JPH07260711A - Measuring device of concentration of ice in ice slurry and calorimeter - Google Patents

Measuring device of concentration of ice in ice slurry and calorimeter

Info

Publication number
JPH07260711A
JPH07260711A JP4689194A JP4689194A JPH07260711A JP H07260711 A JPH07260711 A JP H07260711A JP 4689194 A JP4689194 A JP 4689194A JP 4689194 A JP4689194 A JP 4689194A JP H07260711 A JPH07260711 A JP H07260711A
Authority
JP
Japan
Prior art keywords
ice
slurry
ice slurry
wave
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4689194A
Other languages
Japanese (ja)
Inventor
Yutaka Ogawa
胖 小川
Shingo Gomi
信吾 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP4689194A priority Critical patent/JPH07260711A/en
Publication of JPH07260711A publication Critical patent/JPH07260711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure highly accurately the concentration of ice in an ice slurry by a simple structure and in a state of a small flow resistance. CONSTITUTION:Transmitter-receivers 3 and 4 of a microwave are fitted oppositely on the upper and lower tube walls of a flow tube through which an ice slurry 8 flows, and the microwave of a prescribed frequency is impressed on the ice slurry 8. Since the power of the microwave is attenuated in proportion to the product of the dielectric constant and the dielectric loss angle of ice and water contained in the ice slurry 8, the power 11 of a transmission amplifying circuit 6 is in proportion to the mixture ratio of the ice when the power of the transmission amplifying circuit 6 is controlled so that the power of a reception amplifying circuit 7 be fixed, and that power is measured by an ice mixture ratio measuring circuit 12. The volume 13 of the ice is determined on the basis of a measured value and a preset relationship between the power and the mixture ratio, and the concentration 16 of the ice is calculated by multiplying 16 the volume by the density of the ice.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷スラリー中の氷濃度
測定装置およびカロリーメータに関し、より詳細には、
水と氷の比誘電率および誘電損失角が大きく相異するの
で、氷スラリーにマイクロ波を照射すると消費されるマ
イクロ波電力が、氷の濃度に応じて変化することを利用
して氷濃度および熱交換器で消費された熱量を求める氷
スラリー中の氷濃度測定装置およびカロリーメータに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice concentration measuring device in an ice slurry and a calorimeter.
Since the relative permittivity and the dielectric loss angle of water and ice are largely different, the microwave power consumed by irradiating the ice slurry with microwave changes depending on the ice concentration. The present invention relates to a device for measuring ice concentration in ice slurry and a calorimeter for determining the amount of heat consumed in a heat exchanger.

【0002】[0002]

【従来の技術】地域冷暖房においては、エネルギーセン
タに配設された冷暖房装置により得られた熱源を熱源セ
ンタに搬送し、熱源センタから需要家に熱源が供給され
ている。従来、地域冷暖房には暖房と冷房とがあり、暖
房においては熱源として温水又は蒸気が使用され、冷房
においては熱源として冷水が使用されていた。特に冷房
においては、冷暖房装置から得られた約7℃程度の冷水
を熱交換器に供給し、熱交換器で交換された熱量により
13℃程度に昇温した水を冷暖房装置により回収されて
いた。
2. Description of the Related Art In district heating and cooling, a heat source obtained by a cooling and heating device arranged in an energy center is conveyed to a heat source center, and the heat source is supplied from the heat source center to consumers. Conventionally, there are heating and cooling in district heating and cooling, hot water or steam was used as a heat source in heating, and cold water was used as a heat source in cooling. Especially in cooling, the cold water of about 7 ° C. obtained from the cooling / heating device was supplied to the heat exchanger, and the water heated up to about 13 ° C. by the amount of heat exchanged by the heat exchanger was collected by the cooling / heating device. .

【0003】このような地域冷暖房の冷房は、冷媒とし
ての水の熱交換器前後の温度差が小さいため、冷熱量を
大きくすると冷水の流量を大きくする必要が生じ、冷水
配管は大口径となるため、設備費が高価となるという問
題が生じていた。このため、冷房の冷熱源を水単相では
なく、水と氷の共融混合液(氷スラリー)を用いて冷房
することが試みられている。
In such district cooling and cooling, since the temperature difference before and after the heat exchanger of water as a refrigerant is small, it is necessary to increase the flow rate of cold water when the amount of cold heat is increased, and the cold water pipe has a large diameter. Therefore, there has been a problem that the equipment cost is high. For this reason, it has been attempted to use a eutectic mixture of water and ice (ice slurry) as the cooling heat source instead of the water single phase.

【0004】氷の融解潜熱は、水の比熱に比べて、はる
かに大きいため冷房の効率が良く、氷スラリーを搬送す
る配管は小口径のものとすることができるという利点は
あるが、氷が冷水管内に付着することがなく氷スラリー
を効率よく搬送すること、および冷熱量を測定するため
には氷スラリー中の氷濃度を知る必要がある。
Since the latent heat of melting of ice is much larger than the specific heat of water, the cooling efficiency is good, and there is an advantage that the pipe for carrying the ice slurry can have a small diameter. It is necessary to know the ice concentration in the ice slurry in order to efficiently convey the ice slurry without adhering to the cold water pipe and to measure the amount of cold heat.

【0005】特開平5−340862号公報において
は、氷スラリー中の氷濃度を測定するために、氷スラリ
ーが流れる氷蓄熱槽と熱交換器との流管の間に氷濃度測
定装置を配設し、測定された氷スラリー中の氷濃度(I
PF;Ice Packing Factor)信号によりIPFが一
定値となるように氷蓄熱槽から流出された氷スラリー中
に水を混合する調合槽が配設されている。
In JP-A-5-340862, in order to measure the ice concentration in the ice slurry, an ice concentration measuring device is arranged between a flow pipe between an ice heat storage tank and a heat exchanger through which the ice slurry flows. The measured ice concentration in the ice slurry (I
A mixing tank is provided for mixing water into the ice slurry flowing out of the ice heat storage tank so that the IPF becomes a constant value by a PF (Ice Packing Factor) signal.

【0006】而して、上記氷濃度測定装置は、氷スラリ
ーを導入する容器に、底面に作用する静圧を測定する圧
力計を配設し、容器内の氷スラリーが定レベル時に達し
たときの静圧の大きさによりIPFを求める方式であ
る。
In the above ice concentration measuring apparatus, a pressure gauge for measuring static pressure acting on the bottom surface is provided in a container for introducing the ice slurry, and when the ice slurry in the container reaches a constant level. This is a method for obtaining the IPF based on the magnitude of the static pressure.

【0007】また、本出願人は、先に、氷スラリーを熱
媒体とした熱交換器の冷熱量を測定するために、熱交換
器の上下流側に氷スラリーの密度を測定できるコリオリ
質量流量計を配設して、熱交換器内で融解した氷の質量
を算出して、これに氷の融解潜熱を乗算して単位時間当
りの交換冷熱量を計測するカロリーメータを提案した。
[0007] Further, the applicant of the present invention has previously been able to measure the density of ice slurry on the upstream and downstream sides of the heat exchanger in order to measure the amount of cold heat of the heat exchanger using ice slurry as the heat medium. We proposed a calorimeter that measures the mass of ice melted in a heat exchanger and multiplies it by the latent heat of melting ice to measure the amount of cold heat exchanged per unit time.

【0008】[0008]

【発明が解決しようとする課題】特開平5−34086
2号公報におけるIPFの測定方式は、氷濃度測定装置
の圧力計信号に基づいて氷スラリーが流れる流管内のI
PF濃度を一定となるように氷スラリー中の水量を制御
する方式に関するものであるが、この方式では長大な容
器と圧力計とからなる氷濃度測定装置の付加要素を必要
とするので装置が大形となる。また、この装置を用いて
熱交換器による交換冷熱量を測定する場合は、更に熱交
換器下流側に他の氷濃度測定装置を配設し、熱交換器で
溶解した氷の質量を算出することが必要となるために、
更に、装置が大形となるという問題点があった。
[Patent Document 1] Japanese Patent Application Laid-Open No. 5-34086
The IPF measurement method in Japanese Patent Laid-Open No. 2 is based on the pressure gauge signal of the ice concentration measuring device, and I in the flow tube through which the ice slurry flows.
The present invention relates to a method of controlling the amount of water in the ice slurry so that the PF concentration becomes constant. However, this method requires an additional element of an ice concentration measuring device consisting of a long container and a pressure gauge, and therefore the device is large. Be in shape. Further, when measuring the amount of cold exchanged by a heat exchanger using this device, another ice concentration measuring device is further arranged on the downstream side of the heat exchanger, and the mass of ice melted in the heat exchanger is calculated. To be needed,
Further, there is a problem that the device becomes large.

【0009】また、氷スラリーの密度を測定可能なコリ
オリ流量計を用いる場合、測定装置全体が小形で、高精
度な冷熱量を計測することが可能となるが、地域冷暖房
を賄う冷熱量を測定するのに充分な氷スラリーの質量流
量を測定可能なコリオリ流量計は高価となるという問題
点があった。
Further, when a Coriolis flowmeter capable of measuring the density of ice slurry is used, the entire measuring device is small and it is possible to measure the amount of cold heat with high accuracy, but the amount of cold heat that covers district heating and cooling is measured. The Coriolis flowmeter capable of measuring the mass flow rate of the ice slurry sufficient for the operation is expensive.

【0010】本発明は、上述した実情に鑑みてなされた
もので、構成が簡単、小形で、流れ抵抗がないIPF測
定装置を提供し、更にこのIPF測定装置を熱交換器の
上下流側に配設して構造が簡単小形で信頼度の高い冷熱
カロリーメータを提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides an IPF measuring device having a simple structure, a small size, and no flow resistance. Further, the IPF measuring device is provided on the upstream and downstream sides of a heat exchanger. It is an object of the present invention to provide a cold heat calorimeter which is simple in structure and small in size and has high reliability.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、(1)氷スラリーが流れる流管の管壁に
対向して配設され、所定周波数のマイクロ波を前記氷ス
ラリーを介して送・受波する送波器および受波器と、前
記氷スラリーに含まれる氷濃度に応じて変化する前記受
波器で受波されたマイクロ波電力を、基準電力と等しく
するように前記送波器の電力を制御する制御手段と、制
御された送波器の電力を測定する送波器電力測定手段
と、制御された送波器の電力に基づいて前記氷スラリー
中の氷体積を演算する氷体積演算手段と、演算された氷
体積に氷密度を乗算し、氷スラリー質量を算出する乗算
手段とからなること、或いは、(2)氷スラリーが流れ
る流管の上流から下流側に向け、順次、氷スラリーの流
量を測定する流量計と、前記流管の流管壁に対向して配
設され、所定周波数のマイクロ波を前記氷スラリーを介
して送・受波する第1の送波器および受波器と、氷スラ
リーを熱媒体とする熱交換器と、前記流管の流管壁に対
向して配設され、前記第1の送波器と等しい周波数のマ
イクロ波を前記氷スラリーを介して送・受波する第2の
送波器および受波器とを配設した氷スラリー流路と;該
氷スラリー流路内を流れる水と氷の比誘電率および誘電
損失角に比例して消費されるマイクロ波電力から、前記
第1の送波器および受波器間の水と氷の混合比を演算す
る第1混合比演算手段と、前記第2の送波器および受波
器間の水と氷の混合比を演算する第2の混合比演算手段
と、前記流量計で計測された氷スラリーの流量と前記第
1・第2混合比混合演算手段により算出された水と氷の
混合比に基づいて、前記熱交換器で溶解された氷の体積
を算出する溶解氷量演算手段と、予め知られた氷の密度
および融解潜熱と前記溶解された氷の体積とを乗算し、
前記熱交換器で消費された熱量を算出する乗算手段とを
有する熱量演算手段と;からなること、更には、(3)
前記(1)又は(2)において、前記流管断面を等分割
に分割する直径を挟んだ流管壁に対をなす前記送波器お
よび受波器を複数対配設し、前記流管を流れる氷スラリ
ーの氷濃度を前記複数対の送波器および受波器間の氷濃
度の平均から求めることを特徴とするものである。
In order to achieve the above-mentioned object, the present invention is (1) arranged so as to face a pipe wall of a flow pipe through which ice slurry flows, and the microwave of a predetermined frequency is applied to the ice slurry. The microwave power received and transmitted by the wave transmitter and the wave receiver that transmits / receives through the receiver and the wave receiver that changes according to the ice concentration contained in the ice slurry is made equal to the reference power. To control means for controlling the power of the wave transmitter, means for measuring the power of the controlled wave transmitter, and ice in the ice slurry based on the power of the controlled wave transmitter. And an ice volume calculating means for calculating the volume and a multiplying means for calculating the ice slurry mass by multiplying the calculated ice volume by the ice density, or (2) from upstream to downstream of the flow pipe through which the ice slurry flows. Flow meter that measures the flow rate of ice slurry sequentially toward the side A first wave transmitter and a wave receiver, which are arranged so as to face the flow tube wall of the flow tube and which transmit and receive microwaves of a predetermined frequency through the ice slurry, and the ice slurry as a heat medium. And a second heat exchanger, which is arranged to face the flow tube wall of the flow tube and which transmits / receives a microwave having a frequency equal to that of the first wave transmitter through the ice slurry. An ice slurry flow path provided with a wave transmitter and a wave receiver; and microwave power consumed in proportion to the relative permittivity and dielectric loss angle of water and ice flowing in the ice slurry flow path. First mixing ratio calculating means for calculating a mixing ratio of water and ice between the first transmitter and the receiver, and calculating a mixing ratio of water and ice between the second transmitter and the receiver. And a second mixing ratio calculating means for calculating the flow rate of the ice slurry measured by the flow meter and the first and second mixing ratio mixing calculating means. Based on the mixed ratio of water and ice, the calculated amount of ice melted in the heat exchanger, means for calculating the amount of ice melt, and the previously known density and latent heat of melting of ice and the melted ice Multiply by and
A heat quantity calculation means having a multiplication means for calculating the quantity of heat consumed in the heat exchanger; and (3)
In the above (1) or (2), a plurality of pairs of the wave transmitter and the wave receiver that are paired with the flow tube wall sandwiching a diameter that divides the flow tube cross section into equal parts are arranged to form the flow tube. The ice concentration of the flowing ice slurry is obtained from an average of the ice concentrations between the plurality of pairs of wave transmitters and wave receivers.

【0012】[0012]

【作用】水と氷の比誘電率および誘電損失角が大きく異
なるので、流管内を流れる氷スラリーに一定周波数のマ
イクロ波を印加したとき、流管内のマイクロ波電力の氷
スラリー単位体積当りの損失が、氷スラリーの比誘電率
と誘電損失角の積に等しいことを利用して水と氷の体積
比を算出し、算出された氷の体積に既知の氷密度を乗算
して氷の濃度、即ち、氷の質量を算出する。更には、こ
の氷の濃度測定装置を熱交換器の上下流側に配設して、
熱交換器で交換された冷熱量を、熱交換器で溶解された
氷質量に氷の融解潜熱を乗出して求める。
[Function] Since the relative permittivity and the dielectric loss angle of water and ice are greatly different, when microwave of a constant frequency is applied to the ice slurry flowing in the flow tube, the loss of microwave power in the flow tube per unit volume of ice slurry Is the product of the relative permittivity and the dielectric loss angle of the ice slurry to calculate the volume ratio of water and ice, the calculated ice volume is multiplied by the known ice density, the concentration of ice, That is, the mass of ice is calculated. Furthermore, by arranging this ice concentration measuring device on the upstream and downstream sides of the heat exchanger,
The amount of cold heat exchanged by the heat exchanger is obtained by multiplying the ice mass melted by the heat exchanger by the latent heat of melting of ice.

【0013】[0013]

【実施例】【Example】

実施例1(請求項1に対応) 図1は、本発明による氷スラリー中の氷測定装置の流路
の一例を説明するための図で、図中、1は流管、2はI
PF測定管、3はマイクロ波の送波器、4はマイクロ波
の受波器である。
Example 1 (corresponding to claim 1) FIG. 1 is a diagram for explaining an example of a flow path of an ice measuring device in ice slurry according to the present invention, in which 1 is a flow tube and 2 is I.
The PF measuring tube 3 is a microwave transmitter, and 4 is a microwave receiver.

【0014】流管1は、IPF測定管2と直列に接続さ
れ、流管1とIPF測定管2との中には氷粒1aと水1
bとからなる氷スラリーが流れている。IPF測定管2
には、上下方向に対向する管壁上、すなわちIPF測定
管2の上下直径上の管壁に、マイクロ波の送波器3と受
波器4とが配設されている。マイクロ波の周波数帯はI
SM(Industrial Scientific and Medicaluse)で
定められたもので、工業用加熱周波数帯として2,45
0MHzが使用される。
The flow pipe 1 is connected in series with the IPF measuring pipe 2, and ice particles 1a and water 1 are contained in the flow pipe 1 and the IPF measuring pipe 2.
The ice slurry consisting of b) is flowing. IPF measuring tube 2
The microwave transmitter 3 and the wave receiver 4 are disposed on the pipe walls facing each other in the vertical direction, that is, on the pipe walls on the upper and lower diameters of the IPF measuring pipe 2. Microwave frequency band is I
Specified by SM (Industrial Scientific and Medical use), the industrial heating frequency band is 2,45
0 MHz is used.

【0015】図2は、図1に示した流路のIPFを測定
するIPF測定装置の一例を説明するための図であり、
図中、5はマイクロ波発振器、6は送波増幅回路、7は
受波増幅回路、8は氷スラリー、9は比較器、10は基
準電力発生回路、11は送波増幅回路の電力測定回路、
12は氷混合比測定回路、13は氷体積測定回路、14
は氷密度設定器、15は乗算回路、16は乗算回路15
の出力である氷質量であり、図1と同様の作用をする部
分には図1と同じ参照番号を付している。
FIG. 2 is a diagram for explaining an example of an IPF measuring device for measuring the IPF of the flow path shown in FIG.
In the figure, 5 is a microwave oscillator, 6 is a transmission amplification circuit, 7 is a reception amplification circuit, 8 is ice slurry, 9 is a comparator, 10 is a reference power generation circuit, 11 is a power measurement circuit of the transmission amplification circuit. ,
12 is an ice mixing ratio measuring circuit, 13 is an ice volume measuring circuit, 14
Is an ice density setting device, 15 is a multiplication circuit, 16 is a multiplication circuit 15
1 is the output of ice mass, and the parts having the same functions as in FIG. 1 are denoted by the same reference numerals as in FIG.

【0016】次に、本発明による氷スラリー中の氷濃度
測定装置を図1,2に基づいて説明する。氷スラリー
は、水と氷の共融混合液であり、温度は共に0℃であ
る。マイクロ波発振器5から例えば、2,450MHz
のマイクロ波を送波増幅回路6を介してIPF測定管2
の送波器3に印加したとき受波器4までの氷スラリーで
消費されるマイクロ波電力Pは単位体積当り、 P=k・εγ・tanδ・f・E2 (1) 但し、k :定数 εγ :氷スラリーの比誘電率 tanδ:氷スラリーの誘電損失角 f :マイクロ波の周波数 E2 :マイクロ波の氷スラリー内の電界強度 であらわされる。
Next, an ice concentration measuring device in ice slurry according to the present invention will be described with reference to FIGS. The ice slurry is a eutectic mixture of water and ice, and the temperature is 0 ° C. From the microwave oscillator 5, for example, 2,450 MHz
Of the microwave of the IPF measuring tube 2 via the transmission amplification circuit 6
The microwave power P consumed by the ice slurry up to the wave receiver 4 when applied to the wave transmitter 3 of is per unit volume, P = k · εγ · tanδ · f · E 2 (1) where k is a constant εγ: relative permittivity of ice slurry tanδ: dielectric loss angle of ice slurry f: microwave frequency E 2 : electric field strength in microwave ice slurry.

【0017】(1)式において、k・f・E2=K,εγ
・tanδ=Fとおくと、(1)式は、 P=K・F (2) であらわされ、マイクロ波電力の損失Pは、氷スラリー
の比誘電率εγと誘電損失角tanδとの積に比例する。
In equation (1), k · f · E 2 = K, εγ
・ If tanδ = F, the equation (1) is expressed as P = K · F (2), and the microwave power loss P is the product of the relative permittivity εγ of the ice slurry and the dielectric loss angle tanδ. Proportional.

【0018】一方、0℃における水の比誘電率εγw
88、誘電損失角tanδw≒0.7,0℃における氷の比
誘電率εγi≒0.3、誘電損失角tanδi≒0.0009
であり、これらの数値を(2)に代入すると、(3),
(4)式が得られ、 水のFの値Fw=εγw・tanδw≒61.6 (3) 氷のFの値Fi=εγi・tanδi≒2.7×10-4 (4) 水と氷のFに大きい差異があり、マイクロ波電力の比か
ら氷の体積含有率を高分解能に計測することができる。
On the other hand, the relative dielectric constant of water at 0 ° C. εγ w
88, dielectric loss angle tan δ w ≈0.7, relative permittivity of ice εγ i ≈0.3 at 0 ° C., dielectric loss angle tan δ i ≈0.0009
Substituting these numerical values into (2) gives (3),
Equation (4) is obtained, and the F value of water F w = εγ w tan δ w ≈61.6 (3) The F value of ice F i = εγ i tan δ i ≈2.7 × 10 −4 ( 4) There is a large difference in F between water and ice, and the volume content of ice can be measured with high resolution from the ratio of microwave power.

【0019】図2のブロック図は、上述の原理を具現す
るための図であり、マイクロ波発振器6の発振信号を送
波増幅回路6で増幅して送波器3に印加する。送波器3
から送波されたマイクロ波は、受波器4で受波され受波
増幅回路7で増幅される。受波増幅回路7の出力は、基
準電力発生回路10から出力される基準電力と比較器9
で比較され、受波増幅回路7の出力が基準電力となるよ
うに送波電力回路6に負帰還される。
The block diagram of FIG. 2 is a diagram for embodying the above-mentioned principle, in which the oscillation signal of the microwave oscillator 6 is amplified by the transmission amplifier circuit 6 and applied to the transmitter 3. Transmitter 3
The microwave transmitted from is received by the wave receiver 4 and amplified by the wave receiving / amplifying circuit 7. The output of the reception amplification circuit 7 is compared with the reference power output from the reference power generation circuit 10 and the comparator 9
Are compared with each other and are negatively fed back to the transmission power circuit 6 so that the output of the reception amplification circuit 7 becomes reference power.

【0020】このときの送波電力回路6の電力は、氷ス
ラリー中の損失電力に比例する値をもっており、氷に対
する水の混合比に比例する。この値は、氷に対する水の
混合比と損失電力の関係を予め定められ記憶された氷混
合比例定回路12で比較され氷スラリー中の氷体積を氷
体積測定回路12で計測される。
The power of the wave transmission power circuit 6 at this time has a value proportional to the power loss in the ice slurry, and is proportional to the mixing ratio of water to ice. This value is compared by the ice mixing proportionality constant circuit 12 in which the relationship between the mixing ratio of water to ice and the power loss is predetermined and stored, and the ice volume in the ice slurry is measured by the ice volume measuring circuit 12.

【0021】0℃の氷の密度γ=910(kg/m3)は予
め知られているから氷の密度γと氷の体積とを乗算回路
15で乗算し、氷の質量(16)を求るめことができ
る。
Since the ice density γ = 910 (kg / m 3 ) at 0 ° C. is known in advance, the multiplying circuit 15 multiplies the ice density γ and the ice volume to obtain the ice mass (16). You can

【0022】上述の本実施例によれば、流路1内には氷
スラリーの流れを阻害する抵抗要素は流路1以外にな
く、単位体積中に含まれる氷の質量を計測できるので小
形で、しかも、氷と水の比誘電率εγおよび誘電損失角
tan8の値が大きく異なるので高精度な氷スラリー中の
氷濃度を測定することができる。
According to the present embodiment described above, there is no resistance element other than the flow path 1 in the flow path 1 and the mass of ice contained in a unit volume can be measured, so that the flow path 1 is small in size. In addition, relative permittivity εγ and dielectric loss angle of ice and water
Since the value of tan8 is greatly different, the ice concentration in the ice slurry can be measured with high accuracy.

【0023】実施例2(請求項2に対応) 図3は、本発明によるカロリーメータの氷スラリー流路
の一例を説明するための図で、17は流量計、18,2
2は第1,第2のIPV測定管、19,23は送波器、
20,24は受波器、21は熱交換器で、図1と同様な
作用をする部分には図1と同じ参照番号を付している。
Example 2 (corresponding to claim 2) FIG. 3 is a view for explaining an example of an ice slurry flow path of a calorimeter according to the present invention, in which 17 is a flow meter and 18, 2
2 is the first and second IPV measuring tubes, 19 and 23 are wave transmitters,
Reference numerals 20 and 24 are wave receivers, and 21 is a heat exchanger. The parts having the same functions as those in FIG.

【0024】図3に示した氷スラリー流路は、流量Qの
氷スラリーが流れる流管1に、流管1の上流側から下流
側に向け、順次、流量計17、第1のIPF測定管1
8、熱交換器21および第2のIPF側定管22を配設
している。流量計17は、渦流量計、電磁流量計又は超
音波流量計等の体積流量計であり、第1,2のIPF測
定管18,22は、図1に示したIPF測定管2と同様
の構造をもっており、各々、第1のIPF測定器18に
は送波器19と受波器20、第2のIPF測定管22に
は送波器23と受波器24が配設されている。
In the ice slurry flow path shown in FIG. 3, the flow meter 1 and the first IPF measuring tube are sequentially arranged in the flow tube 1 through which the ice slurry having the flow rate Q flows from the upstream side to the downstream side of the flow tube 1. 1
8, the heat exchanger 21 and the second IPF side constant tube 22 are arranged. The flowmeter 17 is a volume flowmeter such as a vortex flowmeter, an electromagnetic flowmeter, or an ultrasonic flowmeter, and the first and second IPF measuring tubes 18 and 22 are the same as the IPF measuring tube 2 shown in FIG. The first IPF measuring device 18 is provided with a wave transmitter 19 and a wave receiver 20, and the second IPF measuring pipe 22 is provided with a wave transmitter 23 and a wave receiver 24, respectively.

【0025】図4は、図3に示した氷スラリー流路に配
設された熱交換器21により熱交換された冷熱量を測定
するための熱量演算回路の一例を説明するためのブロッ
ク図であり、図中、30は熱量演算回路、31はマイク
ロ波の発振器、32,33は第1,第2送波増幅回路、
34,35は第1,第2受波増幅回路、36は基準電力
発生回路、37,38は第1、第2比較器、39,40
は第1、第2電力測定回路、41,42は第1、第2氷
混合比測定回路、43,44は第1、第2氷体積測定回
路、45は減算回路、46は氷密度γ,氷融解潜熱Cの
設定回路、47は乗算回路、48は冷熱量であり、図3
と同様な作用をする部分には、図3と同じ参照番号を付
している。
FIG. 4 is a block diagram for explaining an example of a calorific value calculation circuit for measuring the amount of cold heat exchanged by the heat exchanger 21 arranged in the ice slurry flow path shown in FIG. In the figure, 30 is a calorific value calculation circuit, 31 is a microwave oscillator, 32 and 33 are first and second transmission amplification circuits,
Reference numerals 34 and 35 are first and second wave receiving and amplifying circuits, 36 is a reference power generation circuit, 37 and 38 are first and second comparators, and 39 and 40.
Is the first and second power measurement circuits, 41 and 42 are the first and second ice mixing ratio measurement circuits, 43 and 44 are the first and second ice volume measurement circuits, 45 is a subtraction circuit, and 46 is the ice density γ, The setting circuit of the latent heat of ice C C, 47 is a multiplication circuit, and 48 is the amount of cold heat.
The same reference numerals as those in FIG.

【0026】図4に示した熱量演算回路30は、発振器
31により出力される同一周波数のマイクロ波により駆
動される第1、第2送波増幅回路32,32を有する。
ここで、第1送波増幅回路32に接続された第1のIP
F測定管18の第1送波器19から氷スラリーを通過し
て第1受波器20に受波され、受波器20の電力が基準
電力と等しくなるように、第1送波増幅回路32の電力
を制御したときの電力が第1氷混合比測定回路41で測
定される回路は、図2に示したIPF測定回路と同じで
あり、ここでは詳細な説明を省く。
The calorific value calculation circuit 30 shown in FIG. 4 has first and second transmission amplifier circuits 32 and 32 driven by microwaves of the same frequency output from an oscillator 31.
Here, the first IP connected to the first transmission amplification circuit 32
The first transmission amplifier circuit so that the ice slurry passes through the first wave transmitter 19 of the F measurement pipe 18 and is received by the first wave receiver 20 so that the power of the wave receiver 20 becomes equal to the reference power. The circuit in which the power when the power of 32 is controlled is measured by the first ice mixing ratio measuring circuit 41 is the same as the IPF measuring circuit shown in FIG. 2, and a detailed description thereof will be omitted here.

【0027】第2のIPF測定管22における第2氷混
合比測定回路42までの回路構成も、第1のIPF測定
管で第1氷混合比測定回路41までの回路構成と同様で
あり詳細な説明を省く。
The circuit configuration up to the second ice mixing ratio measuring circuit 42 in the second IPF measuring tube 22 is the same as the circuit configuration up to the first ice mixing ratio measuring circuit 41 in the first IPF measuring tube, and thus detailed. Omit the explanation.

【0028】また、第1、第2氷体積測定回路43,4
4は同様の回路であり、共に流量計17の流量信号Qに
対し、第1、第2氷混合比測定回路41,42から出力
される氷混合比率を乗算して熱交換器16の上流側の第
1のIPF測定管18内を通過する氷スラリーに含まれ
る氷体積と、熱交換器16の下流側の第2のIPF測定
管22内を通過する氷スラリーに含まれる氷体積を算出
する。これらの第1,第2のIPF測定管18,22を
通過する氷体積は、減算回路45に入力されて熱交換器
21で溶解され氷体積が演算される。
Further, the first and second ice volume measuring circuits 43, 4
Reference numeral 4 denotes a similar circuit, both of which are provided on the upstream side of the heat exchanger 16 by multiplying the flow rate signal Q of the flow meter 17 by the ice mixing ratios output from the first and second ice mixing ratio measuring circuits 41 and 42. The ice volume contained in the ice slurry passing through the inside of the first IPF measuring pipe 18 and the ice volume contained in the ice slurry passing through inside the second IPF measuring pipe 22 on the downstream side of the heat exchanger 16 are calculated. . The ice volume passing through the first and second IPF measuring tubes 18 and 22 is input to the subtraction circuit 45 and melted in the heat exchanger 21 to calculate the ice volume.

【0029】溶解された氷体積に、氷の密度、融解潜熱
の設定回路46に設定された氷の密度γ、氷の融解潜熱
cを乗算回路47で乗算して、熱交換器21で熱交換さ
れた冷熱量が算出される。
The volume of melted ice is multiplied by the density of ice, the density of ice γ set in the setting circuit 46 for latent heat of melting, and the latent heat of melting c of ice in the multiplication circuit 47, and heat is exchanged in the heat exchanger 21. The amount of cold energy thus calculated is calculated.

【0030】以上説明した本発明のカロリーメータによ
ると、熱交換器21の上下側の第1、第2のIPF測定
管18,22内で、氷スラリーの流れの抵抗となるもの
は各々直管である第1、第2のIPF測定管18,22
のみであり、最小の流体抵抗となるので氷スラリーを圧
送するための効率がよく動力源は小さくてもよいので設
備費用が小さく信頼性があり、しかも氷と水の比誘電率
εγおよび誘電損失角tan8の値が大きく異なるので高
精度な冷熱量を得ることができる。
According to the calorimeter of the present invention described above, in the first and second IPF measuring pipes 18 and 22 on the upper and lower sides of the heat exchanger 21, those which become the resistance of the flow of the ice slurry are straight pipes. The first and second IPF measuring tubes 18, 22 which are
Since it has a minimum fluid resistance, it is efficient for pumping ice slurry and a small power source can be used, so equipment cost is low and reliability is high, and the relative permittivity εγ and dielectric loss of ice and water are low. Since the value of the angle tan8 is greatly different, it is possible to obtain a highly accurate amount of cold heat.

【0031】以上において、マイクロ波の送受波器IP
F測定管の1つの直径方向に配設された状態にあるもの
として説明したが、比重は、氷よりも水の方が大きいの
で、比重差により、氷スラリーの氷混合比はIPF測定
管2,18,22の上方側が大きく下方側が小さい。氷
スラリーが、IPF管2,18,22内を正規分布で流
れている状態では一対の送・受波器3,4又は19,2
0、更には、23,24でもよいが、流れに偏流や旋回
流がある場合は精度は低下する。
In the above, the microwave transmitter / receiver IP
Although it has been described that the F measuring tube is arranged in one diametrical direction, since the specific gravity of water is larger than that of ice, the ice mixing ratio of the ice slurry is different from that of the IPF measuring tube 2 due to the difference in specific gravity. , 18 and 22 are large on the upper side and small on the lower side. When the ice slurry is flowing in the IPF tubes 2, 18, 22 with a normal distribution, a pair of transmitters / receivers 3, 4 or 19, 2
Although 0 may be used, and 23 and 24 may be used, but if the flow has a non-uniform flow or a swirling flow, the accuracy will decrease.

【0032】実施例3(請求項3に対応) 図5は、本発明に係るマイクロ波送・受波器を配設する
配設構造を説明するための図であり、51,52と5
3,54は各々対をなす送・受波器であり、図1と同様
の作用をする部分には、図1と同じ参照番号を付してい
る。
Embodiment 3 (corresponding to claim 3) FIG. 5 is a view for explaining an arrangement structure for arranging a microwave transmitter / receiver according to the present invention.
Reference numerals 3 and 54 respectively denote a pair of transmitter / receiver, and parts having the same functions as those in FIG.

【0033】送・受波器、3,4と51,52および5
3,54は各々一対をなすもので流管1の断面を等分割
に分割した直径上に配設され、各々の送・受波器3,4
と51,52および53,54の間で、図2,図4で示
したブロック図に従って、各々の送・受波器間における
氷混合比を測定してこれを平均化し、平均化された氷混
合比に基づいてIPFが計測される。なお、送・受波器
の対の数は、任意に選択することができる。
Transmitter / receiver, 3, 4 and 51, 52 and 5
Reference numerals 3 and 54 respectively form a pair, and are arranged on a diameter obtained by dividing the cross section of the flow tube 1 into equal parts.
And 51, 52 and 53, 54 according to the block diagrams shown in FIGS. 2 and 4, the ice mixing ratio between the transmitter and the receiver is measured and averaged to obtain the averaged ice. The IPF is measured based on the mixing ratio. The number of transmitter / receiver pairs can be arbitrarily selected.

【0034】図5に示した送・受波器の取り付け構造に
よると、氷スラリーの流れに、偏流や旋回流がある場合
でも、これらの流れ変動の影響を受けることなく正確な
IPFまたは冷熱量が計測できる。
According to the mounting structure of the transmitter / receiver shown in FIG. 5, even if the flow of the ice slurry has a drift or a swirl flow, an accurate IPF or cold heat quantity is obtained without being affected by these flow fluctuations. Can be measured.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
によると、以下の効果がある。 (1)請求項1に対応する効果:流管1内には、氷スラ
リーの流れを阻害する抵抗要求は流管1以外になく、単
位体積中に含まれる氷質量を小形な装置で測定すること
ができる。しかも、氷と水の比誘電率および誘電損失角
の値が大きく異なるので高精度な氷スラリー中の氷濃度
を測定することができる。 (2)請求項2に対応する効果:熱交換器21の上流側
に流量計17とIPF測定管18を、下流側にIPF測
定管22を配設し、直管の流路を構成したので請求項1
と同様に氷スラリーの流れを阻害する要素はなく抵抗が
小さいので流管1内に氷が滞留することなく、氷スラリ
ーを小さい動力が圧送することができ、小形で信頼性の
あるカロリーメータを安価に提供することができる。し
かも、氷と水の比誘電率および誘電損失角の値が大きく
異なるので高精度な氷スラリー中の氷濃度を測定するこ
とができる。 (3)請求項3に対応する効果:マイクロ波の送受波器
を流管1の断面を複数の等分割する直径上に配設して各
々の送受波器で求めた氷の混合比の平均を求めるので、
氷スラリーの流れに偏流や旋回流がある場合でも正確な
氷の濃度を求めることができる。
As is apparent from the above description, the present invention has the following effects. (1) Effect corresponding to claim 1: There is no resistance requirement for hindering the flow of ice slurry in the flow tube 1, and the mass of ice contained in a unit volume is measured by a small device. be able to. Moreover, since the values of the relative permittivity and the dielectric loss angle of ice and water are significantly different, it is possible to measure the ice concentration in the ice slurry with high accuracy. (2) Effect corresponding to claim 2: Since the flowmeter 17 and the IPF measuring pipe 18 are arranged on the upstream side of the heat exchanger 21 and the IPF measuring pipe 22 is arranged on the downstream side, a straight pipe flow path is constituted. Claim 1
Similar to the above, since there is no element that hinders the flow of the ice slurry and the resistance is small, the ice slurry does not stay in the flow tube 1 and the ice slurry can be pumped with a small power, and a small and reliable calorimeter can be provided. It can be provided at low cost. Moreover, since the values of the relative permittivity and the dielectric loss angle of ice and water are significantly different, it is possible to measure the ice concentration in the ice slurry with high accuracy. (3) Effect corresponding to claim 3: The microwave transmitter / receiver is arranged on a diameter that divides the cross section of the flow tube 1 into a plurality of equal divisions, and the average of the mixing ratio of ice obtained by each of the transmitter / receivers is obtained. So that
An accurate ice concentration can be obtained even when the ice slurry flow has a drift or swirl flow.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による氷スラリー中の氷測定装置の流
路の一例を説明するための図である。
FIG. 1 is a diagram for explaining an example of a flow path of an ice measuring device in ice slurry according to the present invention.

【図2】 図1に示した流路のIPFを測定するIPF
測定装置の一例を説明するための図である。
FIG. 2 is an IPF for measuring the IPF of the flow path shown in FIG.
It is a figure for explaining an example of a measuring device.

【図3】 本発明におけるカロリーメータの氷スラリー
流の一例を説明するための図である。
FIG. 3 is a diagram for explaining an example of an ice slurry flow of a calorimeter in the present invention.

【図4】 図3に示した氷スラリー流路に配設された熱
交換器21で熱交換される冷熱量を測定するための熱量
演算回路の一例を説明するためのブロック図である。
FIG. 4 is a block diagram for explaining an example of a calorific value calculation circuit for measuring the amount of cold heat exchanged by a heat exchanger 21 arranged in the ice slurry flow path shown in FIG.

【図5】 本発明に係るマイクロ波送・受波器を配設す
る配設構造を説明するための図である。
FIG. 5 is a diagram for explaining an arrangement structure for arranging a microwave transmitter / receiver according to the present invention.

【符号の説明】[Explanation of symbols]

1…流管、2…IPF測定管、3…マイクロ波の送波
器、4…マイクロ波の受波器、5…マイクロ波発振器、
6…送波増幅回路、7…受波増幅回路、8…氷スラリ
ー、9…比較器、10…基準電力発生回路、11…送波
増幅回路の電力測定回路、12…氷混合比測定回路、1
3…氷体積測定回路、14…氷密度設定器、15…乗算
回路、17…流量計、18,22…第1,第2のIPF
測定管、19,23…送波器、20,24…受波器、2
1…熱交換器、30…熱量演算回路、31…マイクロ波
の発振器、32,33…第1,第2送波増幅回路、3
4,35…第1,第2受波増幅回路、36…基準電力発
生回路、37,38…第1、第2比較器、39,40…
第1、第2電力測定回路、41,42…第1、第2氷混
合比測定回路、43,44…第1、第2氷体積測定回
路、45…減算回路、46…氷密度γ,氷融解潜熱Cの
設定回路、47…乗算回路、48…冷熱量、51,52
と53,54…送受波器。
1 ... Flow tube, 2 ... IPF measuring tube, 3 ... Microwave transmitter, 4 ... Microwave receiver, 5 ... Microwave oscillator,
6 ... Transmission amplification circuit, 7 ... Reception amplification circuit, 8 ... Ice slurry, 9 ... Comparator, 10 ... Reference power generation circuit, 11 ... Transmission amplification circuit power measurement circuit, 12 ... Ice mixing ratio measurement circuit, 1
3 ... Ice volume measuring circuit, 14 ... Ice density setting device, 15 ... Multiplication circuit, 17 ... Flowmeter, 18, 22 ... First and second IPF
Measuring tube, 19, 23 ... Wave transmitter, 20, 24 ... Wave receiver, 2
DESCRIPTION OF SYMBOLS 1 ... Heat exchanger, 30 ... Calorific value calculation circuit, 31 ... Microwave oscillator, 32, 33 ... 1st, 2nd transmission amplification circuit, 3
4, 35 ... First and second reception amplification circuits, 36 ... Reference power generation circuit, 37, 38 ... First and second comparators, 39, 40 ...
1st, 2nd electric power measurement circuit, 41, 42 ... 1st, 2nd ice mixing ratio measurement circuit, 43, 44 ... 1st, 2nd ice volume measurement circuit, 45 ... Subtraction circuit, 46 ... Ice density γ, ice Setting circuit for the latent heat of fusion C, 47 ... Multiplying circuit, 48 ... Cold heat amount, 51, 52
And 53, 54 ... Transceiver.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 氷スラリーが流れる流管の管壁に対向し
て配設され、所定周波数のマイクロ波を前記氷スラリー
を介して送・受波する送波器および受波器と、前記氷ス
ラリーに含まれる氷濃度に応じて変化する前記受波器で
受波されたマイクロ波電力を、基準電力と等しくするよ
うに前記送波器の電力を制御する制御手段と、制御され
た送波器の電力を測定する送波器電力測定手段と、制御
された送波器の電力に基づいて前記氷スラリー中の氷体
積を演算する氷体積演算手段と、演算された氷体積に氷
密度を乗算し、氷スラリー質量を算出する乗算手段とか
らなることを特徴とする氷スラリー中の氷濃度測定装
置。
1. A wave transmitter and a wave receiver, which are arranged so as to face a wall of a flow tube through which ice slurry flows and which transmit and receive microwaves of a predetermined frequency through the ice slurry, and the ice. Controlling means for controlling the power of the wave transmitter so that the microwave power received by the wave receiver that changes according to the ice concentration contained in the slurry becomes equal to the reference power, and the controlled wave transmission. Transmitter power measuring means for measuring the power of the vessel, ice volume computing means for computing the ice volume in the ice slurry based on the controlled power of the transmitter, and the ice density for the computed ice volume. An apparatus for measuring ice concentration in ice slurry, comprising: a multiplication means for multiplying and calculating the mass of ice slurry.
【請求項2】 氷スラリーが流れる流管の上流から下流
側に向け、順次、氷スラリーの流量を測定する流量計
と、前記流管の流管壁に対向して配設され、所定周波数
のマイクロ波を前記氷スラリーを介して送・受波する第
1の送波器および受波器と、氷スラリーを熱媒体とする
熱交換器と、前記流管の流管壁に対向して配設され、前
記第1の送波器と等しい周波数のマイクロ波を前記氷ス
ラリーを介して送・受波する第2の送波器および受波器
とを配設した氷スラリー流路と;該氷スラリー流路内を
流れる水と氷の比誘電率および誘電損失角に比例して消
費されるマイクロ波電力から、前記第1の送波器および
受波器間の水と氷の混合比を演算する第1混合比演算手
段と、前記第2の送波器および受波器間の水と氷の混合
比を演算する第2の混合比演算手段と、前記流量計で計
測された氷スラリーの流量と前記第1・第2混合比混合
演算手段により算出された水と氷の混合比に基づいて、
前記熱交換器で溶解された氷の体積を算出する溶解氷量
演算手段と、予め知られた氷の密度および融解潜熱と前
記溶解された氷の体積とを乗算し、前記熱交換器で消費
された熱量を算出する乗算手段とを有する熱量演算手段
と;からなることを特徴とするカロリーメータ。
2. A flow meter for sequentially measuring the flow rate of the ice slurry from an upstream side to a downstream side of the flow tube through which the ice slurry flows, and a flow meter disposed to face the flow tube wall of the flow tube and having a predetermined frequency. A first wave transmitter and a wave receiver that transmit and receive microwaves through the ice slurry, a heat exchanger that uses the ice slurry as a heat medium, and a heat exchanger that faces the flow tube wall of the flow tube. An ice slurry channel provided with a second wave transmitter and a wave receiver that are provided for transmitting and receiving a microwave having a frequency equal to that of the first wave transmitter through the ice slurry; The mixing ratio of water and ice between the first transmitter and the receiver is calculated from the microwave power consumed in proportion to the relative permittivity and the dielectric loss angle of water and ice flowing in the ice slurry channel. A first mixing ratio calculating means for calculating and a second mixing ratio for calculating a mixing ratio of water and ice between the second transmitter and the receiver. Based on the mixing ratio calculation means, the flow rate of the ice slurry measured by the flow meter, and the mixing ratio of water and ice calculated by the first and second mixing ratio mixing calculation means,
The melted ice amount calculating means for calculating the volume of ice melted in the heat exchanger, the density and melting latent heat of ice known in advance and the volume of the melted ice are multiplied, and consumed by the heat exchanger. A calorie calculating means having a multiplying means for calculating the generated calorific value; and a calorimeter.
【請求項3】 前記流管断面を等分割に分割する直径を
挟んだ流管壁に対をなす前記送波器および受波器を複数
対配設し、前記流管を流れる氷スラリーの氷濃度を前記
複数対の送波器および受波器間の氷濃度の平均から求め
ることを特徴とする請求項1記載の氷濃度測定装置又は
請求項2記載のカロリーメータ。
3. Ice of ice slurry flowing through the flow tube, wherein a plurality of pairs of the wave transmitter and the wave receiver are arranged on a wall of the flow tube sandwiching a diameter that divides the cross section of the flow tube into equal parts. 3. The ice concentration measuring device according to claim 1, or the calorimeter according to claim 2, wherein the concentration is obtained from an average of ice concentrations between the plurality of pairs of wave transmitters and wave receivers.
JP4689194A 1994-03-17 1994-03-17 Measuring device of concentration of ice in ice slurry and calorimeter Pending JPH07260711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4689194A JPH07260711A (en) 1994-03-17 1994-03-17 Measuring device of concentration of ice in ice slurry and calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4689194A JPH07260711A (en) 1994-03-17 1994-03-17 Measuring device of concentration of ice in ice slurry and calorimeter

Publications (1)

Publication Number Publication Date
JPH07260711A true JPH07260711A (en) 1995-10-13

Family

ID=12759991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4689194A Pending JPH07260711A (en) 1994-03-17 1994-03-17 Measuring device of concentration of ice in ice slurry and calorimeter

Country Status (1)

Country Link
JP (1) JPH07260711A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004116A1 (en) * 2004-07-05 2006-01-12 Riken Water-containing material freezing/thawing apparatus and method therefor
CN107192635A (en) * 2017-06-14 2017-09-22 中国科学院遥感与数字地球研究所 The method and system of nondestructive measurement density of wood
JP2020159777A (en) * 2019-03-25 2020-10-01 株式会社コア電子 Real time measurement method for ice packing factor of slurry ice
CN117006563A (en) * 2023-09-27 2023-11-07 湖南大学 Cold accumulation amount detection system and method, air conditioning system and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004116A1 (en) * 2004-07-05 2006-01-12 Riken Water-containing material freezing/thawing apparatus and method therefor
CN107192635A (en) * 2017-06-14 2017-09-22 中国科学院遥感与数字地球研究所 The method and system of nondestructive measurement density of wood
CN107192635B (en) * 2017-06-14 2019-06-07 中国科学院遥感与数字地球研究所 The method and system of nondestructive measurement density of wood
JP2020159777A (en) * 2019-03-25 2020-10-01 株式会社コア電子 Real time measurement method for ice packing factor of slurry ice
CN117006563A (en) * 2023-09-27 2023-11-07 湖南大学 Cold accumulation amount detection system and method, air conditioning system and control method thereof
CN117006563B (en) * 2023-09-27 2024-01-23 湖南大学 Cold accumulation amount detection system and method, air conditioning system and control method thereof

Similar Documents

Publication Publication Date Title
US5610527A (en) Phase difference microwave densitometer and method which detects a number of phase rotations through a reference point
US4891969A (en) Oil/water ratio measurement
US20070124091A1 (en) Method and flow meter for determining the flow rate of a multiphase fluid
US4078428A (en) Measurement of fluid flow
CN109506730B (en) Thermal flowmeter
TW552403B (en) Flow rate measurement method, ultrasonic flow rate meter, flow velocity measurement method, temperature or pressure measurement method, and ultrasonic thermometer and pressure gauge
TW328113B (en) A microwave type concentration meter
US4300400A (en) Acoustic flowmeter with Reynolds number compensation
JPH07260711A (en) Measuring device of concentration of ice in ice slurry and calorimeter
KR20030063119A (en) Gas meter
GB2210977A (en) Ultrasonic gas composition measurement
CN108496075B (en) Method for determining a property of a medium and device for determining a property of a medium
RU2742526C1 (en) Liquid volumetric flow meter
US3097526A (en) fischbacher
JP2965712B2 (en) Densitometer
JP3156184B2 (en) Means and method for measuring water content by dual frequency microwave
RU2744484C1 (en) Liquid volume flow rate measuring device
JPH0850063A (en) Calorimeter system
JPS59133431A (en) Apparatus for measuring powder flow rate using microwave
RU2597666C1 (en) Method of measuring mass flow rate of liquid media
SU530181A1 (en) Calorimetric flow meter liquids
JPS5834765B2 (en) Karman vortex current meter
RU2758778C2 (en) Apparatus for measuring the mass flow rate of gaseous media
JPH03125924A (en) Microwave type powder flowmeter
Bailey et al. The comparison and calibration of power-measuring equipment at wavelengths of 3 cm and 10 cm