 1986-10-27 1988-05-13 Japan Organo Co Ltd Manufacture of semiconductor cleaning superpure water
JPS63284458A (en) * 1987-05-15 1988-11-21 Nec Corp Method for measuring contaminated organic matter
WO1991006848A1 (en) * 1989-11-04 1991-05-16 Nihon Millipore Kogyo Kabushiki Kaisha Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
JPH03224688A (en) * 1990-01-30 1991-10-03 Nippon Rensui Kk Production of pure water
JPH0491794U (en) * 1990-05-23 1992-08-10
JPH05188051A (en) * 1992-01-13 1993-07-27 Toshiba Corp Organic substance monitor system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266946A (en) * 1985-05-22 1986-11-26 Fujitsu Ltd Detection of oxidizing agent
JPS63108724A (en) * 1986-10-27 1988-05-13 Japan Organo Co Ltd Manufacture of semiconductor cleaning superpure water
JPS63284458A (en) * 1987-05-15 1988-11-21 Nec Corp Method for measuring contaminated organic matter
WO1991006848A1 (en) * 1989-11-04 1991-05-16 Nihon Millipore Kogyo Kabushiki Kaisha Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
JPH03224688A (en) * 1990-01-30 1991-10-03 Nippon Rensui Kk Production of pure water
JPH0491794U (en) * 1990-05-23 1992-08-10
JPH05188051A (en) * 1992-01-13 1993-07-27 Toshiba Corp Organic substance monitor system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046974A (en) * 2000-12-13 2002-06-21 주식회사 노무라코리아 Apparatus and method for detecting impurities
JP2002214178A (en) * 2001-01-22 2002-07-31 Japan Organo Co Ltd Concentration measurement and management method for water treatment chemical, and device therefor
JP4530135B2 (en) * 2004-03-31 2010-08-25 栗田工業株式会社 Waste water separation method and apparatus
JP2005288213A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Method and device for fractionating waste water
JP2005351881A (en) * 2004-05-13 2005-12-22 National Institute Of Advanced Industrial & Technology Coexistent anion treatment device and method
JP2006087988A (en) * 2004-09-21 2006-04-06 National Institute Of Advanced Industrial & Technology Photoreaction device containing photoreaction tube and water quality monitoring device using the same
JP2006090732A (en) * 2004-09-21 2006-04-06 Dkk Toa Corp Method and instrument for measuring total organic carbon content
JP4538604B2 (en) * 2004-09-21 2010-09-08 独立行政法人産業技術総合研究所 Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
JP2011141234A (en) * 2010-01-08 2011-07-21 Japan Organo Co Ltd Apparatus and method for measuring dissolved hydrogen concentration
JP2013202587A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Ultra-pure water producing apparatus
JP2014205109A (en) * 2013-04-12 2014-10-30 オルガノ株式会社 Apparatus and method for drainage treatment
CN105417807A (en) * 2015-12-14 2016-03-23 上海康雷分析仪器有限公司 Laboratory ultra-pure water device with trace TOC detection function
WO2017168625A1 (en) * 2016-03-30 2017-10-05 都市拡業株式会社 Water reforming effect determination device
JPWO2017168625A1 (en) * 2016-03-30 2018-12-27 都市拡業株式会社 Water reforming effect judging device
US10175189B2 (en) 2016-03-30 2019-01-08 Toshikogyo Co., Ltd. Determination device for determining an improvement in water quality

Similar Documents

Publication Publication Date Title
US7264737B2 (en) Control of water treatment system with low level boron detection
JPH08126886A (en) Production of ultrapure water and device therefor
JP4935395B2 (en) Membrane separator evaluation method, water treatment method, and water treatment apparatus
US6991733B2 (en) Process for removing organics from ultrapure water
US20040050786A1 (en) Method of removing organic impurities from water
EP1090880A1 (en) Electrolytic ozone generating method, system and ozone water producing system
JPH0884986A (en) Method and device for production of pure water or ultrapure water
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
US20190233314A1 (en) Method and apparatus for providing ultrapure water
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
US9611160B2 (en) Wastewater treatment apparatus and method
JPH07260725A (en) Organic carbon measuring device, and ultrapure water producing device with the device built-in
WO1989009536A1 (en) Method and apparatus for producing ultrapure water
JP2019217463A (en) Method for removing boron in water to be treated, boron removal system, ultrapure water production system, and method for measuring boron concentration
JP4119871B2 (en) System equipped with water purification water means
TWI391331B (en) Pure water fabricating apparatus
JP5962135B2 (en) Ultrapure water production equipment
US20060011546A1 (en) Portable compact ultra high purity water system via direct processing from city feed water
JPH09192643A (en) Ultrapure water producing device
EP2765118B1 (en) Wastewater treatment apparatus and method
JP3789619B2 (en) Ultrapure water production equipment
JP4583520B2 (en) Waste water treatment apparatus and method
JPH09253638A (en) Ultrapure water making apparatus
JPH10216749A (en) Ultrapure water making apparatus
JP4469542B2 (en) Functional water production method and production apparatus