JPH07260489A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JPH07260489A
JPH07260489A JP6049047A JP4904794A JPH07260489A JP H07260489 A JPH07260489 A JP H07260489A JP 6049047 A JP6049047 A JP 6049047A JP 4904794 A JP4904794 A JP 4904794A JP H07260489 A JPH07260489 A JP H07260489A
Authority
JP
Japan
Prior art keywords
tuning fork
axis direction
side tuning
angular velocity
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6049047A
Other languages
Japanese (ja)
Other versions
JP3244924B2 (en
Inventor
Tomio Yoshida
登美男 吉田
Nobuhisa Atoji
信久 跡地
Toshihiko Ichise
俊彦 市瀬
Jiro Terada
二郎 寺田
Atsushi Otomo
惇 大友
Haruyoshi Ota
治良 太田
Koichiro Ota
紘一郎 太田
Minoru Ishihara
実 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Panasonic Holdings Corp
Original Assignee
Nihon Dempa Kogyo Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP04904794A priority Critical patent/JP3244924B2/en
Publication of JPH07260489A publication Critical patent/JPH07260489A/en
Application granted granted Critical
Publication of JP3244924B2 publication Critical patent/JP3244924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To provide an angle velocity sensor which has a wide temperature range, has a small change in temperature offset output, and is inexpensive. CONSTITUTION:First and second tuning fork type crystal vibrators 21 and 26 wherein electrodes 22 and 27 are provided on the peripheral surface of vibration arms 24, 25; 29, 30 of a nearly U-shaped tuning fork type crystal blank with a shape in that symmetrical vibration arms 24, 25;29, 30 of a square section are connected in one piece in parallel by supporting parts 23 and 28 are sealed at supporting parts 23 and 28 via a bonding group 31 while they oppose in parallel. The first tuning fork type crystal vibrator 21 is used as a drive side tuning fork and the second tuning fork crystal vibrator 26 is used as a detection side tuning fork and the vibration according to the Coriolis force of the drive side tuning fork is transferred to the detection side tuning fork. The detection side tuning fork detects the electrical signal according to the transferred vibration via the electrode 27 and detects an angular velocity from that level. The first tuning fork type crystal vibrator 21 is cut within XY surface of crystal axes X, Y, and Z and the second tuning fork type crystal vibrator 26 is cut within the YZ surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車・航空機・船舶
・車両等の移動体の姿勢制御やナビゲーションシステム
に用いる角速度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor used for a posture control and navigation system of a moving body such as an automobile, an aircraft, a ship and a vehicle.

【0002】[0002]

【従来の技術】従来の角速度センサとしては、特公昭4
ー1853号に、「板状圧電体の駆動部と、板状圧電体
の検知部とを直交して容量結合を遮断するように結合配
置するとともに、交流駆動電圧の印加により駆動部を振
動させたときにその振動方向と直交する方向の検知部の
屈曲状態を検出して角速度を得る」構成が開示されてい
る。
2. Description of the Related Art As a conventional angular velocity sensor, Japanese Patent Publication No.
No. 1853, "A drive unit of a plate-shaped piezoelectric body and a detection unit of the plate-shaped piezoelectric body are arranged so as to be orthogonal to each other so as to cut off capacitive coupling, and the drive unit is vibrated by applying an AC drive voltage. In that case, the bending state of the detection unit in the direction orthogonal to the vibration direction is detected to obtain the angular velocity. "

【0003】以下に、この従来の角速度センサを図を用
いて説明する。図13は、従来の角速度センサの斜視図
である。図13において、1,1′は2枚の圧電体を接
着剤等で張り合わせた駆動用圧電バイモルフ(駆動部)
で、2,2′は駆動用圧電バイモルフ1,1′と同様に
2枚の圧電体を張り合わせた検知用圧電バイモルフ(検
知部)で、駆動用圧電バイモルフ1,1′と検知用圧電
バイモルフ2,2′とは互いに直交するように金属継手
3,3′によりそれぞれ一体固定されている。7,7′
は駆動用圧電バイモルフ1,1′と金属継手3,3′と
の間にそれぞれ介在する絶縁体、8,8′は検知用圧電
バイモルフ2,2′と金属継手3,3′との間にそれぞ
れ介在する絶縁体である。9,9′は駆動用圧電バイモ
ルフ1,1′の一面の圧電体と金属継手3,3′とをそ
れぞれ接続するリード線、10,10′は検知用圧電バ
イモルフ2,2′と金属継手3,3′とをそれぞれ接続
するリード線、11,11′は駆動用圧電バイモルフ
1,1′の他面の圧電体にそれぞれ接続するリード線、
12,12′は検知用圧電バイモルフ2,2′の他面の
圧電体にそれぞれ接続するリード線である。
The conventional angular velocity sensor will be described below with reference to the drawings. FIG. 13 is a perspective view of a conventional angular velocity sensor. In FIG. 13, reference numerals 1 and 1'denotes a driving piezoelectric bimorph (driving section) in which two piezoelectric bodies are bonded together with an adhesive or the like.
2, 2'is a detection piezoelectric bimorph (detection section) in which two piezoelectric bodies are bonded together like the drive piezoelectric bimorph 1, 1 '. The drive piezoelectric bimorph 1, 1'and the detection piezoelectric bimorph 2 , 2'are integrally fixed by metal joints 3, 3'so that they are orthogonal to each other. 7,7 '
Is an insulator interposed between the driving piezoelectric bimorph 1,1 'and the metal joint 3,3', and 8,8 'is between the detecting piezoelectric bimorph 2,2' and the metal joint 3,3 '. Insulators are respectively interposed. Reference numerals 9 and 9'are lead wires for connecting the piezoelectric body on one surface of the driving piezoelectric bimorphs 1 and 1 and the metal joints 3 and 3 ', and 10 and 10' are detection piezoelectric bimorphs 2 and 2'and the metal joint 3 respectively. , 3'respectively connecting lead wires, 11 and 11'respectively connecting lead wires to the piezoelectric body on the other surface of the driving piezoelectric bimorph 1, 1 ',
Reference numerals 12 and 12 'are lead wires respectively connected to the piezoelectric bodies on the other surface of the detecting piezoelectric bimorphs 2 and 2'.

【0004】また、駆動用圧電バイモルフ1,1′の内
側の一面の圧電体は金属端子4に、溶接、半田等で固定
され、この金属継手3,3′は金属端子4を介して接地
されている。そして、駆動用圧電バイモルフ1,1′に
は、リード線11,11′を介して交流駆動電圧を印加
するようにしている。また、検知用圧電バイモルフ2,
2′の屈曲による検知信号はリード線12,12′から
取り出されるようになっている。
The piezoelectric body on the inner surface of the driving piezoelectric bimorph 1, 1'is fixed to the metal terminal 4 by welding, soldering or the like, and the metal joints 3, 3'are grounded via the metal terminal 4. ing. An AC driving voltage is applied to the driving piezoelectric bimorphs 1 and 1'via lead wires 11 and 11 '. In addition, the detection piezoelectric bimorph 2,
The detection signal due to the bending of 2'is taken out from the lead wires 12 and 12 '.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来例の構成では、駆動用圧電バイモルフ1,1′、検知
用圧電バイモルフ2,2′は、2枚の圧電体を接着剤等
で張り合わせて構成しているため、外界の温度変化や接
着剤等の熱膨張や折り曲げた金属板の直交角度が変化す
るので、入力角速度が0のとき、温度変化により出力値
が変動する温度ドリフトの変動が大きいという問題を有
していた。
However, in the configuration of the above-mentioned conventional example, the driving piezoelectric bimorphs 1 and 1'and the detecting piezoelectric bimorphs 2 and 2'are constructed by bonding two piezoelectric bodies with an adhesive or the like. Since the temperature changes in the outside world, the thermal expansion of the adhesive or the orthogonal angle of the bent metal plate changes, the output value fluctuates due to the temperature change when the input angular velocity is 0. Had a problem.

【0006】また、駆動用圧電バイモルフ1,1′、検
知用圧電バイモルフ2,2′に張り合わせる圧電体の寸
法、厚み、張り合わせ等のばらつき、および、駆動用圧
電バイモルフ1、1′、検知用圧電バイモルフ2、2′
との直交ばらつきが発生し、高精度に角速度を検出する
ことができないという問題を有していた。本発明は、上
記従来の課題を解決するために、広い温度範囲で温度特
性に優れかつ各種ばらつきの少ない角速度センサを提供
することを目的とする。
[0006] Further, variations in size, thickness, bonding, etc. of the piezoelectric body to be bonded to the driving piezoelectric bimorphs 1 and 1'and the detecting piezoelectric bimorphs 2 and 2 ', and the driving piezoelectric bimorphs 1 and 1'and detecting Piezoelectric bimorph 2, 2 '
There is a problem in that it is not possible to detect the angular velocity with high accuracy due to the orthogonal variation with the. In order to solve the above-mentioned conventional problems, an object of the present invention is to provide an angular velocity sensor which has excellent temperature characteristics in a wide temperature range and has less variations.

【0007】[0007]

【課題を解決するための手段】本発明の角速度センサ
は、所望の結晶軸とその面内で切り出された水晶ブラン
クに機械的あるいは電気的加工法で加工し、水晶ブラン
クだけで振動腕が面対称的に配置された一対の略U字音
叉形水晶振動子を形成し、それらの一方を駆動側音叉と
し他方を検知側音叉とし、両略U字音叉形水晶振動子の
作用を駆動用と検知用とに分離した一体構成、つまり2
つの略U字音叉形水晶振動子を互いに平行に面対向する
ように、2つの振動腕の基部である支持部において結合
子を介して一体構成したものである。
In the angular velocity sensor of the present invention, a crystal blank cut out in a desired crystal axis and its plane is machined by a mechanical or electrical machining method, and the vibrating arm has a plane only with the crystal blank. A pair of substantially U-shaped tuning fork crystal oscillators are formed symmetrically, one of them is used as a driving side tuning fork, and the other is used as a detection side tuning fork. Integrated structure separated for detection, that is, 2
In this configuration, two substantially U-shaped tuning-fork type crystal oscillators are integrally configured so as to face each other in parallel with each other via a connector in a support portion which is a base portion of two vibrating arms.

【0008】結合子の支持部に対する結合部位は、略U
字音叉形水晶振動子の機械的Q値の低下が少なく、かつ
有効に振動を伝達することができる箇所が望ましい。例
えば、支持部において、振動節(意味については後述す
る)を含むある面積をもった領域どうしを結合子を介し
一体構成すればよい。このように、駆動側音叉と検知側
音叉は、支持部に発生する振動節を部分的に含むある面
積をもった領域同士をブロック状の結合子を介して固着
すると、「エネルギー閉じ込め理論」により、音叉振動
の機械的Q値と駆動側音叉から検知側音叉への機械伝達
効率を最大にすることができる。したがって、従来の音
叉結合部の基板における機械的伝達ロスが飛躍的に改善
でき、コリオリの力による角速度検出の感度を格段に向
上させることができる。
The connecting portion of the connector with respect to the supporting portion is approximately U.
It is desirable to have a portion where the mechanical Q value of the tuning-fork type crystal unit is less likely to decrease and the vibration can be effectively transmitted. For example, in the support portion, regions having a certain area including a vibrating node (the meaning will be described later) may be integrally configured with a connector. In this way, the driving-side tuning fork and the sensing-side tuning fork are fixed according to the "energy trapping theory" when regions with a certain area, which partially include the vibrating nodes generated in the support part, are fixed via block-shaped connectors. The mechanical Q value of tuning fork vibration and the mechanical transmission efficiency from the driving side tuning fork to the detection side tuning fork can be maximized. Therefore, the mechanical transmission loss in the substrate of the conventional tuning fork coupling portion can be dramatically improved, and the sensitivity of angular velocity detection due to the Coriolis force can be significantly improved.

【0009】なお、支持部の底面など、支持部の他の部
分同士を連結しても、駆動側から検知側へ振動を伝達で
きるので、結合の部位は、上記した振動節に限らないも
のである。上記のように、本発明は、一方の駆動側音叉
が駆動振動を持続するようにし、他方の検知側音叉はコ
リオリの力を検出するため、駆動側音叉の2つの振動腕
を結ぶ方向(X軸方向)、すなわち屈曲振動方向に対
し、直角方向の振動成分の電気的信号を検知側音叉で取
り出すための電極を備え、角速度を検出することによ
り、温度ドリフトが非常に少なく、かつ高精度で安価な
角速度センサを得ることができるものである。
Since the vibration can be transmitted from the driving side to the detecting side even if the other parts of the supporting part, such as the bottom surface of the supporting part, are connected, the connecting part is not limited to the vibration node described above. is there. As described above, according to the present invention, one driving side tuning fork maintains the driving vibration, and the other detecting side tuning fork detects the Coriolis force. Therefore, the direction (X (Axial direction), that is, with an electrode for extracting the electrical signal of the vibration component in the direction perpendicular to the bending vibration direction with the sensing side tuning fork, and by detecting the angular velocity, temperature drift is extremely small and highly accurate. It is possible to obtain an inexpensive angular velocity sensor.

【0010】また、振動腕と支持部が一体に連結する略
U字音叉形水晶振動子を用いているので、従来例にみる
圧電素子貼り付け工程などの種々の製造工程がなく、温
度的にばらつきのない安定した角速度センサを得るもの
である。以下、各請求項に対応して説明する。請求項1
記載の角速度センサは、結晶軸X,Y,ZのX軸周りに
回転した新たな結晶軸X,Y′,Z′のY′軸方向を長
手方向にしてX,Y′面内で切り出し、方形断面の一方
および他方の対称な振動腕を支持部で平行一体に連結し
た形状を有する略U字音叉形水晶ブランクの前記一方お
よび他方の振動腕の周面に電極を配設してなる第1の音
叉形水晶振動子と、結晶軸X,Y,ZのX軸周りに回転
した新たな結晶軸X,Y′,Z′のY′軸方向を長手方
向にしてY′,Z′面内で切り出し、方形断面の一方お
よび他方の対称な振動腕を支持部で平行一体に連結した
形状を有する略U字音叉形水晶ブランクの前記一方およ
び他方の振動腕の周面に電極を配設してなる第2の音叉
形水晶振動子とを、互いに平行に面対向した状態に結合
子を介し前記支持部において固着したものであって、前
記第1の音叉形水晶振動子を、電極を介して交流電圧を
印加することにより、一方および他方の振動腕のX軸方
向に変位する互いに逆相の屈曲振動を発生させる駆動側
音叉とし、前記第2の音叉形水晶振動子を、前記結合子
を経由して前記第1の音叉形水晶振動子から伝播した
Z′軸方向に変位する互いに逆相の屈曲振動とY′軸周
りの回転角速度に基づくコリオリの力によって発生する
一方および他方の振動腕のX軸方向の互いに逆相の屈曲
振動により生じる交流電圧を電極を介して検出する角速
度検出用の検知側音叉としたことを特徴とする。
Further, since a substantially U-shaped tuning-fork type crystal oscillator in which the vibrating arm and the supporting portion are integrally connected is used, various manufacturing steps such as a piezoelectric element attaching step, which are seen in the conventional example, are not required, and the temperature is improved. A stable angular velocity sensor without variation is obtained. Hereinafter, description will be given corresponding to each claim. Claim 1
The angular velocity sensor described is cut out in the X, Y'plane with the Y'axis direction of the new crystal axes X, Y ', Z'rotated around the X axis of the crystal axes X, Y, Z as the longitudinal direction. A first U-shaped tuning-fork type crystal blank having a shape in which one and the other symmetric vibrating arms having a rectangular cross section are integrally connected in parallel by a supporting portion, and electrodes are arranged on the peripheral surfaces of the one and the other vibrating arms. The tuning fork crystal unit 1 and the new crystal axes X, Y ', Z'rotated around the X axis of the crystal axes X, Y, Z with the Y'axis direction as the longitudinal direction. Electrodes are arranged on the peripheral surfaces of the one and the other vibrating arms of a substantially U-shaped tuning fork crystal blank that is cut out in the inside and has one and the other of the vibrating arms having a rectangular cross section connected in parallel and integrally by a supporting portion. And a second tuning fork type crystal resonator, which is formed by The first tuning-fork type crystal resonator is fixed to the first tuning fork type crystal resonator, and the first and second vibrating arms are displaced in the X axis direction by applying an AC voltage to the first tuning fork type crystal resonator. As a driving side tuning fork, and the second tuning fork type crystal resonator is displaced in the Z′-axis direction propagating from the first tuning fork type crystal resonator via the connector and bending in opposite phases. Sensing for angular velocity detection by detecting, via an electrode, AC voltage generated by bending vibrations of one and the other vibrating arm in mutually opposite phases in the X-axis direction generated by Coriolis force based on vibration and rotational angular velocity around the Y'axis It is characterized by being a side tuning fork.

【0011】請求項2記載の角速度センサは、請求項1
記載の角速度センサにおいて、駆動側音叉のX軸方向に
変位する互いに逆相の屈曲振動の共振周波数と検知側音
叉のX軸方向の互いに逆相の屈曲振動の共振周波数とが
ほぼ等しく、かつ前記駆動側音叉のX軸方向に変位する
互いに逆相の屈曲振動の共振周波数と前記検知側音叉の
一方および他方の振動腕のZ′軸方向に変位する互いに
逆相の屈曲振動の共振周波数とが異なるように、前記駆
動側音叉の振動腕と前記検知側音叉の振動腕とを異なる
形状寸法に設定したことを特徴とする。
According to a second aspect of the invention, there is provided the angular velocity sensor according to the first aspect.
In the angular velocity sensor described above, the resonance frequency of the bending vibrations of the driving side tuning fork that are displaced in the X-axis direction and the resonance frequency of the bending vibrations of the detection side tuning fork of the opposite phase in the X-axis direction that are substantially equal to each other, and The resonance frequency of the flexural vibrations of the driving side tuning fork which are displaced in the X-axis direction and the resonance frequency of the flexural vibrations of the opposite phases which are displaced in the Z′-axis direction of the one and the other vibrating arms of the detection side tuning fork are defined as follows. Differently, the vibrating arm of the driving side tuning fork and the vibrating arm of the detecting side tuning fork are set to have different shapes and dimensions.

【0012】請求項3記載の角速度センサは、請求項1
記載の角速度センサにおいて、駆動側音叉のX軸方向に
変位する互いに逆相の屈曲振動の共振周波数と検知側音
叉のX軸方向の互いに逆相の屈曲振動の共振周波数と前
記検知側音叉の一方および他方の振動腕のZ′軸方向に
変位する互いに逆相の屈曲振動の共振周波数とが互いに
隔離して異なるように、前記駆動側音叉の振動腕と前記
検知側音叉の振動腕とを異なる形状寸法に設定したこと
を特徴とする。
According to a third aspect of the invention, there is provided the angular velocity sensor according to the first aspect.
In the angular velocity sensor described above, the resonance frequency of the bending vibrations of the driving side tuning fork which are displaced in the X-axis direction and the resonance frequency of the bending vibrations of the detection side tuning fork which are in the opposite phase in the X-axis direction and one of the detection side tuning forks. The vibrating arm of the drive side tuning fork and the vibrating arm of the detection side tuning fork are different from each other so that the resonance frequencies of the flexural vibrations of the other vibrating arm, which are displaced in the Z′-axis direction, are different from each other. It is characterized in that it is set to a geometric dimension.

【0013】請求項4記載の角速度センサは、請求項1
記載の角速度センサにおいて、駆動側音叉の一方および
他方の振動腕の周面に配設する電極は、Z′軸方向に見
て前記一方および他方の振動腕の表裏および両側の4周
面にそれぞれ4つの稜線部分で周方向に4分割された状
態にそれぞれ設けてあり、前記一方の振動腕の表裏面電
極と前記他方の振動腕の両側面電極とを共通接続し、前
記他方の振動腕の表裏面電極と前記一方の振動腕の両側
面電極とを共通接続し、かつ検知側音叉の一方および他
方の振動腕の周面に配設する電極は、X軸方向に見て前
記一方および他方の振動腕の表裏および両側の4周面に
それぞれ4つの稜線部分で周方向に4分割された状態に
それぞれ設けてあり、前記一方の振動腕の表裏面電極と
前記他方の振動腕の両側面電極とを共通接続し、前記他
方の振動腕の表裏面電極と前記一方の振動腕の両側面電
極とを共通接続したことを特徴とする。
An angular velocity sensor according to a fourth aspect is the first aspect.
In the angular velocity sensor described above, the electrodes disposed on the peripheral surfaces of the one and the other vibrating arms of the drive side tuning fork are arranged on the front and back surfaces of the vibrating arms of the one and the other vibrating arms, and on the four peripheral surfaces on both sides, respectively, when viewed in the Z′-axis direction. Each of the four ridge line portions is provided in a state of being divided into four in the circumferential direction, and the front and back electrodes of the one vibrating arm and the both side electrodes of the other vibrating arm are commonly connected, and the other vibrating arm of the other vibrating arm is connected. The electrodes commonly connecting the front and back electrodes and the both side electrodes of the one vibrating arm and arranged on the peripheral surfaces of one and the other vibrating arms of the detection side tuning fork are the one and the other when viewed in the X-axis direction. Are provided on the front and back surfaces of the vibrating arm and on both sides of the vibrating arm in such a manner that they are divided into four in the circumferential direction by four ridge lines, respectively, and the front and back electrodes of the one vibrating arm and the both side surfaces of the other vibrating arm. Connect the electrodes in common, and use the front and back of the other vibrating arm. Characterized in that the two side electrodes of the one vibrating arm and electrode connected in common.

【0014】請求項5記載の角速度センサは、請求項1
記載の角速度センサにおいて、結合子は、両端面がある
面積を有する柱状であって、両端面が駆動側音叉および
検知側音叉の支持部に生成される振動節を部分的に含む
表面に接着されていることを特徴とする。請求項6記載
の角速度センサは、請求項1記載の角速度センサにおい
て、駆動側音叉および検知側音叉は、支持部に生成され
る振動節を部分的に含むある面積をもった貫通孔をそれ
ぞれ有し、結合子は、柱状であって、両端部が前記貫通
孔に貫挿した状態に前記駆動側音叉および検知側音叉の
支持部に接着されていることを特徴とする。
According to a fifth aspect of the present invention, there is provided the angular velocity sensor according to the first aspect.
In the angular velocity sensor described above, the connector has a columnar shape with both end surfaces having an area, and both end surfaces are bonded to a surface partially including a vibration node generated in a supporting portion of the drive side tuning fork and the detection side tuning fork. It is characterized by An angular velocity sensor according to a sixth aspect is the angular velocity sensor according to the first aspect, wherein each of the drive-side tuning fork and the detection-side tuning fork has a through hole having an area partially including a vibrating node generated in the support portion. The connector has a columnar shape, and both ends thereof are adhered to the supporting portions of the drive side tuning fork and the detection side tuning fork in a state where both ends thereof are inserted into the through hole.

【0015】[0015]

【作用】請求項1記載の構成によれば、駆動側音叉であ
る第1の音叉形水晶振動子に電極を介して交流電圧を印
加することにより、駆動側音叉に一方および他方の振動
腕のX軸方向に変位する互いに逆相の屈曲振動が発生す
る。このX軸方向に変位する互いに逆相の屈曲振動は、
Y′軸周りの回転角速度が加えられる(当然第2の音叉
形水晶振動子も同じ回転角速度が与えられる)と、第1
の音叉形水晶振動子のY′軸周りの回転角速度に基づく
コリオリの力によって第1の音叉形水晶振動子の一方お
よび他方の振動腕のZ′軸方向の互いに逆相の屈曲振動
が発生する。この結合子を介して伝播の第2の音叉形水
晶振動子の一方および他方の振動腕のX軸方向の互いに
逆相の屈曲振動により生じる交流電圧を電極を介して検
出する。この交流電圧はY′軸周りの回転角速度に比例
した値をとるので、上記の交流電圧からY′軸周りの回
転角速度が検出できる。
According to the structure of the first aspect, by applying an AC voltage to the first tuning fork type crystal resonator, which is the driving side tuning fork, through the electrodes, one of the vibrating arms of the first and the other vibrating arms can be applied to the driving side tuning fork. Bending vibrations of opposite phases that are displaced in the X-axis direction are generated. The bending vibrations of the opposite phases that are displaced in the X-axis direction are
When the rotational angular velocity about the Y'axis is applied (the same rotational angular velocity is naturally given to the second tuning fork crystal oscillator), the first
Coriolis force based on the rotational angular velocity of the tuning fork crystal resonator about the Y ′ axis causes bending vibrations of one and the other vibrating arms of the first tuning fork crystal resonator in opposite phases in the Z ′ axis direction. . An AC voltage generated by bending vibrations of one and the other vibrating arms of the second tuning-fork type crystal oscillator propagating through this connector in mutually opposite phases in the X-axis direction is detected through the electrodes. Since this AC voltage has a value proportional to the rotational angular velocity around the Y ′ axis, the rotational angular velocity around the Y ′ axis can be detected from the above AC voltage.

【0016】請求項2記載の構成によれば、駆動側音叉
のZ′軸方向に変位する互いに逆相の屈曲振動の共振周
波数と検知側音叉のX軸方向の互いに逆相の屈曲振動の
共振周波数とがほぼ等しく、かつ駆動側音叉のX軸方向
に変位する互いに逆相の屈曲振動の共振周波数と検知側
音叉の一方および他方の振動腕のZ′軸方向に変位する
互いに逆相の屈曲振動の共振周波数とが異なることによ
り、駆動側音叉を共振駆動した場合において、検知側音
叉では、Z′軸方向に変位する互いに逆相の屈曲振動と
Y′軸周りの回転角速度に基づくコリオリの力によって
検知側音叉の一方および他方の振動腕に発生するZ′軸
方向の互いに逆相の屈曲振動が効率よく検出できるとと
もに、Z′軸方向に変位する互いに逆相の屈曲振動の影
響が小さくなる。この結果、Z′軸方向に変位する互い
に逆相の屈曲振動により生じる交流電圧の影響を抑えつ
つ、X軸方向の互いに逆相の屈曲振動により生じる交流
電圧を有効に検出できることになり、精度よくY′軸周
りの回転角速度を検出することが可能となる。
According to the second aspect of the invention, the resonance frequency of the flexural vibrations of the driving side tuning fork that are displaced in the Z'-axis direction and the resonance frequency of the flexural vibrations of the opposite phase in the X axis direction of the detection side tuning fork are resonant. Resonance frequencies of bending vibrations of approximately the same frequency and opposite to each other in the X-axis direction of the driving side tuning fork and opposite phases of bending of one and the other vibrating arms of the sensing side tuning fork displaced in the Z'axis direction. Since the resonance frequency of vibration is different, when the drive-side tuning fork is resonantly driven, in the detection-side tuning fork, flexural vibrations of opposite phases displaced in the Z′-axis direction and Coriolis-based rotation angular velocity about the Y′-axis are generated. Bending vibrations of opposite phases in the Z'-axis direction generated in one and the other vibrating arms of the detection side tuning fork by the force can be efficiently detected, and the influence of bending vibrations of the opposite phases displacing in the Z'-axis direction is small. Become. As a result, it is possible to effectively detect the AC voltage generated by the bending vibrations of the opposite phases in the X-axis direction while suppressing the influence of the AC voltage generated by the bending vibrations of the opposite phase that are displaced in the Z′-axis direction, and with high accuracy. It becomes possible to detect the angular velocity of rotation about the Y ′ axis.

【0017】請求項3記載の構成によれば、駆動側音叉
のX軸方向に変位する互いに逆相の屈曲振動の共振周波
数と検知側音叉のX軸方向の互いに逆相の屈曲振動の共
振周波数と検知側音叉の一方および他方の振動腕のZ′
軸方向に変位する互いに逆相の屈曲振動の共振周波数と
が互いに隔離して異なることにより、駆動側音叉を共振
駆動した場合において、X軸方向に変位する互いに逆相
の屈曲振動とY′軸周りの回転角速度に基づくコリオリ
の力によって駆動側音叉の一方および他方の振動腕に発
生するZ′軸方向の互いに逆相の屈曲振動に対して、検
知側音叉では、Z′軸方向に変位する互いに逆相の屈曲
振動が影響することがなくなる。この結果、Z′軸方向
に変位する互いに逆相の屈曲振動により生じる交流電圧
の影響を抑えつつ、X軸方向の互いに逆相の屈曲振動に
より生じる交流電圧を有効に検出できることになり、精
度よくY′軸周りの回転角速度を検出することが可能と
なる。
According to the third aspect of the present invention, the resonance frequency of the bending vibrations of the driving side tuning fork which are displaced in the X-axis direction and the resonance frequency of the bending vibrations of the detection side tuning fork which are the opposite phase of the X-axis direction. And Z ′ of one and the other vibrating arm of the detection side tuning fork
When the driving side tuning fork is resonantly driven, the resonance frequencies of the flexural vibrations of the opposite phase displaced in the axial direction are different from each other, so that the flexural vibrations of the opposite phase displaced in the X axis direction and the Y'axis are displaced. Corresponding bending vibrations generated in one and the other vibrating arms of the drive-side tuning fork by the Coriolis force based on the rotational angular velocity around the Z'-axis, the detection-side tuning fork is displaced in the Z'-axis direction. Flexural vibrations in opposite phases do not affect each other. As a result, it is possible to effectively detect the AC voltage generated by the bending vibrations of the opposite phases in the X-axis direction while suppressing the influence of the AC voltage generated by the bending vibrations of the opposite phase that are displaced in the Z′-axis direction, and with high accuracy. It becomes possible to detect the angular velocity of rotation about the Y ′ axis.

【0018】請求項4記載の構成によれば、駆動側音叉
の共通接続した2組の電極間に交流電圧を加えてX軸方
向に変位する互いに逆相の屈曲振動を起こさせる。この
際、交流電圧の周波数は、一方および他方の振動腕のX
軸方向に変位する互いに逆相の屈曲振動の共振周波数に
近いものとし、駆動側音叉を共振駆動する。一方、検知
側音叉の共通接続した2組の電極間には、一方および他
方の振動腕に発生するX軸方向の互いに逆相の屈曲振動
に伴う交流電圧が生じることになる。
According to the fourth aspect of the present invention, an alternating voltage is applied between two sets of commonly connected electrodes of the drive side tuning fork to cause bending vibrations of opposite phases which are displaced in the X-axis direction. At this time, the frequency of the AC voltage is the X of the one and the other vibrating arms.
The driving side tuning fork is resonantly driven by assuming that the resonance frequencies of bending vibrations of opposite phases which are displaced in the axial direction are close to each other. On the other hand, between two sets of commonly connected electrodes of the detection side tuning fork, AC voltages are generated due to bending vibrations of opposite phases in the X-axis direction that are generated in the one and the other vibrating arms.

【0019】請求項5記載の構成によれば、駆動側音叉
のX軸方向に変位する互いに逆相の屈曲振動が、駆動側
音叉の機械的Q値が低下することなく、効率よく検知側
音叉にZ′軸方向に変位する互いに逆相の屈曲振動とし
て伝達されることになる。請求項6記載の構成によれ
ば、駆動側音叉のZ′軸方向に変位する互いに逆相の屈
曲振動が、駆動側音叉の機械的Q値が低下することな
く、効率よく検知側音叉にX軸方向に変位する互いに逆
相の屈曲振動として伝達されることになる。
According to the fifth aspect of the present invention, the bending vibrations of the driving side tuning fork which are displaced in the X-axis direction and have opposite phases to each other do not reduce the mechanical Q value of the driving side tuning fork, and the detecting side tuning fork is efficiently arranged. Is transmitted as bending vibrations of opposite phases which are displaced in the Z'-axis direction. According to the configuration of claim 6, bending vibrations of the driving side tuning fork that are displaced in the Z′-axis direction and having opposite phases to each other are efficiently applied to the detecting side tuning fork without lowering the mechanical Q value of the driving side tuning fork. It is transmitted as bending vibrations of opposite phases which are displaced in the axial direction.

【0020】ここで、2つの略U字音叉形水晶振動子を
結合子を介して連結して一体化している理由について説
明する。音叉形水晶振動子において、今、仮にY軸を通
りYZ面対称に各一方および他方の振動腕がX軸方向に
+v,−vの速度で共振屈曲振動(Xモードの振動)を
しているものとする。この音叉形水晶振動子のY軸を回
転する方向に角速度ωの回転が加わったとすると、各振
動腕にはコリオリの力がY軸線対称の方向(Z軸方向の
振動;Zモードの振動)に発生する。このとき、発生す
るY軸線対称の振動は、共振駆動の屈曲振動と直交する
Z軸方向に振動することになる。
Here, the reason why two substantially U-shaped tuning fork crystal resonators are connected and integrated via a connector will be described. In the tuning-fork type crystal oscillator, one vibrating arm and the other vibrating arm are sympathetically passing through the Y-axis and are vibrating in the X-axis direction at + v and -v at a bending velocity (X-mode vibration). I shall. If a rotation of angular velocity ω is applied in the direction of rotating the Y-axis of this tuning fork crystal unit, Coriolis force is applied to each vibrating arm in the Y-axis symmetric direction (Z-axis vibration; Z-mode vibration). Occur. At this time, the generated Y-axis line-symmetric vibration vibrates in the Z-axis direction orthogonal to the bending vibration of resonance drive.

【0021】しかしながら、単一の音叉形水晶振動子に
おいては、共振駆動のXモードの共振周波数と、これに
同期して新たに発生するZモードの非共振周波数は、同
一周波数であるので分離することは一般に困難である。
これは、仮に分離電極配置等の工夫によりこの2モード
をうまく分離し検出することができたとしても、共振駆
動の強いレベルに対して、検出レベルは極めて低いレベ
ルであることから、誘導等により検出レベルがマスクさ
れ、あるいは影響を受けて、もとより正確な検出ができ
ないことに起因している。かくして、周波数の差異によ
って、駆動と検出を分離する何らかの解決手段が望まれ
ていた。
However, in a single tuning-fork crystal unit, the resonance frequency of the resonance-driving X-mode and the non-resonance frequency of the Z-mode newly generated in synchronization with this are the same frequency, and thus are separated. Things are generally difficult.
This is because even if the two modes can be successfully separated and detected by devising the arrangement of separation electrodes, etc., the detection level is extremely low with respect to the strong resonance drive level. This is due to the fact that the detection level is masked or affected so that accurate detection cannot be performed. Thus, there has been a desire for some solution that separates drive and detection due to frequency differences.

【0022】そこで、本発明は、2個の略U字音叉形水
晶振動子を結合子を介して接合することにより、駆動側
と検知側に分離し、この困難性を解決したものである。
本発明においては、水晶振動子そのものが一対の振動腕
を面対称的に配置したものであり、音叉形状を有する略
U字音叉形水晶振動子の2つのうち一方を駆動側音叉と
し、他方を検知側音叉とし、結合子で一体化したもので
ある。
Therefore, the present invention solves this difficulty by joining two substantially U-shaped tuning-fork type crystal oscillators through a connector to separate them into a drive side and a detection side.
In the present invention, the crystal unit itself has a pair of vibrating arms arranged in plane symmetry, and one of two substantially U-shaped tuning fork type crystal units having a tuning fork shape is a driving side tuning fork and the other is The tuning fork on the detection side is integrated with a connector.

【0023】そして、これらの音叉の素材として、水晶
を用いることにより、角速度検知感度が高く、熱的膨張
係数が小さく、電極配置によりXモードの屈曲振動をさ
せることにより温度変化に対する水晶の周波数依存性が
より小さくなり、結果的には角速度センサの温度ドリフ
ト低減につながり、小さくなるのである。また、駆動側
の駆動信号成分の検知側へ不要信号成分としての混入が
小さく、駆動時の共振周波数変動が小さく、同期検波時
の位相ずれ変化が小さいという作用効果を得る。そして
結果的には、広い温度範囲で温度特性に優れた角速度セ
ンサを得ることができるのである。
By using quartz as a material for these tuning forks, the angular velocity detection sensitivity is high, the coefficient of thermal expansion is small, and the flexural vibration of the X mode is caused by the electrode arrangement. Of the angular velocity sensor is reduced, resulting in reduction of temperature drift of the angular velocity sensor. In addition, there is a small effect that the drive signal component on the drive side is not mixed into the detection side as an unnecessary signal component, the resonance frequency fluctuation during drive is small, and the phase shift change during synchronous detection is small. As a result, it is possible to obtain an angular velocity sensor having excellent temperature characteristics in a wide temperature range.

【0024】ここで、本発明の作用についてもう少し説
明する。これは大きく振動している特定の駆動モード
(この場合はXモード)で共振振動している音叉に、コ
リオリの力による新しい振動モード(この場合はZモー
ド)が(絶対に共振ではなく)発生するので、この発生
した新しい振動モード(この場合はZモード、但し、周
波数は駆動モードと同期しているので駆動モードと同一
である)をモード共振により選択的(一種のメカニカル
なフィルタリングです)に検出するものである。
Here, the operation of the present invention will be described a little more. This is because a tuning fork that resonates in a specific drive mode (X mode in this case) that vibrates significantly, and a new vibration mode (Z mode in this case) due to Coriolis force (not absolutely resonance) occurs. Therefore, this new vibration mode (Z mode in this case, but the frequency is the same as the driving mode because it is synchronized with the driving mode) is selectively (a kind of mechanical filtering) by mode resonance. It is something to detect.

【0025】つまり、検知側音叉に駆動側振動モードが
混在すると、誤検出となる恐れがありますので(レベル
が100dBと隔絶しているので)、駆動の振動モード
に対し検出の振動モードを選択できるよう、検出側音叉
の電極構造を駆動側音叉と異なるものとし、また共振周
波数に対し共振選択特性を付与すべく振動腕の形状寸法
を異ならしめているのである。検知側音叉においては、
駆動モードを可能な限り抑制して、検出モードのみを可
能な限り効率よく検出するのである。
In other words, if the drive-side vibration mode is mixed with the detection-side tuning fork, there is a possibility of erroneous detection (because the level is isolated from 100 dB), so the detection vibration mode can be selected for the drive vibration mode. As described above, the electrode structure of the detection side tuning fork is different from that of the driving side tuning fork, and the shape and size of the vibrating arm are made different so as to give the resonance selection characteristic to the resonance frequency. In the detection side tuning fork,
The drive mode is suppressed as much as possible, and only the detection mode is detected as efficiently as possible.

【0026】この発明では、複数の振動モードを取り扱
うので、それらに対する対策が重要なポイントとなって
いる。すなわち、このX軸方向に変位する互いに逆相の
屈曲振動は、駆動側音叉の第1の音叉形水晶振動子の支
持部から結合子を介して検知側音叉である第2の音叉形
水晶振動子の支持部に一部伝播するが、第2の音叉のX
軸方向に変位する互いに逆相の屈曲振動と共振周波数が
一致せず共振しないように設定されてあるから、大部分
は駆動側音叉に閉じ込められる。このときに、第1の音
叉形水晶振動子にY′軸周りの回転角速度が与えられる
(当然第2の音叉形水晶振動子も同じ回転角速度が与え
られる)と、コリオリの力とによって、第1の音叉形水
晶振動子の一方及び他方の振動腕のZ′軸方向の互いに
逆相の屈曲振動が新たに発生する。このZ′軸方向の互
いに逆相の屈曲振動は結合子を介して第2の音叉形水晶
振動子に伝播するが、Z′軸方向の互いに逆相の屈曲振
動の共振周波数とほぼ等しく設定してあると、効率よく
検出することができる。
Since the present invention handles a plurality of vibration modes, countermeasures against them are an important point. That is, the bending vibrations of opposite phases displaced in the X-axis direction are caused by the second tuning fork crystal vibration which is the detection side tuning fork from the support portion of the first tuning fork crystal resonator of the driving side tuning fork through the connector. Partly propagated to the support of the child, but X of the second tuning fork
Since the flexural vibrations that are displaced in the axial direction and have opposite resonance frequencies do not match and do not resonate, most of them are confined in the drive side tuning fork. At this time, when the first tuning fork crystal unit is given a rotational angular velocity about the Y ′ axis (naturally, the second tuning fork type crystal unit is also given the same rotational angular velocity), the Coriolis force causes Flexural vibrations of opposite phases in the Z′-axis direction of the one and the other vibrating arms of the tuning fork crystal unit 1 are newly generated. The bending vibrations of opposite phases in the Z′-axis direction propagate to the second tuning-fork type crystal resonator through the connector, but the resonance frequencies of the bending vibrations of opposite phases in the Z′-axis direction are set to be substantially equal to each other. If it is present, it can be detected efficiently.

【0027】共振現象を利用した検出は高感度、高能率
であるから、小型化・高精度に好適であるが、他の信号
妨害を受け易い欠点も持っている。また、X軸方向の互
いに逆相の屈曲振動、あるいはZ′軸方向の互いに逆相
の屈曲振動などの、多数の異なる振動を利用しようとす
る場合、不要振動による干渉を排除しと抑制することに
特に留意しなければならない。比較的容易な対策は、多
少感度を犠牲にしても互いの共振周波数を隔離しあるい
は近接を避けるよう設定することである。
Since the detection utilizing the resonance phenomenon has high sensitivity and high efficiency, it is suitable for downsizing and high precision, but it also has a drawback that it is susceptible to other signal interference. Further, when a large number of different vibrations such as bending vibrations in opposite phases in the X-axis direction or bending vibrations in opposite phases in the Z′-axis direction are to be utilized, interference due to unnecessary vibrations is eliminated and suppressed. You must pay particular attention to. A relatively easy measure is to isolate resonance frequencies from each other or avoid proximity, at the expense of some sensitivity.

【0028】幸いにして、これら各種振動は互いに直交
していて境界条件が独立な関係にあるから、相互干渉も
なく制御しやすい利点がある。例えば、Z′軸方向に変
位する屈曲振動とX軸方向に変位する屈曲振動は、振動
腕の長さを周波数決定の共通境界条件としているが、他
方、厚みと幅を他の境界条件としているので、圧電定数
の差異と併せ、厚みと幅を異ならしめることによりきわ
めて容易にそれら共振周波数を隔離し異なるよう設定す
ることができる。
Fortunately, since these various vibrations are orthogonal to each other and the boundary conditions are independent of each other, there is an advantage that they are easy to control without mutual interference. For example, the bending vibration that is displaced in the Z′-axis direction and the bending vibration that is displaced in the X-axis direction have the length of the vibrating arm as a common boundary condition for determining the frequency, while the thickness and the width have other boundary conditions. Therefore, by making the thickness and the width different together with the difference in the piezoelectric constant, it is possible to very easily isolate and set the resonance frequencies different from each other.

【0029】[0029]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は本発明の第1の実施例の角速度センサ
の斜視図を示している。同図(a)は組み立て状態の斜
視図、同図(b)は分解状態の斜視図である。図1にお
いて、21は方形断面の一方および他方の対称な振動腕
24,25を支持部23で平行一体に連結した形状をそ
れぞれ有する略U字音叉形水晶ブランクからなる第1の
音叉形水晶振動子(以下、駆動側音叉という)で、電気
的加工または機械的加工によって切り出され、一方およ
び他方の振動腕24,25の周面に駆動用電極22を配
設している。26は同じく方形断面の一方および他方の
対称な振動腕29,30を支持部28で平行一体に連結
した形状をそれぞれ有する略U字音叉形水晶ブランクか
らなる第2の音叉形水晶振動子(以下、検知側音叉とい
う)で、一方および他方の振動腕29,30の周面に検
知用電極27を配設している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a perspective view of an angular velocity sensor according to a first embodiment of the present invention. FIG. 1A is a perspective view of the assembled state, and FIG. 1B is a perspective view of the disassembled state. In FIG. 1, reference numeral 21 is a first tuning-fork type quartz vibration, which is a substantially U-shaped tuning-fork type quartz blank having a shape in which symmetrical vibrating arms 24 and 25 having one and the other of a rectangular cross section are integrally connected in parallel by a supporting portion 23. A child (hereinafter, referred to as a driving side tuning fork) is cut out by electrical processing or mechanical processing, and the driving electrodes 22 are arranged on the peripheral surfaces of the one and the other vibrating arms 24 and 25. Reference numeral 26 is a second tuning-fork type crystal resonator (hereinafter referred to as a crystal tuning blank) which is substantially U-shaped and has a shape in which symmetric vibrating arms 29 and 30 having one and the other rectangular cross sections are integrally connected in parallel by a supporting portion 28. , The detection side tuning fork), the detection electrodes 27 are arranged on the peripheral surfaces of the one and the other vibrating arms 29 and 30.

【0030】31は水晶からなる結合子で、両端面を駆
動側音叉21および検知側音叉26のそれぞれの駆動側
支持部23および検知側支持部28の略中央部表面に位
置する駆動側振動節を部分的に含む接合部32と検知側
振動節を部分的に含む接合部33とを接着により結合し
て角速度センサを構成している。この場合、駆動側音叉
21と検知側音叉26とは、互いに平行に面対向した状
態になっている。この結合子31は、駆動側音叉21の
振動を検知側音叉26に伝達させる機能を有している
が、それは、結合子31が駆動側音叉21および検知側
音叉26とともに音叉を構成しているからであると考え
られる。
Reference numeral 31 is a crystal-made coupler, and both end surfaces thereof are located on substantially the central surface of the drive side support portion 23 and the detection side support portion 28 of the drive side tuning fork 21 and the detection side tuning fork 26, respectively. The joint portion 32 that partially includes the joint portion 33 and the joint portion 33 that partially includes the detection-side vibrating node are bonded to each other to form an angular velocity sensor. In this case, the drive side tuning fork 21 and the detection side tuning fork 26 are in a state of facing each other in parallel. The connector 31 has a function of transmitting the vibration of the drive-side tuning fork 21 to the detection-side tuning fork 26. That is, the connector 31 constitutes a tuning fork together with the drive-side tuning fork 21 and the detection-side tuning fork 26. It is thought to be from.

【0031】以下に、要部である駆動側音叉21および
検知側音叉26に用いる略U字音叉形水晶ブランクにつ
いて説明する。図2は駆動側音叉21に用いる略U字音
叉形水晶ブランクの斜視図であり、図3は検知側音叉2
6に用いる略U字音叉形水晶ブランクの斜視図である。
図2において、34は駆動側音叉21に用いる略凹形状
を有する略U字音叉形水晶ブランクである。この水晶ブ
ランク34は結晶軸X,Y,Zに対して、X軸周りで角
度θ(=1〜3°)回転した新たな結晶軸X,Y′,
Z′のY′軸方向を長手方向にしてX,Y′面内で切り
出したものであり、平行な2つの振動腕35A,35B
を支持部35Cで結合した構造である。
The substantially U-shaped tuning fork crystal blank used for the drive side tuning fork 21 and the detection side tuning fork 26, which are essential parts, will be described below. FIG. 2 is a perspective view of a substantially U-shaped tuning fork crystal blank used for the drive side tuning fork 21, and FIG.
6 is a perspective view of a substantially U-shaped tuning fork crystal blank used in FIG.
In FIG. 2, 34 is a substantially U-shaped tuning fork crystal blank having a substantially concave shape used for the driving side tuning fork 21. This crystal blank 34 has new crystal axes X, Y ′, which are rotated by an angle θ (= 1 to 3 °) around the X axis with respect to the crystal axes X, Y, Z.
Z ′ is cut out in the X and Y ′ planes with the Y ′ axis direction being the longitudinal direction, and two parallel vibrating arms 35A and 35B.
Is a structure in which the support portions 35C are connected.

【0032】図3において、34′は検知側音叉26に
用いる略凹形状を有する略U字音叉形水晶ブランクであ
る。この水晶ブランク34′は結晶軸X,Y,Zに対し
て、X軸周りで角度θ(=1〜5°)回転した新たな結
晶軸X,Y′,Z′のY′軸方向を長手方向にして
Y′,Z面内で切り出したものであり、平行な2つの振
動腕35A′,35B′を支持部35C′で結合した構
造である。
In FIG. 3, 34 'is a substantially U-shaped tuning fork crystal blank having a substantially concave shape used for the detection side tuning fork 26. This crystal blank 34 'is elongated in the Y'axis direction of a new crystal axis X, Y', Z'rotated about the X axis by an angle θ (= 1 to 5 °) with respect to the crystal axes X, Y, Z. This is a structure in which two parallel vibrating arms 35A 'and 35B' are joined by a supporting portion 35C ', which is cut out in the Y'and Z planes in the direction.

【0033】ここで、略U字音叉形水晶振動子を構成す
る水晶ブランクの寸法の一例について説明する。例え
ば、駆動側音叉の振動腕は、水晶をU字形状に長さ
(L)10mm×厚み(t)2.5mm×幅(W)3.5mm
の寸法で図2に示したカット方向にて成型加工される。
駆動側音叉および検知側音叉の寸法は、上記の例に限ら
ず、両音叉の寸法は同じである必要はなく、Xモード、
Zモードの共振周波数に応じて適宜設定される。また、
検知側音叉の振動腕は、水晶をU字形状に長さ(L)1
0mm×厚み(t)3.5mm×幅(W)2.5mmの寸法で
図3に示したカット方向にて成型加工される。駆動側音
叉および検知側音叉の寸法は、上記の例に限らず、両音
叉の寸法は同じである必要はなく、Xモード、Zモード
の共振周波数に応じて適宜設定される。
Here, an example of the dimensions of the crystal blank that constitutes the substantially U-shaped tuning fork crystal resonator will be described. For example, the vibrating arm of the drive-side tuning fork is made of a crystal in a U shape, length (L) 10 mm × thickness (t) 2.5 mm × width (W) 3.5 mm.
Is molded in the cutting direction shown in FIG.
The dimensions of the driving-side tuning fork and the sensing-side tuning fork are not limited to the above examples, and the dimensions of both tuning forks do not have to be the same.
It is appropriately set according to the resonance frequency of the Z mode. Also,
The vibrating arm of the detection-side tuning fork has a U-shaped crystal with a length (L) of 1
Molded in the cutting direction shown in FIG. 3 with dimensions of 0 mm × thickness (t) 3.5 mm × width (W) 2.5 mm. The dimensions of the drive-side tuning fork and the detection-side tuning fork are not limited to those in the above example, and the dimensions of both tuning forks need not be the same, and are appropriately set according to the resonance frequencies of the X mode and the Z mode.

【0034】この略U字音叉形水晶ブランク34,3
4′を図1に示した角速度センサの駆動側音叉21およ
び検知側音叉26に用いる場合、駆動側音叉21のX軸
方向に変位する屈曲振動(以下、「Xモード」と記
す。)の共振周波数と検知側音叉26の一対の振動腕が
X軸方向の互いに逆相の屈曲振動との共振周波数が等し
く、かつ、駆動側音叉21のXモードの共振周波数と検
知側音叉26の一対の振動腕がZ′軸方向の互いに逆相
の屈曲振動(以下、「Zモード」と記す。)の共振周波
数が異なるような形状寸法で切り出して用いている。
The substantially U-shaped tuning fork crystal blanks 34, 3
When 4'is used for the drive side tuning fork 21 and the detection side tuning fork 26 of the angular velocity sensor shown in FIG. 1, the resonance of bending vibration (hereinafter, referred to as "X mode") of the drive side tuning fork 21 displaced in the X-axis direction. And the pair of vibrating arms of the detection-side tuning fork 26 have the same resonance frequency with respect to the bending vibrations of the opposite phases in the X-axis direction, and the resonance frequency of the X-mode of the driving-side tuning fork 21 and the pair of vibrations of the sensing-side tuning fork 26. The arms are cut out in such a shape that the resonance frequencies of flexural vibrations (hereinafter, referred to as “Z modes”) of opposite phases in the Z′-axis direction are different.

【0035】上記の駆動側音叉21は、駆動用電極22
を介して交流電圧を印加することにより、一方および他
方の振動腕24,25のX軸方向に変位する互いに逆相
の屈曲振動を発生させる。この場合、交流電圧の周波数
は、X軸方向に変位する互いに逆相の屈曲振動の共振周
波数にほぼ一致した周波数として、共振駆動を行う。ま
た、検知側音叉26は、結合子31を経由して駆動側音
叉21のZ′軸方向に変位する互いに逆相の屈曲振動と
Y′軸周りの回転角速度に基づくコリオリの力によって
発生する一方および他方の振動腕29,30のX軸方向
の互いに逆相の屈曲振動により生じる交流電圧を電極を
介して検出する。
The drive side tuning fork 21 has a drive electrode 22.
By applying an AC voltage via the, the bending vibrations of opposite phases that are displaced in the X-axis direction of the one and the other vibrating arms 24 and 25 are generated. In this case, the resonance drive is performed with the frequency of the AC voltage substantially equal to the resonance frequency of the bending vibrations of opposite phases that are displaced in the X-axis direction. Further, the detection side tuning fork 26 is generated by the Coriolis force based on the bending vibrations of the driving side tuning fork 21 which are displaced in the Z′-axis direction of the driving side tuning fork 21 via the connector 31, and the rotational vibration about the Y ′ axis. An alternating voltage generated by bending vibrations of the other vibrating arms 29 and 30 in opposite phases in the X-axis direction is detected via the electrodes.

【0036】以下に、要部である駆動用電極22の具体
構成について説明する。図4(a)は、要部である駆動
側音叉21の一方および他方の振動腕の周面に形成され
た駆動用電極22の結線図である。図4(a)におい
て、36a,36cは一方の振動腕24のZ′軸方向か
ら見て表面および裏面にそれぞれ形成された駆動用電
極、36b,36dは一方の振動腕24のZ′軸方向か
ら見て両側面にそれぞれ形成された駆動用電極である。
37a,37cは他方の振動腕25のZ′軸方向から見
て表面および裏面にそれぞれ形成された駆動用電極、3
7b,37dは他方の振動腕25のZ′軸方向から見て
両側面にそれぞれ形成された駆動用電極であり、図1に
示した通り、Z′軸方向に見て一方および他方の振動腕
の表裏および両側の4周面にそれぞれ4つの稜線部分で
周方向に4分割された状態にそれぞれ設けてある。
The specific structure of the driving electrode 22, which is the main part, will be described below. FIG. 4A is a connection diagram of the drive electrodes 22 formed on the peripheral surfaces of one and the other vibrating arms of the drive side tuning fork 21 which is a main part. In FIG. 4A, 36a and 36c are drive electrodes formed on the front surface and the back surface of the one vibrating arm 24 when viewed from the Z'axis direction, and 36b and 36d are the Z'axis direction of the one vibrating arm 24. The drive electrodes are formed on both side surfaces as viewed from above.
Reference numerals 37a and 37c denote driving electrodes formed on the front surface and the back surface of the other vibrating arm 25 when viewed from the Z'-axis direction, respectively.
Reference numerals 7b and 37d denote driving electrodes formed on both side surfaces of the other vibrating arm 25 when viewed from the Z'-axis direction, and as shown in FIG. 1, one and the other vibrating arms when viewed in the Z'-axis direction. Are provided on the front and back sides and on the four circumferential surfaces on both sides in a state of being divided into four in the circumferential direction by four ridge lines.

【0037】そして、一方の振動腕24の表裏面の駆動
用電極36a,36cと他方の振動腕25の両側面の駆
動用電極37b,37dとを共通接続し、他方の振動腕
25の表裏面の駆動用電極37a,37cと一方の振動
腕24の両側面の駆動用電極36b,36dとを共通接
続している。駆動用電極36a,36c,37b,37
dの共通接続、ならびに駆動用電極36b,36d,3
7a,37cの共通接続は、振動腕24,25の周面上
で電極パターンを延長形成することにより行っている。
Then, the drive electrodes 36a and 36c on the front and back surfaces of one vibrating arm 24 and the drive electrodes 37b and 37d on both side surfaces of the other vibrating arm 25 are commonly connected, and the front and back surfaces of the other vibrating arm 25 are connected. The driving electrodes 37a, 37c are commonly connected to the driving electrodes 36b, 36d on both side surfaces of the one vibrating arm 24. Driving electrodes 36a, 36c, 37b, 37
d common connection, and drive electrodes 36b, 36d, 3
The common connection of 7a and 37c is performed by extending the electrode pattern on the peripheral surfaces of the vibrating arms 24 and 25.

【0038】38は共通接続した駆動用電極36a,3
6c,37b,37dに接続された共通線路、39は共
通接続した駆動用電極36b,36d,37a,37c
に接続された共通線路である。以上のように構成された
駆動用音叉21の動作について説明すると、共通線路3
8,39間に駆動信号(交流電圧)を印加して共振駆動
を行えば、一方および他方の振動腕24,25のX軸方
向の互いに逆相の屈曲振動が発生し、駆動音叉21の一
方の振動腕24、他方の振動腕25が開いたり、閉じた
りする。具体的に説明すると、例えば、共通線路38を
正極とし、共通線路39を負極として駆動用電極22に
電圧を印加すると、電界は、図4(a)において矢印の
方向に加わり、駆動側音叉のX軸方向に対し、振動腕2
4,25の内側が強まり、外側が弱まる。したがって、
強まった所が伸び、弱まったところが縮むので、振動腕
24,25は互いに外側に屈曲し、いわゆる逆相の屈曲
振動を行う。加わる電圧の極性が逆になると、振動腕2
4,25は互いに内側に屈曲することになる。
38 is a commonly connected drive electrode 36a, 3
6c, 37b and 37d are connected to a common line, and 39 is a commonly connected driving electrode 36b, 36d, 37a and 37c.
Is a common line connected to. The operation of the driving tuning fork 21 configured as described above will be described.
When a drive signal (AC voltage) is applied between 8 and 39 to perform resonance drive, bending vibrations of opposite phases in the X-axis direction of the one and the other vibrating arms 24 and 25 occur, and one of the drive tuning forks 21. The vibrating arm 24 and the other vibrating arm 25 are opened or closed. More specifically, for example, when a voltage is applied to the driving electrode 22 with the common line 38 as the positive electrode and the common line 39 as the negative electrode, an electric field is applied in the direction of the arrow in FIG. Vibrating arm 2 in the X-axis direction
The inside of 4,25 is strengthened and the outside is weakened. Therefore,
Since the strengthened portion expands and the weakened portion contracts, the vibrating arms 24 and 25 bend outward with respect to each other, and so-called antiphase bending vibration is performed. When the polarity of the applied voltage is reversed, the vibrating arm 2
4 and 25 will bend inside each other.

【0039】以下に、要部である検知用電極27につい
て説明する。図4(b)は、要部である検知側音叉26
の一方および他方の振動腕の周面に形成された検知用電
極27の結線図である。図4(b)において、40a,
40cは一方の振動腕29のX軸方向から見て表面およ
び裏面にそれぞれ形成された検知用電極、40b,40
dは一方の振動腕29のX軸方向から見て両側面にそれ
ぞれ形成された検知用電極である。41a,41cは他
方の振動腕30のX軸方向から見て表面および裏面にそ
れぞれ形成された検知用電極、41b,41dは他方の
振動腕30のX軸方向から見て両側面にそれぞれ形成さ
れた検知用電極であり、図1に示した通り、X軸方向に
見て一方および他方の振動腕の表裏および両側の4周面
にそれぞれ4つの稜線部分で周方向に4分割された状態
にそれぞれ設けてある。
The detection electrode 27, which is the main part, will be described below. FIG. 4B shows the detection side tuning fork 26 which is a main part.
FIG. 4 is a connection diagram of detection electrodes 27 formed on the peripheral surfaces of one and the other vibrating arms. In FIG. 4B, 40a,
40c is a detection electrode formed on the front surface and the back surface of the one vibrating arm 29 when viewed from the X-axis direction, and 40b, 40.
Reference characters d are detection electrodes formed on both side surfaces of the one vibrating arm 29 when viewed from the X-axis direction. 41a and 41c are detection electrodes formed on the front and back surfaces of the other vibrating arm 30 in the X-axis direction, and 41b and 41d are formed on both side surfaces of the other vibrating arm 30 in the X-axis direction. As shown in FIG. 1, it is a detection electrode that is divided into four circumferential portions with four ridges on the front and back surfaces of both of the one and the other vibrating arms and both sides as seen in the X-axis direction. Each is provided.

【0040】そして、一方の振動腕29の表裏面の検知
用電極40a,40cと他方の振動腕30の両側面の検
知用電極41b,41dとを共通接続し、他方の振動腕
30の表裏面の検知用電極41a,41cと一方の振動
腕29の両側面の検知用電極40b,40dとを共通接
続している。検知用電極40a,40c,41b,41
dの共通接続、ならびに検知用電極40b,40d,4
1a,41cの共通接続は、振動腕29,30の周面上
で電極パターンを延長形成することにより行っている。
Then, the detection electrodes 40a, 40c on the front and back surfaces of one vibrating arm 29 and the detection electrodes 41b, 41d on both side surfaces of the other vibrating arm 30 are commonly connected, and the front and back surfaces of the other vibrating arm 30 are connected. The detection electrodes 41a and 41c are commonly connected to the detection electrodes 40b and 40d on both side surfaces of the one vibrating arm 29. Detection electrodes 40a, 40c, 41b, 41
d common connection, and detection electrodes 40b, 40d, 4
The common connection of 1a and 41c is performed by extending and forming an electrode pattern on the peripheral surfaces of the vibrating arms 29 and 30.

【0041】42は共通接続した検知用電極40a,4
0c,41b,41dに接続された共通線路、43は共
通接続した検知用電極40b,40d,41a,41c
に接続された共通線路である。この検知側音叉26の動
作について説明すると、駆動側音叉21と同様の電極配
置を行っているので、伝播したXモードで振動腕29,
30が互いに逆相の伸縮が起こり、表裏面の検知用電極
41a〜41dに図示したような+、−の電荷が発生
し、共通線路42,43間に角速度に比例した出力電圧
が現れる。なお、振動腕29,30は逆相の伸縮である
から、逆電荷が発生し、両振動腕29,30で2倍の出
力となる。
Reference numeral 42 is a commonly connected detection electrode 40a, 4
0c, 41b and 41d are connected to a common line, and 43 is a commonly connected detection electrode 40b, 40d, 41a and 41c.
Is a common line connected to. The operation of the detection side tuning fork 26 will be described. Since the electrode arrangement similar to that of the driving side tuning fork 21 is performed, the vibrating arm 29,
30 expands and contracts in opposite phases to generate positive and negative charges in the detection electrodes 41a to 41d on the front and back surfaces, and an output voltage proportional to the angular velocity appears between the common lines 42 and 43. Since the vibrating arms 29 and 30 are expanded and contracted in opposite phases, opposite charges are generated, and the vibrating arms 29 and 30 output twice as much.

【0042】以下に、図1において駆動側振動節32お
よび検知側振動節33として示した振動節について詳し
く説明する。図5は、略U字音叉形水晶ブランク34の
側面図で、振動節の検出のための構成を示している。図
6(a)は振動節の位置を示す略U字音叉形水晶ブラン
ク34の斜視図、図6(b)は同じく正面図、図6
(c)は同じく側面図である。
The vibrating nodes shown as the driving side vibrating node 32 and the detecting side vibrating node 33 in FIG. 1 will be described in detail below. FIG. 5 is a side view of the substantially U-shaped tuning fork crystal blank 34, showing a configuration for detecting a vibrating node. FIG. 6A is a perspective view of the substantially U-shaped tuning fork crystal blank 34 showing the position of the vibrating node, and FIG. 6B is a front view of the same.
(C) is a side view of the same.

【0043】図5において、略U字音叉形水晶ブランク
34の支持部35Cを挟み込むように対称なピンポイン
ト支持具43で略U字音叉形水晶ブランク34を保持
し、この略U字音叉形水晶ブランク34に電気信号を与
えて、図6(a),(b)の矢印方向(X軸方向)に示
すように、振動腕35A,35Bが開閉する方向、つま
り、Xモードの屈曲振動を与えて、屈曲振動(共振)の
機械的先鋭度(以下、「機械的Q値」と記す。)を測定
し、機械的Q値の減少が少ない点を測定する。図6
(a),(b),(c)に示す曲線AMB,BNCより
下側の斜線部は、機械的Q値の減少が数%以内に留まる
部分を示している。
In FIG. 5, the substantially U-shaped tuning fork crystal blank 34 is held by a pin point support 43 which is symmetrical so as to sandwich the supporting portion 35C of the substantially U-shaped tuning fork crystal blank 34, and this substantially U-shaped tuning fork crystal is held. An electric signal is given to the blank 34 to give a direction in which the vibrating arms 35A and 35B are opened and closed, that is, an X-mode bending vibration, as shown in the arrow directions (X-axis direction) in FIGS. 6A and 6B. Then, the mechanical sharpness of flexural vibration (resonance) (hereinafter, referred to as “mechanical Q value”) is measured, and the point at which the mechanical Q value decreases little is measured. Figure 6
The shaded portions below the curves AMB and BNC shown in (a), (b) and (c) show the portions where the reduction of the mechanical Q value remains within several percent.

【0044】上記曲線AMB,BNCを便宜上、振動節
と定義している。つまり、略U字音叉形水晶ブランク3
4が振動している部分と振動していない部分の境界線に
近いラインをイメージしている。つまり、それを含むよ
うにある面積の結合子で2つの略U字音叉形水晶ブラン
クを結合したときに、一方の略U字音叉形水晶ブランク
の屈曲振動がよく行われ、かつ一方の略U字音叉形水晶
ブランクの屈曲振動が他方の略U字音叉形水晶ブランク
に伝わりやすい部分が振動節である。
The above curves AMB and BNC are defined as vibration nodes for convenience. That is, a substantially U-shaped tuning fork crystal blank 3
4 is an image of a line near the boundary between the vibrating part and the non-vibrating part. That is, when two substantially U-shaped tuning fork crystal blanks are connected with a connector having a certain area so as to include them, one of the substantially U-shaped tuning fork crystal blanks often undergoes bending vibration, and The vibrating node is a portion where bending vibration of the V-shaped tuning fork crystal blank is easily transmitted to the other substantially U-shaped tuning fork crystal blank.

【0045】図6(b),(c)にはXモードの振動状
態を点線で示しているが、略U字音叉形水晶ブランクの
側面は表裏面に比べて下の方まで振動していることを示
している。振動腕と支持部の寸法にもよるが、支持部が
十分大きいなら、M点はおよそ中点にある。また、N点
は支持部の80%〜90%のところにある。M点を通る
音叉の対称軸上で斜線内で結合すれば、駆動側音叉とな
る略U字音叉形水晶ブランクの共振Q値の減少は少ない
が、検知側音叉となる略U字音叉形水晶ブランクへの振
動エネルギーの伝達が非常に悪い。
In FIGS. 6B and 6C, the X-mode vibration state is shown by a dotted line. The side surface of the substantially U-shaped tuning fork crystal blank vibrates to the lower side than the front and back sides. It is shown that. Depending on the size of the vibrating arm and the support, if the support is large enough, the point M is approximately at the midpoint. The N point is 80% to 90% of the supporting portion. If they are connected in a diagonal line on the axis of symmetry of the tuning fork that passes through point M, the resonance Q value of the substantially U-shaped tuning fork crystal blank, which is the driving side tuning fork, is small, but it is the substantially U-shaped tuning fork crystal that is the sensing side tuning fork. Very poor transmission of vibrational energy to the blank.

【0046】したがって、その曲線AMBからなる振動
節を含むある面積をもった結合子で結合すれば、有効な
振動の授受が可能となる。例えば、M点を中心とした矩
形PQRS(図6(b)参照)を接着面積とする柱状の
結合子で結合すればよい。その矩形PQRSの面積の大
きさは支持部の大きさと考え合わせ、設計上の事項であ
る。
Therefore, by connecting with a connector having a certain area including the vibration node composed of the curve AMB, effective vibration can be transmitted and received. For example, the connection may be made by a columnar connector having a rectangular PQRS centering on the point M (see FIG. 6B) as an adhesion area. The size of the area of the rectangular PQRS is a matter of design considering the size of the supporting portion.

【0047】図7および図8はピンポイント支持位置
(x)に対する機械的Q値の減少の度合いを示す一つの
実験例を示すものである。実験に使用した略U字音叉形
水晶ブランクのサンプルの寸法とカット軸を図7
(a),(b)に示す。図7(a),(b)において、
寸法z1 は95mm、z2 は25mm、z3 は70mm、z4
は5mm、z5 は15mmである。図7(a),(b)の略
U字音叉形水晶ブランクについて、Xモードの振動を起
こさせ、ピンポイント支持位置を、h線上、g線上、
h′線上、i線上をそれぞれ移動させて、機械的Q値の
減少の度合いを測定した。その実験結果を図8に示す。
図8の実験結果の縦軸は略U字音叉形水晶ブランクの底
(x=0)は支持できないので、x=2mmのデータで基
準化した。図8において、実線はg線上の特性を示し、
破線はh線上およびh′線上の特性を示し、一点鎖線は
i線上の特性を示している。この図より、略U字音叉形
水晶ブランクの振動腕および支持部の側面は表裏面より
かなり下の方までピンポイント支持の影響が現れている
ことがわかる。
FIG. 7 and FIG. 8 show one experimental example showing the degree of reduction of the mechanical Q value with respect to the pinpoint support position (x). Figure 7 shows the dimensions and cut axis of the sample of the approximately U-shaped tuning fork crystal blank used in the experiment.
Shown in (a) and (b). 7 (a) and 7 (b),
Dimension z 1 is 95 mm, z 2 is 25 mm, z 3 is 70 mm, z 4
Is 5 mm and z 5 is 15 mm. With respect to the substantially U-shaped tuning fork crystal blanks of FIGS. 7 (a) and 7 (b), vibration in the X mode is generated, and the pinpoint support positions are set on the h line, the g line,
The degree of decrease in the mechanical Q value was measured by moving on the h ′ line and the i line. The experimental results are shown in FIG.
The vertical axis of the experimental results in FIG. 8 cannot support the bottom (x = 0) of the substantially U-shaped tuning-fork type crystal blank, and is therefore normalized by the data of x = 2 mm. In FIG. 8, the solid line shows the characteristics on the g line,
The broken line shows the characteristics on the h line and the h'line, and the alternate long and short dash line shows the characteristics on the i line. From this figure, it can be seen that the effect of pinpoint support appears on the side surfaces of the vibrating arm and the supporting portion of the substantially U-shaped tuning fork crystal blank to a position far below the front and back surfaces.

【0048】また、h,h′上では、支持点をかなり振
動腕に近づけても機械的Q値に影響を与えないことがわ
かる。以上のように構成された角速度センサの動作原理
について、以下に説明する。図9(a)は、本発明の角
速度センサの原理を示す図である。図9(a)におい
て、YZ軸面に対して面対称な±X軸方向に速度ベクト
ルvで2質点m,mが屈曲振動している状態で、Y軸周
りに角速度ベクトルωの回転が印加されたとすると、こ
れらの質点m,mには2mω×vの外積で表現されるコ
リオリの力Fが発生する。
Further, on h and h ', it is understood that the mechanical Q value is not affected even if the supporting point is brought very close to the vibrating arm. The operating principle of the angular velocity sensor configured as described above will be described below. FIG. 9A is a diagram showing the principle of the angular velocity sensor of the present invention. In FIG. 9A, the rotation of the angular velocity vector ω is applied around the Y axis in a state where the two mass points m and m are bending-vibrated at the velocity vector v in the ± X axis directions which are plane-symmetrical with respect to the YZ axis plane. Then, a Coriolis force F represented by an outer product of 2mω × v is generated at these mass points m and m.

【0049】このコリオリの力Fは、ベクトルω,vの
なす平面に右座標垂直方向であるから、この発生したコ
リオリの力Fを検出することにより、印加した角速度ベ
クトルωを直接検出できる。このコリオリの力Fの大き
さは、質点mの変位を d=AsinΩt とすると、速度|v|は、 |V|=dd/dt=AΩcosΩt であるから、その力|F|は、 |F|=2mAΩ|ω| として求められる。
Since the Coriolis force F is in the direction perpendicular to the right coordinate on the plane formed by the vectors ω and v, the applied angular velocity vector ω can be directly detected by detecting the generated Coriolis force F. As for the magnitude of the Coriolis force F, when the displacement of the mass point m is d = AsinΩt, the speed | v | is | V | = dd / dt = AΩcosΩt, so the force | F | is | F | = 2 mAΩ | ω |.

【0050】ここで、角速度センサの出力信号、つまり
検知側音叉からの出力信号をAとすると、出力信号Aは
つぎのように表すことができる。 A=B×C×|F| ただし、Bは圧電材料常数、Cは形状サイズに関係する
常数である。したがって、入力角速度ωを与えると、検
知側音叉から得られる出力信号Aは、 A=2×B×C×m×v×|ω| で表されることになり、 2×B×C×m×v=D とおくと、 A=D×|ω| となり、検知側音叉から得られる出力信号Aは入力角速
度|ω|に比例することになり、出力信号Aの値から入
力角速度|ω|がわかることになる。
Here, assuming that the output signal of the angular velocity sensor, that is, the output signal from the detection side tuning fork is A, the output signal A can be expressed as follows. A = B × C × | F | where B is a piezoelectric material constant and C is a constant related to the shape size. Therefore, when the input angular velocity ω is given, the output signal A obtained from the detection side tuning fork is represented by A = 2 × B × C × m × v × | ω |, and 2 × B × C × m If xv = D, then A = D × | ω |, and the output signal A obtained from the detection side tuning fork is proportional to the input angular velocity | ω |, and from the value of the output signal A, the input angular velocity | ω | Will be understood.

【0051】ここで、図9(b)は、本発明の要部であ
る水晶ブランク34の動作原理を示す図であり、同図
(a)の原理図に対応するものである。図9(b)にお
いて、Y軸を通りYZ対称面に振動腕35A,35Bが
X軸方向に+v、−vの速度で共振屈曲振動をするもの
すると、水晶ブランク34のY軸が回転する方向に角速
度ωが加わったときに、それぞれの振動腕35A,35
Bにコリオリの力Fが発生する。
Here, FIG. 9B is a diagram showing the operation principle of the crystal blank 34 which is the main part of the present invention, and corresponds to the principle diagram of FIG. 9A. In FIG. 9B, when the vibrating arms 35A and 35B perform resonant flexural vibration at + v and -v speeds in the X-axis direction on the YZ symmetric plane passing through the Y-axis, the Y-axis of the crystal blank 34 rotates. When the angular velocity ω is applied to the vibrating arms 35A and 35A,
Coriolis force F is generated on B.

【0052】以下に、本発明の第1の実施例の角速度セ
ンサの動作について説明する。図10は、動作を説明す
るための角速度センサをY′軸方向から見た状態の平面
図である。この角速度センサは、主として以下のような
動作をする。駆動側音叉21にX軸方向の駆動振動を持
続させるように振動駆動手段(図示せず)を用いて振動
腕24,25の駆動用電極36a〜36d,37a〜3
7dに上記した通りに交流電圧を加えて振動腕24,2
5を屈曲振動させると、コリオリの力によりZ軸方向の
振動が生じ、それが検知側音叉26に伝播する。検知側
音叉26に結合子31を通じて伝播した振動成分により
検知側音叉26がX軸方向に振動する。一方、検知側音
叉26のXモードの振動成分の電気的信号、すなわち、
コリオリの力を検知側音叉26の振動腕29,30の表
面に設けた検知用電極40a〜40d,41a〜41d
から上記した通りに交流信号を信号検知手段(図示せ
ず)により取り出すことにより、駆動側音叉21,検知
側音叉26の回転角速度に対応した角速度信号が得られ
る。なお、一部、以下のような動作もする。駆動側音叉
21にX軸方向の駆動振動を持続させるように振動駆動
手段(図示せず)を用いて振動腕24,25の駆動用電
極36a〜36d,37a〜37dに上記した通りに交
流電圧を加えて振動腕24,25を屈曲振動させると、
検知側音叉26に結合子31を通じて伝播した振動成分
により検知側音叉26がX軸方向に振動する。一方、検
知側音叉26の振動方向(Z′軸方向)に対して、直角
方向のXモードの振動成分の電気的信号、すなわち、コ
リオリの力を検知側音叉26の振動腕29,30の表面
に設けた検知用電極40a〜40d,41a〜41dか
ら上記した通りに交流信号を信号検知手段(図示せず)
により取り出すことにより、駆動側音叉21,検知側音
叉26の回転角速度に対応した角速度信号が得られる。
The operation of the angular velocity sensor of the first embodiment of the present invention will be described below. FIG. 10 is a plan view of the angular velocity sensor for explaining the operation as seen from the Y′-axis direction. This angular velocity sensor mainly operates as follows. Driving electrodes 36a to 36d, 37a to 3 of the vibrating arms 24 and 25 are mounted on the driving side tuning fork 21 by using vibration driving means (not shown) so as to maintain driving vibration in the X-axis direction.
By applying the AC voltage to 7d as described above, the vibrating arms 24, 2
When 5 is flexurally vibrated, Coriolis force causes vibration in the Z-axis direction, which propagates to the detection-side tuning fork 26. The detection-side tuning fork 26 vibrates in the X-axis direction due to the vibration component propagated to the detection-side tuning fork 26 through the connector 31. On the other hand, the electrical signal of the X-mode vibration component of the detection side tuning fork 26, that is,
The Coriolis force is applied to the detection electrodes 40a to 40d and 41a to 41d provided on the surfaces of the vibrating arms 29 and 30 of the detection side tuning fork 26.
As described above, the AC signal is taken out by the signal detecting means (not shown) as described above, whereby an angular velocity signal corresponding to the rotational angular velocity of the drive side tuning fork 21 and the detection side tuning fork 26 is obtained. In addition, a part of the following operations are also performed. An alternating voltage is applied to the drive electrodes 36a to 36d and 37a to 37d of the vibrating arms 24 and 25 by using a vibration drive means (not shown) so that the drive side tuning fork 21 maintains the drive vibration in the X axis direction. Is added to cause the vibrating arms 24 and 25 to flex and vibrate,
The detection-side tuning fork 26 vibrates in the X-axis direction due to the vibration component propagated to the detection-side tuning fork 26 through the connector 31. On the other hand, the electrical signal of the X-mode vibration component, that is, the Coriolis force, in the direction perpendicular to the vibration direction of the detection side tuning fork 26 (Z'-axis direction), that is, the surface of the vibration arms 29 and 30 of the detection side tuning fork 26 is detected. Signal detecting means (not shown) for detecting an AC signal from the detection electrodes 40a to 40d and 41a to 41d provided in the above as described above.
The angular velocity signals corresponding to the rotational angular velocities of the drive-side tuning fork 21 and the detection-side tuning fork 26 are obtained by taking out with.

【0053】この実施例の角速度センサによれば、駆動
側音叉21および検知側音叉26としてそれぞれ従来例
のような貼り合わせタイプではない振動腕24,25;
29,30と支持部25;28とがそれぞれ一体となっ
た略U字音叉形水晶ブランクを用いているので、広い温
度範囲で温度特性に優れかつ各種ばらつきが少なく高精
度に角速度を検出することができる。
According to the angular velocity sensor of this embodiment, the drive side tuning fork 21 and the detection side tuning fork 26 are vibrating arms 24 and 25 which are not of the pasting type as in the conventional example, respectively.
Since a substantially U-shaped tuning-fork type crystal blank in which 29 and 30 and the supporting portions 25 and 28 are integrated is used, the temperature characteristics are excellent in a wide temperature range and various variations are small, and the angular velocity can be detected with high accuracy. You can

【0054】また、駆動側音叉21の一方および他方の
振動腕24,25のX軸方向に変位する互いに逆相の屈
曲振動の共振周波数と検知側音叉26のX軸方向の互い
に逆相の屈曲振動の共振周波数とをほぼ等しく、かつ駆
動側音叉21のX軸方向に変位する互いに逆相の屈曲振
動の共振周波数と検知側音叉26の一方および他方の振
動腕29,30のZ′軸方向に変位する互いに逆相の屈
曲振動の共振周波数とを異ならせているので、駆動側音
叉21を共振駆動した場合において、検知側音叉26で
は、X軸方向に変位する互いに逆相の屈曲振動とY′軸
周りの回転角速度に基づくコリオリの力によって検知側
音叉26の一方および他方の振動腕29,30に発生し
伝播するX軸方向の互いに逆相の屈曲振動を大きくでき
るとともに、Z′軸方向に変位する互いに逆相の屈曲振
動を小さくできる。この結果、Z′軸方向に変位する互
いに逆相の屈曲振動により生じる交流電圧の影響を抑え
つつ、X軸方向の互いに逆相の屈曲振動により生じる交
流電圧を有効に検出できることになり、精度よくY′軸
周りの回転角速度を検出することが可能となる。
Further, the resonance frequencies of the bending vibrations of one and the other vibrating arms 24 and 25 of the drive side tuning fork 21 which are displaced in the X axis direction and the resonance frequencies of the bending vibrations of the detection side tuning fork 26 which are opposite to each other in the X axis direction. The resonance frequencies of the vibrations are substantially equal to each other, and the resonance frequencies of the bending vibrations of opposite phases that are displaced in the X-axis direction of the drive-side tuning fork 21 and the Z'-axis directions of the one and the other vibrating arms 29 and 30 of the detection-side tuning fork 26. Since the resonance frequencies of the flexural vibrations of opposite phases that are displaced toward each other are different from each other, when the drive-side tuning fork 21 is resonantly driven, the detection-side tuning fork 26 has a flexural vibration of opposite phases that are displaced in the X-axis direction. The Coriolis force based on the rotational angular velocity about the Y ′ axis can increase the bending vibrations of the opposite phases in the X axis direction that are generated and propagated in the one and the other vibrating arms 29 and 30 of the detection side tuning fork 26, and Z ′. Together displaced in a direction can be reduced flexural vibration of the reverse phase. As a result, it is possible to effectively detect the AC voltage generated by the bending vibrations of the opposite phases in the X-axis direction while suppressing the influence of the AC voltage generated by the bending vibrations of the opposite phase that are displaced in the Z′-axis direction, and with high accuracy. It becomes possible to detect the angular velocity of rotation about the Y ′ axis.

【0055】また、結合子31の両端面を駆動側音叉2
1および検知側音叉26の支持部23,28に生成され
る振動節を部分的に含む表面に接着しているので、駆動
側音叉21のX軸方向に変位する互いに逆相の屈曲振動
を、駆動側音叉21の機械的Q値を低下させることな
く、最大の機械伝達効率で検知側音叉26に伝達するこ
とができるとともに、駆動側音叉21と検知側音叉26
とを結合子31で簡単に一体化することができ、製造が
容易である。
Further, the both ends of the connector 31 are connected to the driving side tuning fork 2 by
1 and the surfaces of the detection side tuning fork 26, which partially include the vibration nodes generated in the supporting portions 23 and 28, are bonded to each other, so that the bending vibrations of the driving side tuning fork 21 that are displaced in the X-axis direction are opposite in phase to each other. It is possible to transmit to the detection side tuning fork 26 with the maximum mechanical transmission efficiency without lowering the mechanical Q value of the drive side tuning fork 21, and at the same time, to the drive side tuning fork 21 and the detection side tuning fork 26.
And can be easily integrated with the connector 31, and the manufacturing is easy.

【0056】ここで、上記実施例をもとに、従来例と比
較し、その特性効果について説明する。前記に説明の本
発明の実施例によると、略U字音叉形水晶振動子からな
る駆動側音叉21と検知側音叉26を平行に面対向する
ように結合子31で一体化することにより、機械的な共
振先鋭度(機械的Q値)が高く、角速度検出感度が高
く、熱膨張係数が小さく、駆動周波数が安定し、その結
果、前記に説明したセンサの信号処理における同期整流
の位相ずれ変化が小さく、さらに駆動側の駆動信号成分
の一部が検知部へ不要信号成分として混入することがな
く、結果的には、ドリフト安定度は従来の1/10と優
れた特性を得ることができた。
Here, based on the above-mentioned embodiment, the characteristic effect will be described in comparison with the conventional example. According to the above-described embodiment of the present invention, the driving side tuning fork 21 and the detection side tuning fork 26, which are substantially U-shaped tuning fork type crystal units, are integrated by the connector 31 so as to face each other in parallel, and thereby the machine Resonance sharpness (mechanical Q value) is high, angular velocity detection sensitivity is high, thermal expansion coefficient is small, drive frequency is stable, and as a result, phase shift change of synchronous rectification in the signal processing of the sensor described above. Is small, and part of the drive signal component on the drive side does not mix as an unnecessary signal component into the detection unit. As a result, the drift stability can be as excellent as 1/10 of that of the conventional one. It was

【0057】図11は本発明の第2の実施例の角速度セ
ンサの斜視図を示している。同図(a)は組み立て状態
の斜視図、同図(b)は分解状態の斜視図である。この
角速度センサは、水晶で形成した角柱状ブロックの結合
子31Aを駆動側音叉21と検知側音叉26の両支持部
の振動節を含めて図11に示すように、支持部23,2
8のほぼ中点Mを中心に、ある矩形面積PQRSに接着
により固着させる。検知側音叉26の裏面の固着部分は
図11では見えないが、駆動側音叉21と同じ位置に固
着される。
FIG. 11 is a perspective view of an angular velocity sensor according to the second embodiment of the present invention. FIG. 1A is a perspective view of the assembled state, and FIG. 1B is a perspective view of the disassembled state. In this angular velocity sensor, as shown in FIG. 11, a support member 23, 2 including a connector 31A of a prismatic block made of crystal, including vibrating nodes of both support parts of the drive side tuning fork 21 and the detection side tuning fork 26 is included.
Around a middle point M of 8 is fixed to a certain rectangular area PQRS by adhesion. Although the fixed portion on the back surface of the detection side tuning fork 26 is not visible in FIG. 11, it is fixed at the same position as the driving side tuning fork 21.

【0058】この実施例の角速度センサは、図1の円柱
状の結合子に代えて、角柱状の結合子31Aを用いたも
ので、その他の構成は図1のものと同様である。この実
施例の効果は前記第1の実施例と同様である。図12は
本発明の第3の実施例の角速度センサの斜視図を示して
いる。同図(a)は組み立て状態の斜視図、同図(b)
は分解状態の斜視図である。
The angular velocity sensor of this embodiment uses a prismatic connector 31A instead of the cylindrical connector of FIG. 1, and the other structures are the same as those of FIG. The effect of this embodiment is similar to that of the first embodiment. FIG. 12 shows a perspective view of the angular velocity sensor of the third embodiment of the present invention. The figure (a) is a perspective view of an assembled state, the figure (b)
[Fig. 3] is a perspective view of an exploded state.

【0059】この実施例の角速度センサは、駆動側音叉
21および検知側音叉26の支持部23,28に例えば
エッチングにより振動節を含むある面積の方形(円形で
もよい)の貫通孔23a,28aを設け、方形(または
円形)の結合子31を貫通孔23a,28aに貫挿した
状態で接着したものである。その他の構成は図1の実施
例の同様である。
In the angular velocity sensor of this embodiment, rectangular (or circular) through holes 23a and 28a having an area including a vibration node are formed in the supporting portions 23 and 28 of the drive side tuning fork 21 and the detection side tuning fork 26 by etching, for example. A rectangular (or circular) connector 31 is provided and bonded in a state of being inserted into the through holes 23a and 28a. Other configurations are similar to those of the embodiment shown in FIG.

【0060】この場合の結合は駆動側音叉21および検
知側音叉26の各支持部23,28の振動節を含む面
で、音叉の表裏方向(厚み方向)にエッチング等によっ
て矩形の貫通孔23a(PQRS),28a(P′Q′
R′S′)を設け、角柱状ブロックの結合子31Aを貫
挿して接着している。この実施例では、結合子31の両
端を駆動側音叉21および検知側音叉26の支持部2
3,28に生成される振動節を部分的に含む貫通孔23
a,28aに貫挿した状態で接着しているので、駆動側
音叉21のZ′軸方向に変位する互いに逆相の屈曲振動
を、駆動側音叉21の機械的Q値を低下させることな
く、最大の機械伝達効率で検知側音叉26に伝達するこ
とができるとともに、駆動側音叉21と結合側音叉26
とを結合子31で強固に一体化で、耐振性に優れてい
る。その他の効果は第1の実施例と同様である。
In this case, the coupling is a surface including the vibration nodes of the supporting portions 23 and 28 of the drive side tuning fork 21 and the detection side tuning fork 26, and the rectangular through hole 23a (in the thickness direction) of the tuning fork is formed by etching or the like. PQRS), 28a (P'Q '
R'S ') is provided, and the connector 31A of the prismatic block is inserted and bonded. In this embodiment, both ends of the connector 31 are connected to the supporting portion 2 of the drive side tuning fork 21 and the detection side tuning fork 26.
Through hole 23 that partially includes a vibration node generated in 3, 28
Since they are bonded in a state of being inserted into a and 28a, bending vibrations of the driving side tuning fork 21 which are displaced in the Z′-axis direction and which are in opposite phases to each other do not reduce the mechanical Q value of the driving side tuning fork 21. It can be transmitted to the detection side tuning fork 26 with the maximum mechanical transmission efficiency, and the driving side tuning fork 21 and the coupling side tuning fork 26 can be transmitted.
And the connector 31 are firmly integrated and have excellent vibration resistance. Other effects are similar to those of the first embodiment.

【0061】なお、前記各実施例では、駆動側音叉のX
軸方向に変位する互いに逆相の屈曲振動の共振周波数と
検知側音叉のX軸方向の互いに逆相の屈曲振動の共振周
波数とがほぼ等しく、かつ駆動側音叉のX軸方向に変位
する互いに逆相の屈曲振動の共振周波数と検知側音叉の
一方および他方の振動腕のZ′軸方向に変位する互いに
逆相の屈曲振動の共振周波数とが異なるように、駆動側
音叉の振動腕と検知側音叉の振動腕とを異なる形状寸法
に設定していたが、これに代えて、駆動側音叉のX軸方
向に変位する互いに逆相の屈曲振動の共振周波数と検知
側音叉のX軸方向の互いに逆相の屈曲振動の共振周波数
と検知側音叉の一方および他方の振動腕のZ′軸方向に
変位する互いに逆相の屈曲振動の共振周波数とが互いに
隔離して異なるように、駆動側音叉の振動腕と検知側音
叉の振動腕とを異なる形状寸法に設定してもよい。この
場合の検知側音叉の振動腕の寸法の一例としては、長さ
(L)10mm×厚み(t)3mm×幅(W)2.5mmとし
た。なお、駆動側音叉の振動腕の寸法は先に示したもの
と同じである。
In each of the above-described embodiments, the X of the drive side tuning fork is
The resonance frequencies of the bending vibrations of opposite phases displaced in the axial direction and the resonance frequencies of the bending vibrations of opposite phases in the X axis direction of the detection side tuning fork are substantially equal to each other, and the resonance frequencies of the driving side tuning forks displaced in the X axis direction are opposite to each other. The vibrating arm of the drive side tuning fork and the sensing side of the sensing side tuning fork so that the resonance frequency of the bending vibration is different from the resonant frequency of the bending vibrations of one and the other vibrating arms of the sensing side tuning forks that are displaced in the Z′-axis direction. Although the vibrating arm of the tuning fork is set to have a different shape and dimension, instead of this, the resonance frequency of the bending vibrations of the driving side tuning fork that are displaced in the X-axis direction and the resonance frequency of the detecting side tuning fork of the bending vibration are mutually opposite. The resonance frequency of the bending vibration of the opposite phase and the resonance frequency of the bending vibration of the opposite phases which are displaced in the Z′-axis direction of one and the other vibrating arms of the detection side tuning fork are separated from each other and are different from each other. Different the vibrating arm from the vibrating arm of the detection side tuning fork. It may be set to that geometry. In this case, as an example of dimensions of the vibrating arm of the detection side tuning fork, length (L) 10 mm × thickness (t) 3 mm × width (W) 2.5 mm. The size of the vibrating arm of the driving side tuning fork is the same as that shown above.

【0062】このように構成すると、駆動側音叉21の
X軸方向に変位する互いに逆相の屈曲振動の共振周波数
と検知側音叉26のX軸方向の互いに逆相の屈曲振動の
共振周波数と検知側音叉26の一方および他方の振動腕
のZ′軸方向に変位する互いに逆相の屈曲振動の共振周
波数とを互いに隔離して異ならせているので、駆動側音
叉を共振駆動した場合において、検知側音叉26では、
X軸方向に変位する互いに逆相の屈曲振動とY′軸周り
の回転角速度に基づくコリオリの力によって駆動側音叉
21の一方および他方の振動腕24,25に発生するX
軸方向の互いに逆相の屈曲振動に対して、Z′軸方向に
変位する互いに逆相の屈曲振動を効率良く抽出できる。
この結果、Z′軸方向に変位する互いに逆相の屈曲振動
により生じる交流電圧の影響を抑えつつ、X軸方向の互
いに逆相の屈曲振動により生じる交流電圧を有効に検出
できることになり、精度よくY′軸周りの回転角速度を
検出することが可能となる。その他の点については、前
記各実施例と同様である。
With this configuration, the resonance frequency of the bending vibrations of the driving side tuning fork 21 which are displaced in the X-axis direction and the resonance frequency of the bending vibrations of the detection side tuning fork 26 which are in the opposite phase of the X-axis direction are detected. Since the resonance frequencies of the flexural vibrations of opposite vibrations that are displaced in the Z′-axis direction of one and the other vibrating arms of the side tuning fork 26 are different from each other, they are detected when the driving side tuning fork is resonantly driven. In the side tuning fork 26,
X generated in the one and the other vibrating arms 24 and 25 of the drive side tuning fork 21 by the Coriolis force based on the rotational vibrations about the Y′-axis and the flexural vibrations in the opposite phases which are displaced in the X-axis direction.
It is possible to efficiently extract bending vibrations of opposite phases that are displaced in the Z′-axis direction with respect to bending vibrations of opposite phases in the axial direction.
As a result, it is possible to effectively detect the AC voltage generated by the bending vibrations of the opposite phases in the X-axis direction while suppressing the influence of the AC voltage generated by the bending vibrations of the opposite phase that are displaced in the Z′-axis direction, and with high accuracy. It becomes possible to detect the angular velocity of rotation about the Y ′ axis. The other points are the same as those in the above-mentioned respective embodiments.

【0063】上記の図11の実施例は、駆動側音叉のX
軸方向に変位する互いに逆相の屈曲振動の共振周波数と
検知側音叉のX軸方向の互いに逆相の屈曲振動の共振周
波数とがほぼ等しく、かつ駆動側音叉のX軸方向に変位
する互いに逆相の屈曲振動の共振周波数と検知側音叉の
一方および他方の振動腕のZ′軸方向に変位する互いに
逆相の屈曲振動の共振周波数とが異なるように、駆動側
音叉の振動腕と検知側音叉の振動腕とを異なる形状寸法
に設定した状態の実施例を示す。また、図12の実施例
は、駆動側音叉のX軸方向に変位する互いに逆相の屈曲
振動の共振周波数と検知側音叉のX軸方向の互いに逆相
の屈曲振動の共振周波数と検知側音叉の一方および他方
の振動腕のZ′軸方向に変位する互いに逆相の屈曲振動
の共振周波数とが互いに隔離して異なるように、駆動側
音叉の振動腕と検知側音叉の振動腕とを異なる形状寸法
に設定した状態の実施例を示す。
In the embodiment shown in FIG. 11, the X of the drive side tuning fork is used.
The resonance frequencies of the bending vibrations of opposite phases displaced in the axial direction and the resonance frequencies of the bending vibrations of opposite phases in the X axis direction of the detection side tuning fork are substantially equal to each other, and the resonance frequencies of the driving side tuning forks displaced in the X axis direction are opposite to each other. The vibrating arm of the drive side tuning fork and the sensing side of the sensing side tuning fork so that the resonance frequency of the bending vibration is different from the resonant frequency of the bending vibrations of one and the other vibrating arms of the sensing side tuning forks that are displaced in the Z′-axis direction. An example in which the vibrating arm of the tuning fork is set to a different shape and dimension is shown. In the embodiment shown in FIG. 12, the resonance frequency of the bending vibrations of the driving side tuning fork that are displaced in the X-axis direction and the resonance frequency of the bending vibrations of the detection side tuning fork that are in the opposite phase and the detection side tuning fork. The vibrating arm of the driving side tuning fork and the vibrating arm of the detecting side tuning fork are different from each other so that the resonance frequencies of the bending vibrations of opposite phases that are displaced in the Z′-axis direction of the one and the other vibrating arms are different from each other. An example in which the shape and dimensions are set will be described.

【0064】なお、駆動側音叉および検知側音叉の支持
部における振動節ではなく、支持部の例えば下底部同士
を結合子を介して結合しても、駆動側音叉から検知側音
叉へ振動を有効に伝達することができ、このような構成
も実施例として含まれる。つまり、音叉振動の機械的振
動先鋭度が低下せずに、振動エネルギーの一部を伝達さ
せる部位なら支持部のどこを結合してもよい。また、結
合は1箇所で行っているが、2個以上の結合子を用いる
ことにより、2箇所以上で行ってもよいのは当然であ
る。
Even if the lower bottom portions of the supporting portions are connected to each other through the connector instead of the vibrating nodes in the supporting portions of the driving side tuning fork and the detecting side tuning fork, vibration is effectively transmitted from the driving side tuning fork to the detecting side tuning fork. And such a configuration is also included as an example. In other words, any part of the support part may be connected as long as it is a part that transmits a part of the vibration energy without lowering the mechanical vibration sharpness of the tuning fork vibration. Further, although the bonding is performed at one place, it is natural that the bonding may be performed at two or more places by using two or more connectors.

【0065】また、駆動側音叉21,検知側音叉26の
電極構造は、上記各実施例に示したものに限らず、種々
変更可能であり、要は屈曲振動とコリオリの信号成分を
検出することができればよいものである。例えば検知用
電極としては、振動腕の4つの稜線にそれぞれ跨がって
形成した4個の電極でもよいし、振動腕の両側面にそれ
ぞれ周方向に2分割した電極でもよい。
Further, the electrode structures of the drive side tuning fork 21 and the detection side tuning fork 26 are not limited to those shown in each of the above-mentioned embodiments, but various modifications can be made. The point is to detect bending vibration and Coriolis signal components. It would be nice to be able to. For example, the detection electrodes may be four electrodes formed so as to straddle the four ridge lines of the vibrating arm, or may be electrodes divided in two in the circumferential direction on both side surfaces of the vibrating arm.

【0066】また、上述した2種類の共振周波数条件を
維持し、水晶の結晶軸の違いによるヤング率の違いを活
用することで、駆動側音叉21の振動腕24,25と検
知側音叉26の振動腕29,30とを同じ寸法でかつ断
面正方形にすることが可能である。このように、駆動側
音叉21と検知側音叉26とを全く同じ形状にすると、
両電極22,27の形状も同じであることから、製造、
組立が簡単であり、低コスト化を達成できる。
Further, by maintaining the above two kinds of resonance frequency conditions and utilizing the difference in Young's modulus due to the difference in crystal axis of quartz, the vibrating arms 24 and 25 of the drive side tuning fork 21 and the detection side tuning fork 26 are made. It is possible that the vibrating arms 29, 30 have the same dimensions and a square cross section. In this way, if the driving-side tuning fork 21 and the detection-side tuning fork 26 have the same shape,
Since both electrodes 22 and 27 have the same shape, manufacturing,
Assembly is simple and cost reduction can be achieved.

【0067】また、上記実施例では、結晶軸X,Y,Z
のX軸周りに1〜3度程度回転した新たな結晶軸X,
Y′,Z′のY′軸方向を長手方向にしてX,Y′面内
で切り出した水晶ブランクを使用したが、結晶軸X,
Y,ZのY軸方向を長手方向にして切り出した水晶ブラ
ンクを使用することもできる。したがって、特許請求の
範囲における「結晶軸X,Y,ZのX軸周りに回転した
新たな結晶軸X,Y′,Z′」の表現には、回転角度が
0度の場合、つまり、結晶軸X,Y,Zと結晶軸X,
Y′,Z′とが重なっている場合も含まれる。また、上
記の結晶軸の回転角度1〜3度以外でもよい。
In the above embodiment, the crystal axes X, Y, Z
A new crystal axis X rotated about 1 to 3 degrees around the X axis of
Crystal blanks cut in the X, Y'plane with the Y'-axis direction of Y ', Z'as the longitudinal direction were used.
It is also possible to use a crystal blank that is cut out with the Y-axis direction of Y and Z as the longitudinal direction. Therefore, the expression "new crystal axes X, Y ', Z'rotated around the X-axis of crystal axes X, Y, Z" in the claims means that the rotation angle is 0 degree, that is, the crystal Axis X, Y, Z and crystal axis X,
The case where Y'and Z'overlap is also included. The rotation angle of the crystal axis may be other than 1 to 3 degrees.

【0068】[0068]

【発明の効果】以上、説明したように、本発明によれ
ば、不要信号成分が低減され、広い温度範囲でかつ、急
激な温度変化に対し、特性変化のきわめて少ない安定し
た角速度センサを得ることができる。また、駆動側音叉
と検知側音叉を、支持部に発生する振動節を部分的に含
むある面積をもったブロック結合子を介して固着すれ
ば、、音叉振動の機械的Q値と駆動側音叉から検知側音
叉への機械的伝達効率を最も向上させることができる。
As described above, according to the present invention, it is possible to obtain a stable angular velocity sensor in which unnecessary signal components are reduced, a wide temperature range and a characteristic change is extremely small with respect to a rapid temperature change. You can If the drive-side tuning fork and the detection-side tuning fork are fixed via a block connector having a certain area that partially includes the vibration node generated in the support portion, the mechanical Q value of the tuning fork vibration and the drive-side tuning fork can be improved. The mechanical transmission efficiency from the to the detection side tuning fork can be most improved.

【0069】したがって、両音叉を結合する際の機械的
伝達ロスが飛躍的に改善でき、コリオリ力による角速度
検出の感度を向上させることができる。そして、構成が
簡単な構造であるため、低コスト化を図ることができ、
工業的価値が大である。以下、各請求項毎の効果につい
て説明する。請求項1記載の角速度センサによれば、駆
動側音叉および検知側音叉としてそれぞれ従来例のよう
な貼り合わせタイプではない振動腕と支持部とが一体と
なった略U字音叉形水晶ブランクを用いているので、広
い温度範囲で温度特性に優れかつ各種ばらつきが少なく
高精度に角速度を検出することができる。
Therefore, the mechanical transmission loss when connecting both tuning forks can be dramatically improved, and the sensitivity of angular velocity detection by Coriolis force can be improved. And since the structure is simple, it is possible to reduce the cost.
It has great industrial value. The effects of each claim will be described below. According to the angular velocity sensor of claim 1, the drive-side tuning fork and the detection-side tuning fork are substantially U-shaped tuning-fork type crystal blanks in which the vibrating arm and the supporting portion, which are not of the pasting type, are integrated. Therefore, it is possible to detect the angular velocity with high accuracy in a wide temperature range, with excellent temperature characteristics and with little variation.

【0070】請求項2記載の角速度センサによれば、駆
動側音叉のX軸方向に変位する互いに逆相の屈曲振動の
共振周波数と検知側音叉のX軸方向の互いに逆相の屈曲
振動の共振周波数とをほぼ等しく、かつ駆動側音叉のX
軸方向に変位する互いに逆相の屈曲振動の共振周波数と
検知側音叉の一方および他方の振動腕のZ′軸方向に変
位する互いに逆相の屈曲振動の共振周波数とを異ならせ
ているので、駆動側音叉を共振駆動した場合において、
検知側音叉では、Z′軸方向に変位する互いに逆相の屈
曲振動とY′軸周りの回転角速度に基づくコリオリの力
によって駆動側音叉の一方および他方の振動腕に発生す
るZ′軸方向の互いに逆相の屈曲振動を効率良く抽出で
きるとともに、X軸方向に変位する互いに逆相の屈曲振
動を小さくできる。この結果、X軸方向に変位する互い
に逆相の屈曲振動により生じる交流電圧の影響を抑えつ
つ、Z′軸方向の互いに逆相の屈曲振動により生じる交
流電圧を有効に検出できることになり、精度よくY′軸
周りの回転角速度を検出することが可能となる。
According to the angular velocity sensor of the second aspect, the resonance frequency of the flexural vibrations of the driving side tuning fork which are displaced in the X-axis direction and the resonance frequency of the flexural vibrations of the detection side tuning fork of the opposite phase in the X-axis direction. Frequency is almost equal and X of the driving side tuning fork
Since the resonance frequencies of the flexural vibrations of the opposite phases which are displaced in the axial direction and the resonance frequencies of the flexural vibrations of the opposite phases which are displaced in the Z′-axis direction of the one and the other vibrating arms of the detection side tuning forks are made different. When the drive side tuning fork is resonantly driven,
In the detection side tuning fork, bending vibrations of opposite phases which are displaced in the Z′-axis direction and Coriolis force based on the rotational angular velocity around the Y ′ axis are generated in one and the other vibrating arm of the driving side tuning fork in the Z′-axis direction. It is possible to efficiently extract bending vibrations in opposite phases to each other and reduce bending vibrations in opposite phases that are displaced in the X-axis direction. As a result, it is possible to effectively detect the AC voltage generated by the bending vibrations of the opposite phases in the Z′-axis direction, while suppressing the influence of the AC voltages generated by the bending vibrations of the opposite phase that are displaced in the X-axis direction, with high accuracy. It becomes possible to detect the angular velocity of rotation about the Y ′ axis.

【0071】請求項3記載の角速度センサによれば、駆
動側音叉のX軸方向に変位する互いに逆相の屈曲振動の
共振周波数と検知側音叉のX軸方向の互いに逆相の屈曲
振動の共振周波数と検知側音叉の一方および他方の振動
腕のZ′軸方向に変位する互いに逆相の屈曲振動の共振
周波数とを互いに隔離して異ならせているので、駆動側
音叉を共振駆動した場合において、検知側音叉では、
Z′軸方向に変位する互いに逆相の屈曲振動とY′軸周
りの回転角速度に基づくコリオリの力によって検知側音
叉の一方および他方の振動腕に発生するX軸方向の互い
に逆相の屈曲振動に対して、Z′軸方向に変位する互い
に逆相の屈曲振動を極端に大きくならないようにでき
る。この結果、Z′軸方向に変位する互いに逆相の屈曲
振動により生じる交流電圧の影響を抑えつつ、X軸方向
の互いに逆相の屈曲振動により生じる交流電圧を有効に
検出できることになり、精度よくY′軸周りの回転角速
度を検出することが可能となる。
According to the angular velocity sensor of the third aspect, the resonance frequency of the flexural vibrations of the driving side tuning fork which are displaced in the X-axis direction and the resonance frequency of the flexural vibrations of the detection side tuning fork of the opposite phase in the X-axis direction. Since the frequency and the resonance frequency of the bending vibrations of opposite phases that are displaced in the Z′-axis direction of the one and the other vibrating arms of the detection side tuning fork are different from each other, when the driving side tuning fork is resonantly driven. , On the detection side tuning fork,
Bending vibrations of opposite phases in the Z'-axis direction and bending vibrations of opposite phases in the X-axis direction generated in one and the other vibrating arm of the sensing side tuning fork by Coriolis' force based on the rotational angular velocity about the Y'axis. On the other hand, it is possible to prevent the flexural vibrations that are displaced in the Z′-axis direction and have opposite phases from becoming extremely large. As a result, it is possible to effectively detect the AC voltage generated by the bending vibrations of the opposite phases in the X-axis direction while suppressing the influence of the AC voltage generated by the bending vibrations of the opposite phase that are displaced in the Z′-axis direction, and with high accuracy. It becomes possible to detect the angular velocity of rotation about the Y ′ axis.

【0072】請求項4記載の角速度センサによれば、検
知側音叉の電極が一対の振動腕の表裏面に形成している
だけであるので、電極の形成が容易であり、製造が容易
である。請求項5記載の角速度センサによれば、駆動側
音叉のX軸方向に変位する互いに逆相の屈曲振動を、駆
動側音叉の機械的Q値を低下させることなく、最大の機
械伝達効率で検知側音叉に伝達することができるととも
に、駆動側音叉と結合側音叉とを結合子で簡単に一体化
することができ、製造が容易である。
According to the angular velocity sensor of the fourth aspect, since the electrodes of the detection side tuning fork are only formed on the front and back surfaces of the pair of vibrating arms, the electrodes can be easily formed and the manufacturing is easy. . According to the angular velocity sensor of claim 5, bending vibrations of the drive side tuning fork that are displaced in the X-axis direction and having opposite phases are detected with the maximum mechanical transmission efficiency without lowering the mechanical Q value of the drive side tuning fork. In addition to being able to be transmitted to the side tuning fork, the driving side tuning fork and the coupling side tuning fork can be easily integrated by a connector, which facilitates manufacturing.

【0073】請求項5記載の角速度センサによれば、駆
動側音叉のX軸方向に変位する互いに逆相の屈曲振動
を、駆動側音叉の機械的Q値を低下させることなく、最
大の機械伝達効率で検知側音叉に伝達することができる
とともに、駆動側音叉と結合側音叉とを結合子で強固に
一体化で、耐振性に優れている。
According to the angular velocity sensor of the fifth aspect, bending vibrations of the driving side tuning fork that are displaced in the X-axis direction and having opposite phases to each other are maximized in mechanical transmission without lowering the mechanical Q value of the driving side tuning fork. It can be efficiently transmitted to the detection-side tuning fork, and the driving-side tuning fork and the coupling-side tuning fork are firmly integrated by a connector, which is excellent in vibration resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の角速度センサの斜視図
である。
FIG. 1 is a perspective view of an angular velocity sensor according to a first embodiment of the present invention.

【図2】略U字音叉形水晶ブランクの切り出し方向を示
す概略図である。
FIG. 2 is a schematic view showing a cutting direction of a substantially U-shaped tuning fork crystal blank.

【図3】略U字音叉形水晶ブランクの切り出し方向を示
す概略図である。
FIG. 3 is a schematic view showing a cutting direction of a substantially U-shaped tuning fork crystal blank.

【図4】駆動側音叉に設けた駆動用電極および検知側音
叉に設けた検知用電極の様子を示す概略図である。
FIG. 4 is a schematic view showing a state of a drive electrode provided on a drive side tuning fork and a detection electrode provided on a detection side tuning fork.

【図5】略U字音叉形水晶ブランクのピンポイント支持
位置を示す概略図である。
FIG. 5 is a schematic view showing pinpoint support positions of a substantially U-shaped tuning fork crystal blank.

【図6】振動節を説明するための略U字音叉形水晶ブラ
ンクの概略図である。
FIG. 6 is a schematic view of a substantially U-shaped tuning fork type crystal blank for explaining a vibrating node.

【図7】略U字音叉形水晶ブランクのサンプルの寸法と
カット軸を示す概略図である。
FIG. 7 is a schematic diagram showing dimensions and a cut axis of a sample of a substantially U-shaped tuning fork crystal blank.

【図8】本発明の角速度センサのピンポイント支持位置
の違いによる機械的Q値の違いを示す特性図である。
FIG. 8 is a characteristic diagram showing a difference in mechanical Q value due to a difference in pinpoint support position of the angular velocity sensor of the present invention.

【図9】本発明の第1の実施例の角速度センサにおいて
角速度検出の原理を示す概略図である。
FIG. 9 is a schematic diagram showing the principle of angular velocity detection in the angular velocity sensor of the first embodiment of the present invention.

【図10】本発明の第1の実施例の角速度センサにおい
て角速度検出の動作を示す概略図である。
FIG. 10 is a schematic diagram showing an angular velocity detecting operation in the angular velocity sensor according to the first embodiment of the present invention.

【図11】本発明の第2の実施例の角速度センサを示す
斜視図である。
FIG. 11 is a perspective view showing an angular velocity sensor according to a second embodiment of the present invention.

【図12】本発明の第3の実施例の角速度センサを示す
斜視図である。
FIG. 12 is a perspective view showing an angular velocity sensor according to a third embodiment of the present invention.

【図13】従来の角速度センサの一例を示す斜視図であ
る。
FIG. 13 is a perspective view showing an example of a conventional angular velocity sensor.

【符号の説明】[Explanation of symbols]

21 駆動側音叉 22 電極 23 支持部 24 一方の振動腕 25 他方の振動腕 26 検知側音叉 27 電極 28 支持部 29 一方の振動腕 30 他方の振動腕 31 結合子 32 振動節を含む接合部 33 振動節を含む接合部 36a〜36d 駆動用電極 37a〜37d 駆動用電極 38,39 共通線路 40a〜40d 検知用電極 41a〜41d 検知用電極 42,43 共通線路 31A 結合子 23a,28a 貫通孔 23b,28b 貫通孔 50a〜50d 検知用電極 51a〜51d 検知用電極 21 Driving Side Tuning Fork 22 Electrode 23 Supporting Part 24 One Vibrating Arm 25 Other Vibrating Arm 26 Sensing Side Tuning Fork 27 Electrode 28 Supporting Part 29 One Vibrating Arm 30 Other Vibrating Arm 31 Coupler 32 Joint Part Including Vibrating Node 33 Vibration Joint part including a node 36a to 36d Driving electrode 37a to 37d Driving electrode 38, 39 Common line 40a to 40d Detection electrode 41a to 41d Detection electrode 42, 43 Common line 31A Connector 23a, 28a Through hole 23b, 28b Through holes 50a to 50d Detection electrodes 51a to 51d Detection electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市瀬 俊彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 寺田 二郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大友 惇 埼玉県狭山市上広瀬1275−2 日本電波工 業株式会社狭山事業所内 (72)発明者 太田 治良 埼玉県狭山市上広瀬1275−2 日本電波工 業株式会社狭山事業所内 (72)発明者 太田 紘一郎 埼玉県狭山市上広瀬1275−2 日本電波工 業株式会社狭山事業所内 (72)発明者 石原 実 埼玉県狭山市上広瀬1275−2 日本電波工 業株式会社狭山事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Ichise 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Jiro Terada, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. 72) Inventor Atsushi Otomo 1275-2 Kamihirose, Sayama City, Saitama Prefecture, Japan Sayama Works, Japan Radio Industry Co., Ltd. (72) Jiro Ota, 1275-2, Kamihirose, Sayama City, Saitama Prefecture, Japan Sayama Works Co. 72) Inventor Koichiro Ota, 1275-2 Kamihirose, Sayama City, Saitama Prefecture, Japan Sayama Works Co., Ltd. (72) Inventor Minoru Ishihara, 1275-2, Kamihirose, Sayama City, Saitama Japan Sayama Works Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶軸X,Y,ZのX軸周りに回転した
新たな結晶軸X,Y′,Z′のY′軸方向を長手方向に
してX,Y′面内で切り出し、方形断面の一方および他
方の対称な振動腕を支持部で平行一体に連結した形状を
有する略U字音叉形水晶ブランクの前記一方および他方
の振動腕の周面に電極を配設してなる第1の音叉形水晶
振動子と、 結晶軸X,Y,ZのX軸周りに回転した新たな結晶軸
X,Y′,Z′のY′軸方向を長手方向にしてY′,
Z′面内で切り出し、方形断面の一方および他方の対称
な振動腕を支持部で平行一体に連結した形状を有する略
U字音叉形水晶ブランクの前記一方および他方の振動腕
の周面に電極を配設してなる第2の音叉形水晶振動子と
を、互いに平行に面対向した状態に結合子を介し前記支
持部において固着した角速度センサであって、 前記第1の音叉形水晶振動子を、電極を介して交流電圧
を印加することにより、一方および他方の振動腕のX軸
方向に変位する互いに逆相の屈曲振動を発生させる駆動
側音叉とし、 前記第2の音叉形水晶振動子を、前記結合子を経由して
前記第1の音叉形水晶振動子から伝播したZ′軸方向に
変位する互いに逆相の屈曲振動とY′軸周りの回転角速
度に基づくコリオリの力によって発生する一方および他
方の振動腕のX軸方向の互いに逆相の屈曲振動により生
じる交流電圧を電極を介して検出する角速度検出用の検
知側音叉としたことを特徴とする角速度センサ。
1. A rectangular shape obtained by cutting out in the X, Y'plane with the Y'-axis direction of the new crystal axes X, Y ', Z'rotated around the X-axis of the crystal axes X, Y, Z as the longitudinal direction. A first U-shaped tuning fork crystal blank having a shape in which symmetric vibrating arms having one and the other cross-sections are integrally connected in parallel by a supporting portion, and electrodes are arranged on the peripheral surfaces of the one and the other vibrating arms. Of the tuning fork crystal and a new crystal axis X, Y ', Z'rotated around the X axis of the crystal axes X, Y, Z with the Y'axis direction being Y',
Electrodes on the peripheral surfaces of the one and the other vibrating arms of a substantially U-shaped tuning fork-shaped crystal blank, which is cut out in the Z ′ plane and has one and the other symmetric vibrating arms of a rectangular cross section connected in parallel and integrally by a supporting portion. And a second tuning-fork type crystal resonator, wherein the second tuning-fork type crystal resonator and the second tuning-fork type crystal resonator are fixed to each other at the supporting portion via a connector in a state of being face-to-face in parallel with each other. Is a driving-side tuning fork that generates bending vibrations of opposite phases that are displaced in the X-axis direction of the one and the other vibrating arms by applying an AC voltage through the electrodes. Is generated by the Coriolis force based on the rotational vibration about the Y ′ axis and the bending vibrations of the opposite phases which are displaced in the Z ′ axis direction and propagated from the first tuning fork crystal unit via the connector. One and the other vibrating arm An angular velocity sensor, characterized in that mutually was detected side tuning fork for angular velocity detection for detecting via the electrodes an AC voltage generated by the flexural vibration of the reverse phase in the X-axis direction.
【請求項2】 駆動側音叉のX軸方向に変位する互いに
逆相の屈曲振動の共振周波数と検知側音叉のX軸方向の
互いに逆相の屈曲振動の共振周波数とがほぼ等しく、か
つ前記駆動側音叉のX軸方向に変位する互いに逆相の屈
曲振動の共振周波数と前記検知側音叉の一方および他方
の振動腕のZ′軸方向に変位する互いに逆相の屈曲振動
の共振周波数とが異なるように、前記駆動側音叉の振動
腕と前記検知側音叉の振動腕とを異なる形状寸法に設定
したことを特徴とする請求項1記載の角速度センサ。
2. A resonance frequency of mutually opposite-phase bending vibrations of the driving side tuning fork that are displaced in the X-axis direction and a resonance frequency of oppositely-phased bending vibrations of the detection side tuning fork in the X-axis direction are substantially equal to each other, and the driving is performed. The resonance frequencies of the bending vibrations of the opposite side of the tuning fork that are displaced in the X-axis direction are different from the resonance frequencies of the bending vibrations of the opposite sides of the detection side tuning fork that are displaced in the Z′-axis direction of the vibrating arms. The angular velocity sensor according to claim 1, wherein the vibrating arm of the driving side tuning fork and the vibrating arm of the detecting side tuning fork are set to have different shape dimensions.
【請求項3】 駆動側音叉のX軸方向に変位する互いに
逆相の屈曲振動の共振周波数と検知側音叉のX軸方向の
互いに逆相の屈曲振動の共振周波数と前記検知側音叉の
一方および他方の振動腕のZ′軸方向に変位する互いに
逆相の屈曲振動の共振周波数とが互いに隔離して異なる
ように、前記駆動側音叉の振動腕と前記検知側音叉の振
動腕とを異なる形状寸法に設定したことを特徴とする請
求項1記載の角速度センサ。
3. A resonance frequency of mutually opposite-phase bending vibrations of the driving side tuning fork displaced in the X-axis direction and a resonance frequency of oppositely-phased bending vibrations of the sensing side tuning fork in the X-axis direction and one of the sensing side tuning forks, and The vibrating arm of the drive side tuning fork and the vibrating arm of the detection side tuning fork have different shapes so that the resonance frequencies of the flexural vibrations of the other vibrating arm that are displaced in the Z′-axis direction are isolated and different from each other. The angular velocity sensor according to claim 1, wherein the angular velocity sensor is set to a dimension.
【請求項4】 駆動側音叉の一方および他方の振動腕の
周面に配設する電極は、Z′軸方向に見て前記一方およ
び他方の振動腕の表裏および両側の4周面にそれぞれ4
つの稜線部分で周方向に4分割された状態にそれぞれ設
けてあり、前記一方の振動腕の表裏面電極と前記他方の
振動腕の両側面電極とを共通接続し、前記他方の振動腕
の表裏面電極と前記一方の振動腕の両側面電極とを共通
接続し、 かつ検知側音叉の一方および他方の振動腕の周面に配設
する電極は、X軸方向に見て前記一方および他方の振動
腕の表裏および両側の4周面にそれぞれ4つの稜線部分
で周方向に4分割された状態にそれぞれ設けてあり、前
記一方の振動腕の表裏面電極と前記他方の振動腕の両側
面電極とを共通接続し、前記他方の振動腕の表裏面電極
と前記一方の振動腕の両側面電極とを共通接続したこと
を特徴とする請求項1記載の角速度センサ。
4. The electrodes arranged on the peripheral surfaces of the one and the other vibrating arms of the drive side tuning fork have four electrodes on each of the four peripheral surfaces on the front and back sides and both sides of the one and the other vibrating arms when viewed in the Z′-axis direction.
Each of the two ridge lines is provided in a state of being divided into four in the circumferential direction, and the front and back electrodes of the one vibrating arm and the both side electrodes of the other vibrating arm are commonly connected, and the front and back electrodes of the other vibrating arm are connected. The electrodes that commonly connect the back surface electrode and the both side electrodes of the one vibrating arm and that are arranged on the peripheral surfaces of the one and the other vibrating arms of the detection side tuning fork are the electrodes of the one and the other of the vibrating arms when viewed in the X-axis direction. The front and back surfaces of the vibrating arm and the four peripheral surfaces on both sides are respectively provided in a state of being divided into four in the circumferential direction by four ridge lines, and the front and back electrodes of the one vibrating arm and the both side electrodes of the other vibrating arm. 2. The angular velocity sensor according to claim 1, wherein the front and back electrodes of the other vibrating arm and the both side electrodes of the one vibrating arm are commonly connected to each other.
【請求項5】 結合子は、両端面がある面積を有する柱
状であって、両端面が駆動側音叉および検知側音叉の支
持部に生成される振動節を部分的に含む表面に接着され
ていることを特徴とする請求項1記載の角速度センサ。
5. The connector has a columnar shape with both end faces having a certain area, and both end faces are bonded to a surface partially including a vibration node generated in a supporting portion of the drive side tuning fork and the detection side tuning fork. The angular velocity sensor according to claim 1, wherein
【請求項6】 駆動側音叉および検知側音叉は、支持部
に生成される振動節を部分的に含むある面積をもった貫
通孔をそれぞれ有し、結合子は、柱状であって、両端部
が前記貫通孔に貫挿した状態に前記駆動側音叉および検
知側音叉の支持部に接着されていることを特徴とする請
求項1記載の角速度センサ。
6. The drive-side tuning fork and the detection-side tuning fork each have a through hole having an area that partially includes a vibrating node generated in the support portion, and the connector has a columnar shape and both ends thereof. The angular velocity sensor according to claim 1, wherein the angular velocity sensor is adhered to the supporting portions of the drive side tuning fork and the detection side tuning fork while being inserted into the through hole.
JP04904794A 1994-03-18 1994-03-18 Angular velocity sensor Expired - Fee Related JP3244924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04904794A JP3244924B2 (en) 1994-03-18 1994-03-18 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04904794A JP3244924B2 (en) 1994-03-18 1994-03-18 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JPH07260489A true JPH07260489A (en) 1995-10-13
JP3244924B2 JP3244924B2 (en) 2002-01-07

Family

ID=12820179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04904794A Expired - Fee Related JP3244924B2 (en) 1994-03-18 1994-03-18 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3244924B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802473B2 (en) * 2006-12-22 2010-09-28 Tamagawa Seiki Co., Ltd. Angular velocity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802473B2 (en) * 2006-12-22 2010-09-28 Tamagawa Seiki Co., Ltd. Angular velocity sensor

Also Published As

Publication number Publication date
JP3244924B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
JP3973742B2 (en) Vibrating gyroscope
JP2780643B2 (en) Vibrating gyro
EP0574143B1 (en) Angular rate sensor and method of production thereof
JP4529203B2 (en) Angular velocity sensor
EP0597338B1 (en) Vibrating gyroscope
JP2002277248A (en) Angular velocity sensor
US8869615B2 (en) Element vibrating in two uncoupled modes, and use in vibrating rate gyroscope
JPH07306048A (en) Piezoelectric vibrator
JP3244924B2 (en) Angular velocity sensor
JP3270239B2 (en) Acceleration sensor
JP3244923B2 (en) Angular velocity sensor
JP3674013B2 (en) Angular velocity detector
JP3244925B2 (en) Angular velocity / acceleration sensor
JP4777806B2 (en) Quartz crystal oscillator and angular velocity sensor
JP4552253B2 (en) Angular velocity sensor
JPH03120415A (en) Vibration gyro
JP3371609B2 (en) Vibrating gyro
JPH07167662A (en) Detecting circuit
US20080289418A1 (en) Angular velocity sensor
JPH06117862A (en) Vibrator
JP2001116552A (en) Vibration gyro
JP2002372421A (en) Angular velocity sensor and its manufacturing method
JPH03122518A (en) Oscillating gyro
JPH10253363A (en) Angular velocity sensor element and angular velocity sensor using the same
JPH06194176A (en) Vibrator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees