JP2965712B2 - Densitometer - Google Patents

Densitometer

Info

Publication number
JP2965712B2
JP2965712B2 JP659391A JP659391A JP2965712B2 JP 2965712 B2 JP2965712 B2 JP 2965712B2 JP 659391 A JP659391 A JP 659391A JP 659391 A JP659391 A JP 659391A JP 2965712 B2 JP2965712 B2 JP 2965712B2
Authority
JP
Japan
Prior art keywords
measured
phase difference
concentration
fluid
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP659391A
Other languages
Japanese (ja)
Other versions
JPH04238246A (en
Inventor
武 山浦
田中  誠
務 鈴木
郁男 荒井
均 長尾
征治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP659391A priority Critical patent/JP2965712B2/en
Publication of JPH04238246A publication Critical patent/JPH04238246A/en
Application granted granted Critical
Publication of JP2965712B2 publication Critical patent/JP2965712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は懸濁物質の濃度、例えば
汚泥濃度、パルプ濃度、又は液体中に溶解している物質
の濃度を測定する濃度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a densitometer for measuring the concentration of suspended matter, for example, the concentration of sludge, pulp, or the concentration of a substance dissolved in a liquid.

【0002】[0002]

【従来の技術】図7は従来の超音波式濃度計の構成図で
ある。配管01には超音波送信器02及び超音波受信器
03がそれぞれ対向配置されている。これら超音波送信
器02及び超音波受信器03はそれぞれ配管01の管壁
に配管01を流れる流体と接触するように設けられてい
る。かかる構成で超音波送信器02に超音波発振器04
から超音波信号が入力すると、超音波送信器02から超
音波が放射される。この超音波は流体中を伝播して超音
波受信器03で受信される。このとき、超音波の強度は
流体中の懸濁物質の濃度に応じて減衰する。超音波受信
器03は受信した超音波強度に応じた電気信号を出力
し、この電気信号は超音波減衰率測定回路05に送られ
る。この超音波減衰率測定回路05は懸濁物質の濃度と
この濃度に応じた超音波の減衰率との関係を示す検量線
が予め設定されており、入力した電気信号から減衰率を
求めて濃度を得る。
2. Description of the Related Art FIG. 7 is a block diagram of a conventional ultrasonic densitometer. An ultrasonic transmitter 02 and an ultrasonic receiver 03 are arranged opposite to each other on the pipe 01. The ultrasonic transmitter 02 and the ultrasonic receiver 03 are provided on the pipe wall of the pipe 01 so as to be in contact with the fluid flowing through the pipe 01. With such a configuration, the ultrasonic oscillator 02
When an ultrasonic signal is input from the, the ultrasonic transmitter 02 emits an ultrasonic wave. This ultrasonic wave propagates through the fluid and is received by the ultrasonic receiver 03. At this time, the intensity of the ultrasonic wave attenuates according to the concentration of the suspended substance in the fluid. The ultrasonic receiver 03 outputs an electric signal corresponding to the received ultrasonic intensity, and the electric signal is sent to the ultrasonic attenuation rate measuring circuit 05. In the ultrasonic attenuation rate measuring circuit 05, a calibration curve indicating the relationship between the concentration of the suspended substance and the attenuation rate of the ultrasonic wave corresponding to the concentration is set in advance, and the attenuation rate is obtained from the input electric signal to obtain the concentration. Get.

【0003】しかしながら、上記濃度計では次のような
問題がある。
However, the above densitometer has the following problems.

【0004】(1) 超音波の送受信器02、03が液体に
接触しているので、その接触面に懸濁物質が付着して測
定誤差の要因となり、定期的に洗浄する必要がある。特
に下水汚泥等の懸濁物質では付着しやすい。
(1) Since the ultrasonic transmitters / receivers 02 and 03 are in contact with the liquid, suspended substances adhere to the contact surfaces, causing measurement errors, and require periodic cleaning. In particular, it easily adheres to suspended substances such as sewage sludge.

【0005】(2) これに対して超音波の送受信器02、
03を配管01の外側に取り付けることがあるが、この
場合、配管01における取り付ける部分の肉厚を薄くし
なければならない。また、配管01の振動の影響を受け
やすく、誤差の要因となる。
(2) On the other hand, an ultrasonic transceiver 02,
03 may be attached to the outside of the pipe 01. In this case, the thickness of the attached portion of the pipe 01 must be reduced. In addition, it is easily affected by the vibration of the pipe 01 and causes an error.

【0006】(3) 超音波は液体中と比較して気体中では
減衰率が非常に大きくなる。このため、流体中に気泡が
混入していると、超音波の減衰が懸濁物質による減衰よ
りも格段に大きくなる。従って、測定不可能となった
り、又見掛け上非常な高濃度として測定される。そこ
で、消泡式の濃度計が用いられている。この濃度計は流
体をサンプリングして一旦加圧消泡室に入れて加圧し、
これにより気泡を溶け込ませて濃度を測定するものであ
る。ところが、この濃度計では流体をサンプリングする
ので、連続測定ができない。又、サンプリング及び加圧
を行うため機械的な可動機構が必要となり、長期的な信
頼性が低い。
(3) Ultrasonic waves have an extremely large attenuation rate in a gas as compared with a liquid. For this reason, when air bubbles are mixed in the fluid, the attenuation of the ultrasonic wave is much larger than that of the suspended substance. Therefore, it becomes impossible to measure, or it is measured as an apparently very high concentration. Therefore, a defoaming type densitometer is used. This densitometer samples the fluid and puts it in the pressurized defoaming chamber and pressurizes it.
In this way, the bubbles are dissolved and the concentration is measured. However, since the concentration meter samples the fluid, continuous measurement cannot be performed. In addition, a mechanical movable mechanism is required to perform sampling and pressurization, and the long-term reliability is low.

【0007】(4) 超音波が懸濁物質により分散されて減
衰することを利用しているので、懸濁物質が液体中に溶
解する物質の場合には適用できない。
(4) Since the method utilizes the fact that ultrasonic waves are dispersed and attenuated by a suspended substance, the method cannot be applied to a case where the suspended substance is a substance that dissolves in a liquid.

【0008】[0008]

【発明が解決しようとする課題】以上のように懸濁物質
の付着や液体中の気泡の影響を受け、かつ懸濁物質が液
体中に溶解する物質では測定に適用できず、長期的な信
頼性が低い。
As described above, substances which are affected by the adhesion of suspended substances or bubbles in liquid, and in which suspended substances are dissolved in liquid, cannot be applied to measurement, and have a long-term reliability. Poor.

【0009】そこで本発明は、懸濁物質の付着や液体中
の気泡の影響を受けず濃度測定ができ、かつ懸濁物質が
液体中に溶解する物質でも測定できる長期的な信頼性の
高い濃度計を提供することを目的とする。
Accordingly, the present invention provides a long-term reliable concentration that can measure a concentration without being affected by the adhesion of a suspended substance or bubbles in a liquid and can measure a substance in which a suspended substance is dissolved in a liquid. The purpose is to provide a total.

【0010】[0010]

【課題を解決するための手段】本発明は、被測定物質を
含む被測定流体の流れる配管又は流体を収納した容器を
介して対向配置されたマイクロ波の送受信器と、この送
信器から発射され被測定流体を通過し受信器にて受信さ
れたマイクロ波の位相遅れθ2 と、予め被測定物質を含
まない流体を用いて測定しておいた位相遅れθ1 との位
相差Δθつまり Δθ=θ2 −θ1 を求めることにより被測定流体の濃度を測定するもので
あって、
According to the present invention, there is provided a microwave transmitter / receiver which is disposed opposite to a pipe through which a fluid to be measured containing a substance to be measured flows or a container containing the fluid, and which is radiated from the transmitter / receiver. The phase difference Δθ between the phase delay θ2 of the microwave passing through the fluid to be measured and received by the receiver and the phase delay θ1 previously measured using a fluid not containing the substance to be measured, that is, Δθ = θ2 − By measuring θ1, the concentration of the fluid to be measured is measured.

【0011】被測定流体の導電率を測定し、予め測定し
ておいた被測定物質を含まない流体の導電率との差に基
づき位相差を補正する導電率による位相差補正手段を設
けている。
There is provided a phase difference correction means for measuring the conductivity of the fluid to be measured and correcting the phase difference based on the difference from the conductivity of the fluid which does not contain the substance to be measured, which has been measured in advance. .

【0012】[0012]

【0013】[0013]

【作用】このような手段を備えたことにより、送信器か
ら発射され被測定流体を通過し受信器にて受信されたマ
イクロ波の位相遅れθ2 と、予め被測定物質を含まない
流体を用いて測定しておいた位相遅れθ1 との位相差Δ
θつまり Δθ=θ2 −θ1 を求めることにより被測定流体の濃度が測定される。
By providing such means, the phase delay θ2 of the microwave emitted from the transmitter, passing through the fluid to be measured and received by the receiver, and the fluid containing no substance to be measured in advance can be used. Phase difference Δ from measured phase delay θ1
That is, the concentration of the fluid to be measured is measured by obtaining θ, that is, Δθ = θ2−θ1.

【0014】この場合、被測定流体の導電率を測定し、
予め測定しておいた被測定物質を含まない流体の導電率
との差に基づき位相差が補正される。
In this case, the conductivity of the fluid to be measured is measured,
The phase difference is corrected based on the difference from the previously measured conductivity of the fluid not containing the substance to be measured.

【0015】[0015]

【0016】[0016]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の濃度計の構成図である。配
管1、2の間には検出部配管3及び付属配管4がそれぞ
れ連通して接続されている。これら配管1、2と検出部
配管3及び付属配管4との接続部にはそれぞれ仕切弁
5、6が設けられている。又、付属配管4には水道管7
及び排水管8が接続され、これら配管7、8にそれぞれ
給水バルブ9、排水バルブ10が設けられている。
FIG. 1 is a configuration diagram of a densitometer of the present invention. Between the pipes 1 and 2, a detecting section pipe 3 and an auxiliary pipe 4 are connected to each other. Gate valves 5 and 6 are provided at connection portions between the pipes 1 and 2 and the detection section pipe 3 and the attached pipe 4, respectively. In addition, water pipe 7
And a drain pipe 8, and a water supply valve 9 and a drain valve 10 are provided in these pipes 7, 8, respectively.

【0018】検出部配管3にはマイクロ波の送信アンテ
ナ20及び受信アンテナ21が密着して取り付けられて
おり、これら送信アンテナ20及び受信アンテナ21は
検出部配管3を介して互いに対向位置に配置されてい
る。なお、これら送信アンテナ20及び受信アンテナ2
1が取り付けられる検出部配管3の部分は絶縁体、例え
ばファイバ・レジン・プラスチック(FRP)により形
成されている。
A microwave transmitting antenna 20 and a receiving antenna 21 are closely attached to the detecting section piping 3, and the transmitting antenna 20 and the receiving antenna 21 are arranged at positions facing each other via the detecting section piping 3. ing. The transmitting antenna 20 and the receiving antenna 2
The part of the detection part pipe 3 to which 1 is attached is formed of an insulator, for example, fiber resin plastic (FRP).

【0019】発振器22にはパワースプリッタ23が接
続されている。このパワースプリッタ23には送信アン
テナ20及び位相差測定回路24が接続されており、発
振器22から出力されたマイクロ波信号を分岐して送信
アンテナ20及び位相差測定回路24へ出力する。送信
アンテナ20はパワースプリッタ23から受けたマイク
ロ波信号により検出部配管3中にマイクロ波を発射す
る。このマイクロ波は検出部配管3中の流体を透過した
後、受信アンテナ21で受信され、受信アンテナ21は
受信信号として位相差測定回路24に出力する。
A power splitter 23 is connected to the oscillator 22. The transmitting antenna 20 and the phase difference measuring circuit 24 are connected to the power splitter 23, and branch the microwave signal output from the oscillator 22 to output to the transmitting antenna 20 and the phase difference measuring circuit 24. The transmitting antenna 20 emits a microwave into the detection unit pipe 3 based on the microwave signal received from the power splitter 23. The microwave passes through the fluid in the detector pipe 3 and is received by the receiving antenna 21. The receiving antenna 21 outputs the microwave to the phase difference measuring circuit 24 as a received signal.

【0020】位相差測定回路24は受信アンテナ21が
出力する受信信号とパワースプリッタ23から送られる
マイクロ波信号との位相遅れθ2 と、予め被測定物質を
含まない流体、例えば水道水で求めた位相遅れθ1 との
位相差Δθつまり Δθ=θ2 −θ1 …(1) を求める。ここで、(1) 式における位相差θ2 、θ1 は
それぞれ次式の通り表される。
The phase difference measurement circuit 24 calculates the phase delay θ 2 between the reception signal output from the reception antenna 21 and the microwave signal transmitted from the power splitter 23 and the phase delay previously obtained from a fluid containing no substance to be measured, for example, tap water. The phase difference Δθ from the delay θ 1, that is, Δθ = θ 2 −θ 1 (1) is obtained. Here, the phase differences θ2 and θ1 in the equation (1) are respectively expressed by the following equations.

【0021】[0021]

【数1】 (Equation 1)

【0022】従って、上記(1) 式、(2) 式及び(3) 式か
ら位相差Δθは、
Accordingly, from the above equations (1), (2) and (3), the phase difference Δθ is

【0023】[0023]

【数2】 (Equation 2)

【0024】により表される。Is represented by

【0025】この式において、C0 は真空中での電波の
伝播速度、dは被測定液層の厚さ(距離)、ωはマイク
ロ波の角周波数、εs は被測定液の比誘電率、ε0 は真
空の比誘電率、εw は被測定物質の濃度0%の流体の比
誘電率、σは被測定液の導電率、σw は被測定物質の濃
度0%の流体の導電率である。
In this equation, C0 is the propagation speed of a radio wave in a vacuum, d is the thickness (distance) of the liquid layer to be measured, ω is the angular frequency of the microwave, εs is the relative permittivity of the liquid to be measured, ε0 Is the relative dielectric constant of a vacuum, εw is the relative dielectric constant of a fluid having a concentration of the substance to be measured of 0%, σ is the conductivity of the liquid to be measured, and σw is the conductivity of the fluid having a concentration of 0% of the substance to be measured.

【0026】又、付属配管4には導電率検出器25及び
温度検出器26が配設されている。これら導電率検出器
25及び温度検出器26は付属配管4内を流れる流体と
接触するように取り付けられている。そして、これら導
電率検出器25及び温度検出器26はそれぞれ信号変換
回路27、28を介して補正演算回路29に接続されて
いる。
Further, a conductivity detector 25 and a temperature detector 26 are provided in the attached pipe 4. The conductivity detector 25 and the temperature detector 26 are mounted so as to be in contact with the fluid flowing in the attached pipe 4. The conductivity detector 25 and the temperature detector 26 are connected to a correction operation circuit 29 via signal conversion circuits 27 and 28, respectively.

【0027】この補正演算回路29は流体の導電率及び
温度による影響を補正する機能を有している。これは、
上記式において位相差Δθが導電率σ及び温度の影響を
受けることを解決するもので、例えば先ず導電率につい
て説明すると、下水汚泥濃度測定の場合には基準となる
濃度測定法が乾燥重量測定法なので、液体中に溶解して
いる成分(イオン成分等)に起因する導電率σの影響を
除くものである。
The correction operation circuit 29 has a function of correcting the influence of the fluid conductivity and temperature. this is,
This solves the fact that the phase difference Δθ is affected by the conductivity σ and the temperature in the above equation. For example, first, the conductivity will be described. In the case of sewage sludge concentration measurement, the reference concentration measurement method is a dry weight measurement method. Therefore, the influence of the conductivity σ due to components (ionic components and the like) dissolved in the liquid is excluded.

【0028】実際に補正演算回路29には例えば図2に
示すように導電率σと位相差補正値Δθσとの関係が記
憶されている。
The actual correction relation of the arithmetic circuit 29 and a conductivity sigma, as shown in FIG. 2, for example the phase difference correction value [Delta] [theta] sigma is stored.

【0029】図2の関係は水に塩化ナトリウムなどを溶
解し、導電率σを変えて、測定した結果である。従っ
て、補正演算回路29は位相差測定回路24により測定
された位相差Δθから位相差補正値Δθσを差し引いて
位相差Δθ´とする導電率補正手段としての機能を有し
ている。
The relationship shown in FIG. 2 is a result obtained by dissolving sodium chloride or the like in water and changing the conductivity σ. Accordingly, the correction operation circuit 29 has a function as a conductivity correction unit that subtracts the phase difference correction value Δθ σ from the phase difference Δθ measured by the phase difference measurement circuit 24 to obtain a phase difference Δθ ′.

【0030】次に温度について説明すると、流体の比誘
電率εs は温度によって変化し、位相差Δθに影響を与
える。そこで、補正演算回路29には図3に示す温度差
Δtと位相差補正値Δθεとの関係が予め記憶されてい
る。この関係は温度差Δtと位相差補正値Δθεとの測
定結果である。従って、補正演算回路29は位相差測定
回路24により測定された位相差Δθから位相差補正値
Δθεを差し引いて位相差Δθ´とする温度補正手段と
しての機能を有している。
Next, the temperature will be described. The relative dielectric constant εs of the fluid changes depending on the temperature, which affects the phase difference Δθ. Therefore, the relationship between the temperature difference Δt and the phase difference correction value Δθε shown in FIG. 3 is stored in the correction calculation circuit 29 in advance. This relationship is a measurement result of the temperature difference Δt and the phase difference correction value Δθε. Accordingly, the correction operation circuit 29 has a function as a temperature correction means for subtracting the phase difference correction value Δθε from the phase difference Δθ measured by the phase difference measurement circuit 24 to obtain a phase difference Δθ ′.

【0031】さらに補正演算回路29は導電率及び温度
に対する各補正を同時に行う機能を有し、 Δθ´=Δθ−Δθσ−Δθε なる式により補正した位相差を求めることができる。
Further, the correction operation circuit 29 has a function of simultaneously performing each correction for the conductivity and the temperature, and can obtain the corrected phase difference by the following equation: Δθ ′ = Δθ−Δθσ−Δθε.

【0032】信号変換回路30には図4に示す位相差Δ
θ´と濃度との関係が予め設定され、補正演算回路29
により補正された位相差Δθ´から濃度を求めこの濃度
に対応した電流信号を出力する機能を有している。
The signal conversion circuit 30 has a phase difference Δ shown in FIG.
The relationship between θ ′ and the density is set in advance, and the correction operation circuit 29
Has a function of obtaining a density from the phase difference Δθ ′ corrected by the above and outputting a current signal corresponding to the density.

【0033】次に上記の如く構成された装置の作用につ
いて説明する。
Next, the operation of the above-configured device will be described.

【0034】先ず、濃度0%の液体、この場合は水道水
での受信波遅れθ1 を測定する。そのためには、汚泥が
流れている配管1、2の仕切弁5、6を閉じて汚泥を止
める。なお、汚泥の流れを止められない場合はバイパス
管を設けておき、汚泥の流れをバイパス管へ切換えお
く。次に排水バルブ10を開き検出部配管3及び付属配
管4内の汚泥を排出し、次に給水バルブ9を開いて水道
水を検出部配管3及び付属配管4内に供給する。そし
て、検出部配管3及び付属配管4内を洗浄した後に、こ
れら検出部配管3及び付属配管4内を水道水で満たす。
First, the reception wave delay θ 1 of a liquid having a concentration of 0%, in this case, tap water is measured. For this purpose, the gate valves 5 and 6 of the pipes 1 and 2 through which the sludge flows are closed to stop the sludge. If the flow of sludge cannot be stopped, a bypass pipe is provided, and the flow of sludge is switched to the bypass pipe. Next, the drain valve 10 is opened to discharge the sludge in the detector pipe 3 and the auxiliary pipe 4, and then the water supply valve 9 is opened to supply tap water into the detector pipe 3 and the auxiliary pipe 4. Then, after cleaning the inside of the detection unit pipe 3 and the attachment pipe 4, the inside of the detection unit pipe 3 and the attachment pipe 4 is filled with tap water.

【0035】この状態でマイクロ波発振器22からマイ
クロ波信号を出力する。このマイクロ波信号はパワース
プリッタ23により2方向に分岐され、その一方がマイ
クロ波アンテナ20に送られるとともに、他方が位相差
測定回路24に送られる。マイクロ波アンテナ20はマ
イクロ波を放射し、このマイクロ波は図5に示すように
検出部配管3を透過し、水道水を伝播して受信アンテナ
21に到達する。この受信アンテナ21は受信したマイ
クロ波に応じた信号を出力する。このとき、位相差測定
回路24は受信アンテナ21の出力信号とパワースプリ
ッタ23からのマイクロ波信号との位相遅れθ1 を求め
て記憶する。
In this state, a microwave signal is output from the microwave oscillator 22. This microwave signal is split in two directions by the power splitter 23, one of which is sent to the microwave antenna 20 and the other is sent to the phase difference measuring circuit 24. The microwave antenna 20 emits microwaves, and the microwaves pass through the detector pipe 3 as shown in FIG. 5, propagate through tap water, and reach the reception antenna 21. The receiving antenna 21 outputs a signal corresponding to the received microwave. At this time, the phase difference measuring circuit 24 calculates and stores the phase delay θ1 between the output signal of the receiving antenna 21 and the microwave signal from the power splitter 23.

【0036】又、導電率検出器25で測定した濃度ゼロ
の液体、ここでは水の導電率と温度検出器26で測定し
た濃度ゼロの液体、ここでは水の温度を記憶しておく。
In addition, the zero concentration liquid measured by the conductivity detector 25, here, the conductivity of water and the zero concentration liquid measured by the temperature detector 26, here, the temperature of water are stored.

【0037】次に排水バルブ10を開いて検出部配管3
及び付属配管4内の水道水を排出し、次に各仕切弁5、
6を開いて汚泥を検出部配管3及び付属配管4内に流
す。
Next, the drain valve 10 is opened, and the detection section piping 3
And drain the tap water in the attached pipe 4, then each gate valve 5,
6 is opened to flow sludge into the detector pipe 3 and the auxiliary pipe 4.

【0038】この状態でマイクロ波発振器22からマイ
クロ波信号を出力する。このマイクロ波信号は上記同様
にマイクロ波アンテナ20に送られるとともに、位相差
測定回路24に送られる。マイクロ波アンテナ20はマ
イクロ波を放射し、このマイクロ波は図6に示すように
汚泥内を伝播して受信アンテナ21に到達する。この受
信アンテナ21は受信したマイクロ波に応じた信号を出
力する。このとき、位相差測定回路24は受信アンテナ
21の出力信号とパワースプリッタ23からのマイクロ
波信号との位相遅れθ2 を求めて記憶する。
In this state, a microwave signal is output from the microwave oscillator 22. This microwave signal is sent to the microwave antenna 20 and the phase difference measurement circuit 24 in the same manner as described above. The microwave antenna 20 emits microwaves, and the microwaves propagate through the sludge and reach the receiving antenna 21 as shown in FIG. The receiving antenna 21 outputs a signal corresponding to the received microwave. At this time, the phase difference measuring circuit 24 obtains and stores the phase delay θ2 between the output signal of the receiving antenna 21 and the microwave signal from the power splitter 23.

【0039】次に位相差測定回路24は水道水及び汚泥
のときの各位相遅れθ1 、θ2 の差つまり位相差Δθ Δθ=θ2 −θ1 を求める。この位相差Δθは補正演算回路29に送られ
る。
Next, the phase difference measuring circuit 24 obtains the difference between the phase delays θ1 and θ2 for tap water and sludge, that is, the phase difference Δθ Δθ = θ2−θ1. This phase difference Δθ is sent to the correction operation circuit 29.

【0040】一方、導電率検出器25により検出された
汚泥の導電率は信号変換回路27により導電率に応じた
導電率信号に変換されて補正演算回路29に送られ、こ
れとともに温度検出器26により検出された汚泥の温度
は信号変換回路27により温度に応じた温度信号に変換
されて補正演算回路29に送られる。
On the other hand, the conductivity of the sludge detected by the conductivity detector 25 is converted into a conductivity signal corresponding to the conductivity by a signal conversion circuit 27 and sent to a correction operation circuit 29, and the temperature detector 26 Is converted into a temperature signal corresponding to the temperature by the signal conversion circuit 27 and sent to the correction operation circuit 29.

【0041】この補正演算回路29は導電率及び温度の
補正を行わなければ位相差Δθを信号変換回路30に送
る。
The correction operation circuit 29 sends the phase difference Δθ to the signal conversion circuit 30 unless the conductivity and temperature are corrected.

【0042】この信号変換回路30は位相差Δθを受け
ると図4に示す位相差Δθと濃度との関係から汚泥の濃
度を求め、この濃度に応じた電流信号を出力する。この
電流信号は例えば濃度0〜10%であれば、4〜20m
Aに対応する。
When the signal conversion circuit 30 receives the phase difference Δθ, it obtains the sludge concentration from the relationship between the phase difference Δθ and the concentration shown in FIG. 4, and outputs a current signal corresponding to this concentration. This current signal is, for example, 4 to 20 m if the concentration is 0 to 10%.
Corresponds to A.

【0043】又、導電率の補正を行う場合、補正演算回
路29は導電率信号を受けて図2に示す予め測定して記
憶しておいた濃度ゼロの液体の導電率との導電率差と位
相差補正値Δθσとの関係から位相差補正値Δθσを求
め、位相差Δθと位相差補正値Δθσとの差Δθ´ Δθ´=Δθ−Δθσ を求める。この位相差Δθ´は信号変換回路30に送ら
れ、この信号変換回路30は図4に示す位相差Δθ´と
濃度との関係から汚泥の濃度を求め、この濃度に応じた
電流信号を出力する。
When the conductivity is corrected, the correction operation circuit 29 receives the conductivity signal and calculates a difference between the conductivity of the zero-concentration liquid measured and stored in advance as shown in FIG. obtains a phase difference correction value [Delta] [theta] sigma from the relationship between the phase difference correction value [Delta] [theta] sigma, finding the difference Δθ'Δθ' = Δθ-Δθ σ the phase difference [Delta] [theta] and the phase difference correction value [Delta] [theta] sigma. The phase difference Δθ ′ is sent to the signal conversion circuit 30. The signal conversion circuit 30 determines the sludge concentration from the relationship between the phase difference Δθ ′ and the concentration shown in FIG. 4, and outputs a current signal corresponding to the concentration. .

【0044】又、温度の補正を行う場合、補正演算回路
29は温度信号を受けて図3に示す予め測定して記憶し
ておいた濃度ゼロの液体の温度との温度差と位相差補正
値Δθt との関係から位相差補正値Δθεを求め位相差
Δθと位相差補正値Δθεとの差Δθ´ Δθ´=Δθ−Δθε を求める。この位相差Δθ´は信号変換回路30に送ら
れ、この信号変換回路30は図4に示す位相差Δθ´と
濃度との関係から汚泥の濃度を求め、この濃度に応じた
電流信号を出力する。
When the temperature is corrected, the correction arithmetic circuit 29 receives the temperature signal and measures the temperature difference between the temperature of the zero-concentration liquid and the phase difference correction value, which is measured and stored in advance as shown in FIG. The phase difference correction value Δθε is determined from the relationship with Δθt, and the difference Δθ ′ Δθ ′ = Δθ−Δθε between the phase difference Δθ and the phase difference correction value Δθε is determined. The phase difference Δθ ′ is sent to the signal conversion circuit 30. The signal conversion circuit 30 determines the sludge concentration from the relationship between the phase difference Δθ ′ and the concentration shown in FIG. 4, and outputs a current signal corresponding to the concentration. .

【0045】又、導電率及び温度の補正を共に行う場
合、補正演算回路29は導電信号及び温度信号を受けて
上記同様に各位相差補正値Δθσ及びΔθεを求め、位
相差Δθと各位相差補正値Δθσ及びΔθεとの差Δθ
´ Δθ´=Δθ−Δθσ−Δθε を求める。この位相差Δθ´は信号変換回路30に送ら
れ、この信号変換回路30は図4に示す位相差Δθ´と
濃度との関係から汚泥の濃度を求め、この濃度に応じた
電流信号を出力する。
When the conductivity and the temperature are corrected together, the correction operation circuit 29 receives the conductive signal and the temperature signal, calculates the phase difference correction values Δθ σ and Δθε in the same manner as described above, and calculates the phase difference Δθ and the phase difference correction values. Difference Δθ from values Δθ σ and Δθε
Seek 'Δθ' = Δθ-Δθ σ -Δθε . The phase difference Δθ ′ is sent to the signal conversion circuit 30. The signal conversion circuit 30 determines the sludge concentration from the relationship between the phase difference Δθ ′ and the concentration shown in FIG. 4, and outputs a current signal corresponding to the concentration. .

【0046】このように上記一実施例においては、受信
アンテナ21の出力信号とマイクロ波信号との位相差Δ
θを求め、この位相差Δθから汚泥に含まれる被測定物
質の濃度を求めるようにしたので、汚泥に含まれる懸濁
物質の付着や汚泥中の気泡の影響を受けず濃度測定がで
き、かつ懸濁物質が液体中に溶解する物質でも濃度測定
ができる。そのうえ機械的な機構がないので、長期的な
信頼性を向上できる。
As described above, in the above embodiment, the phase difference Δ between the output signal of the receiving antenna 21 and the microwave signal is obtained.
Since θ is determined and the concentration of the substance to be measured contained in the sludge is obtained from the phase difference Δθ, the concentration can be measured without being affected by the adhesion of the suspended solid contained in the sludge and the bubbles in the sludge, and The concentration can be measured even for a substance in which a suspended substance dissolves in a liquid. In addition, since there is no mechanical mechanism, long-term reliability can be improved.

【0047】又、汚泥の導電率を測定して位相差Δθを
補正するので、汚泥に溶解しているイオン成分等に起因
する導電率の影響をなくすことができる。
Further, since the phase difference Δθ is corrected by measuring the conductivity of the sludge, it is possible to eliminate the influence of the conductivity caused by the ionic components dissolved in the sludge.

【0048】又、汚泥の温度を測定して位相差Δθを補
正するので、温度により比誘電率が変化してもその影響
をなくして正確な濃度測定ができる。
Further, since the phase difference Δθ is corrected by measuring the temperature of the sludge, even if the relative permittivity changes due to the temperature, the effect can be eliminated and the concentration can be accurately measured.

【0049】さらに汚泥の導電率及び温度を測定して位
相差Δθを補正するので、汚泥に溶解しているイオン成
分等に起因する導電率の影響と温度による比誘電率の変
化の影響とを共になくすことができる。
Further, since the phase difference Δθ is corrected by measuring the electric conductivity and temperature of the sludge, the influence of the electric conductivity caused by the ionic component dissolved in the sludge and the effect of the change of the relative dielectric constant due to the temperature are eliminated. Both can be eliminated.

【0050】なお、本発明は上記一実施例に限定される
ものでなくその要旨を変更しない範囲で変形してもよ
い。例えば、上記一実施例では汚泥は流れている状態で
測定したが、静止している状態で濃度測定してもよい。
又、汚泥に限らず他の流体の濃度測定にも適用できる。
又、実施例では濃度0%の液体を基準とするように述べ
たが、厳密にゼロでなくても測定範囲から考えて濃度ゼ
ロとみなせる液体を基準としてもよいし、ある既知濃度
の被測定物質を含むものを基準としてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and may be modified without changing the gist of the present invention. For example, in the above embodiment, the sludge is measured in a flowing state, but the concentration may be measured in a stationary state.
Further, the present invention can be applied not only to sludge but also to concentration measurement of other fluids.
Further, in the embodiment, the description has been made based on the liquid having a concentration of 0%. However, a liquid which can be regarded as zero concentration in consideration of the measurement range without being strictly zero may be used as a reference, or a liquid having a certain known concentration may be measured. A substance containing a substance may be used as a reference.

【0051】[0051]

【発明の効果】以上詳記したように本発明によれば、懸
濁物質が付着や液体中の気泡の影響を受けず濃度測定が
でき、かつ懸濁物質が液体中に溶解する物質でも測定で
きる長期的な信頼性の高い濃度計を提供できる。
As described above in detail, according to the present invention, the concentration can be measured without being affected by the adhesion of suspended substances or bubbles in the liquid, and the measurement can be performed even on substances in which the suspended substance is dissolved in the liquid. A long-term reliable concentration meter that can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる濃度計の一実施例を示す構成
図。
FIG. 1 is a configuration diagram showing one embodiment of a densitometer according to the present invention.

【図2】同濃度計における導電率と位相差との関係を示
す図。
FIG. 2 is a diagram showing a relationship between conductivity and a phase difference in the densitometer.

【図3】同濃度計における温度と位相差との関係を示す
図。
FIG. 3 is a diagram showing a relationship between a temperature and a phase difference in the densitometer.

【図4】同濃度計における濃度と位相差との関係を示す
図。
FIG. 4 is a view showing a relationship between a density and a phase difference in the densitometer.

【図5】同濃度計におけるマイクロ波伝播を示す図。FIG. 5 is a diagram showing microwave propagation in the densitometer.

【図6】同濃度計におけるマイクロ波伝播を示す図。FIG. 6 is a diagram showing microwave propagation in the densitometer.

【図7】従来技術の構成図である。FIG. 7 is a configuration diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1,2…配管、3…検出部配管、4…付属配管、5,6
…仕切弁、9…給水バルブ、10…排水バルブ、20…
送信アンテナ、21…受信アンテナ、22…マイクロ波
発振器、23…パワースプリッタ、24…位相差測定回
路、25…導電率検出器、26…温度検出器、29…補
正演算回路、30…信号変換回路。
1, 2, ... pipe, 3 ... detector section pipe, 4 ... attached pipe, 5, 6
... gate valve, 9 ... water supply valve, 10 ... drain valve, 20 ...
Transmission antenna, 21 ... Reception antenna, 22 ... Microwave oscillator, 23 ... Power splitter, 24 ... Phase difference measurement circuit, 25 ... Conductivity detector, 26 ... Temperature detector, 29 ... Correction operation circuit, 30 ... Signal conversion circuit .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 郁男 東京都世田谷区船橋一丁目48番31号 (72)発明者 長尾 均 東京都港区芝浦一丁目1番1号 株式会 社東芝本社事務所内 (72)発明者 山口 征治 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (56)参考文献 特開 平2−298843(JP,A) 特開 平3−221851(JP,A) 特開 昭60−25446(JP,A) 特開 昭56−43540(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 22/00 - 22/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ikuo Arai 1-48-31, Funabashi, Setagaya-ku, Tokyo (72) Inventor Hitoshi Nagao 1-1-1, Shibaura, Minato-ku, Tokyo Inside the Toshiba head office (72) Inventor Seiji Yamaguchi 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant Co., Ltd. (56) References JP-A-2-298843 (JP, A) JP-A-3-221185 (JP, A) JP-A-60-25446 (JP, A) JP-A-56-43540 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 22/00-22/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定物質を含む被測定流体の流れる配
管又は前記流体を収納した容器を介して対向配置された
マイクロ波の送受信器と、この送信器から発射され前記
被測定流体を通過し前記受信器にて受信されたマイクロ
波の位相遅れθ2 と、予め前記被測定物質を含まない流
体を用いて測定しておいた位相遅れθ1 との位相差Δθ
つまりΔθ=θ2 −θ1 を求めることにより前記被測定
流体の濃度を測定するものであって、前記被測定流体の
導電率を測定し、予め測定しておいた被測定物質を含ま
ない前記流体の導電率との差に基づき前記位相差を補正
する導電率による位相差補正手段を設けたことを特徴と
する濃度計。
1. A microwave transmitter / receiver opposed to a pipe through which a fluid to be measured containing a substance to be measured flows or a container containing the fluid, and a microwave radiated from the transmitter and passed through the fluid to be measured. The phase difference Δθ between the phase delay θ2 of the microwave received by the receiver and the phase delay θ1 previously measured using the fluid not containing the substance to be measured.
That is, the concentration of the fluid to be measured is measured by obtaining Δθ = θ2−θ1, and the conductivity of the fluid to be measured is measured, and the fluid of the fluid not containing the material to be measured which has been measured in advance is measured. A densitometer comprising a conductivity phase difference correcting means for correcting the phase difference based on a difference from the conductivity.
JP659391A 1991-01-23 1991-01-23 Densitometer Expired - Lifetime JP2965712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP659391A JP2965712B2 (en) 1991-01-23 1991-01-23 Densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP659391A JP2965712B2 (en) 1991-01-23 1991-01-23 Densitometer

Publications (2)

Publication Number Publication Date
JPH04238246A JPH04238246A (en) 1992-08-26
JP2965712B2 true JP2965712B2 (en) 1999-10-18

Family

ID=11642635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP659391A Expired - Lifetime JP2965712B2 (en) 1991-01-23 1991-01-23 Densitometer

Country Status (1)

Country Link
JP (1) JP2965712B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083408A1 (en) * 2004-02-27 2005-09-09 Daprox Ab Process and gauge for measuring fiber concentration
JP5260840B2 (en) * 2006-05-25 2013-08-14 株式会社東芝 Microwave densitometer
JP5361124B2 (en) * 2006-10-31 2013-12-04 株式会社東芝 Electromagnetic physical quantity measuring device
JP2013213833A (en) * 2013-07-12 2013-10-17 Toshiba Corp Electromagnetic wave physical quantity measurement device

Also Published As

Publication number Publication date
JPH04238246A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
JP3139874B2 (en) Densitometer
JP3160428B2 (en) Densitometer
US7908930B2 (en) Systems and methods for measuring multiphase flow in a hydrocarbon transporting pipeline
JP3160474B2 (en) Microwave densitometer
NO324812B1 (en) Method and apparatus for tomographic multiphase flow measurements
JP2000111499A (en) Microwave concentration-measuring device
CN109085186B (en) Microwave ranging method-based oil-water two-phase flow water holding rate detection device and method
US4888547A (en) Meter using a microwave bridge detector for measuring fluid mixtures
JP2965712B2 (en) Densitometer
JP3199815B2 (en) Densitometer
JP3629252B2 (en) Microwave concentration measuring device
KR100320329B1 (en) Densitometer using microwave
JPH05281131A (en) Concentration measuring method and densitometer
JP2002357566A (en) Microwave concentration-measuring instrument
JPH1183758A (en) Densitometer
JP3311230B2 (en) Microwave densitometer
JP2003139722A (en) Microwave type concentration
JP3474509B2 (en) Microwave concentration measurement device
JPH06129998A (en) Concentration meter
JPS59133431A (en) Apparatus for measuring powder flow rate using microwave
JPH1019620A (en) Flow measuring device
JP2001255285A (en) Microwave type concentration meter
JP2001242099A (en) Microwave type concentration meter
JPH0791996A (en) Ultrasonic flowmeter
JPH0666620A (en) Ultrasonic level indicator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20070813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12