JPH0725833A - Production of nonylaniline - Google Patents

Production of nonylaniline

Info

Publication number
JPH0725833A
JPH0725833A JP5173142A JP17314293A JPH0725833A JP H0725833 A JPH0725833 A JP H0725833A JP 5173142 A JP5173142 A JP 5173142A JP 17314293 A JP17314293 A JP 17314293A JP H0725833 A JPH0725833 A JP H0725833A
Authority
JP
Japan
Prior art keywords
nonylaniline
nonylphenol
hydrogen
nonylcyclohexanone
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5173142A
Other languages
Japanese (ja)
Inventor
Chiyuki Kusuda
千幸 楠田
Masaru Wada
勝 和田
Teruyuki Nagata
輝幸 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5173142A priority Critical patent/JPH0725833A/en
Publication of JPH0725833A publication Critical patent/JPH0725833A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a method for producing nonylaniline in which the nonylaniline can be obtained in high selectivity. CONSTITUTION:This method for producing nonylaniline is to react nonylphenol with ammonia in the presence of a hydrogen-transfer catalyst, water and a catalytic amount of nonylyclohexanone and further react the nonylphenol with the ammonia while converting a part of the nonylphenol into the nonylcyclohexanone under pressure of hydrogen in the presence of the hydrogen- transfer catalyst and water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ノニルアニリンの新規
な製造方法に関する。本発明の方法によって得られるノ
ニルアニリンは、鉱油、合成油等の酸化防止剤、樹脂添
加剤の中間原料として有用な化合物である。
FIELD OF THE INVENTION The present invention relates to a novel method for producing nonylaniline. Nonylaniline obtained by the method of the present invention is a compound useful as an intermediate raw material for antioxidants such as mineral oil and synthetic oil, and resin additives.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ノニル
アニリンの製造方法としては、アニリンとノニルアルコ
ールをルイス酸触媒下反応させて製造する方法(Tet
rahedron,1975 31(16)1869−
71)、ノニルベンゼンをニトロ化した後還元すること
により製造する方法(Technol.Rept.Ka
nsai Univ.No.5,31−4(196
3))、あるいはノニルベンゼンから4−アセチルノニ
ルベンゼン、N−(p−ノニルフェニル)アセトアミド
を経てノニルアニリンを得る方法(Mol.Crys
t.Liquid Cryst.1972,17(3−
4),291−301)等が既に公知である。しかし、
これらの方法では反応工程が煩雑であったり収率が低い
等の欠点があった。
2. Description of the Related Art Nonylaniline can be produced by reacting aniline with nonyl alcohol under a Lewis acid catalyst (Tet).
rahedron, 1975 31 (16) 1869-
71), a method of producing by nitrating nonylbenzene and then reducing it (Technol. Rept. Ka).
nsai Univ. No. 5, 31-4 (196
3)), or a method of obtaining nonylaniline from nonylbenzene via 4-acetylnonylbenzene and N- (p-nonylphenyl) acetamide (Mol. Crys).
t. Liquid Crystal. 1972, 17 (3-
4), 291-301) and the like are already known. But,
These methods have drawbacks such as complicated reaction steps and low yield.

【0003】[0003]

【課題を解決するための手段】本発明者等は、上記欠点
を解決し、もっと容易に且つ高収率で製造する新規な製
造方法につき鋭意検討した。その結果、ノニルフェノ−
ルとアンモニアを反応させることにより、容易に且つ高
選択率でノニルアニリンが得られることを見出し、本発
明に到達した。
DISCLOSURE OF THE INVENTION The present inventors have diligently studied a novel manufacturing method which solves the above-mentioned drawbacks and can be manufactured more easily and in a high yield. As a result, nonylpheno-
The inventors have found that nonylaniline can be easily obtained with a high selectivity by reacting hydrogen chloride with ammonia, and reached the present invention.

【0004】即ち、本発明は、水素移動触媒、水及び触
媒量のシクロヘキサノンの存在下、ノニルフェノールと
アンモニアを反応させるか、叉は、水素移動触媒及び水
の存在下、最初からノニルシクロヘキサノンを共存させ
ておくことなく、水素加圧下においてノニルフェノール
の一部をノニルシクロヘキサノンにしつつ、ノニルフェ
ノールとアンモニアを反応させることを特徴とするノニ
ルアニリンの製造方法である。
That is, according to the present invention, nonylphenol and ammonia are reacted in the presence of a hydrogen transfer catalyst, water and a catalytic amount of cyclohexanone, or nonylcyclohexanone is allowed to coexist from the beginning in the presence of a hydrogen transfer catalyst and water. The method for producing nonylaniline is characterized by reacting nonylphenol with ammonia while partially converting nonylphenol into nonylcyclohexanone under pressurized hydrogen.

【0005】本発明方法においては、アンモニアとノニ
ルシクロヘキサノンとの縮合反応により生成したノニル
シクロヘキシルイミンが脱水素されてノニルアニリンを
生成し、この際同時に生成した水素は、ノニルフェノー
ルの還元、即ちノニルシクロヘキサノンの生成に同一反
応系中で全て利用されるため、極めて効率的である。
In the method of the present invention, nonylcyclohexylimine produced by the condensation reaction of ammonia and nonylcyclohexanone is dehydrogenated to produce nonylaniline, and the hydrogen produced at the same time is reduced by nonylphenol, that is, nonylcyclohexanone. It is extremely efficient because it is used for production in the same reaction system.

【0006】本発明方法において使用するノニルフェノ
ールは、フェノールとノネンのフリーデルクラフツアル
キル化反応によって製造され、容易に入手可能である。
The nonylphenol used in the method of the present invention is produced by the Friedel-Crafts alkylation reaction of phenol and nonene and is easily available.

【0007】本発明方法において使用される水素移動触
媒としては、公知のいかなるものでもよいが、具体的に
はラネーニッケル、還元ニッケル、ニッケルを硅藻土、
アルミナ、軽石、シリカゲル、酸性白土などの種々の担
体に担持したニッケル担体触媒;ラネーコバルト、還元
コバルト、コバルト、コバルト・担体触媒などのコバル
ト触媒;ラネー銅、還元銅、銅・担体触媒などの銅触
媒;パラジウム黒、酸化パラジウム、コロイドパラジウ
ム、パラジウム・炭素、パラジウム・硫酸バリウム、パ
ラジウム・炭酸バリウムなどのパラジウム触媒;白金
黒、コロイド白金、白金海綿、酸化白金、硫化白金、白
金・炭素などの白金・担体触媒等の白金触媒;コロイド
ロジウム、ロジウム・炭素、酸化ロジウムなどのロジウ
ム触媒;ルテニウム触媒などの白金族触媒;七酸化ニレ
ニウム、レニウム炭素などのレニウム触媒;銅クロム酸
化物触媒;酸化モリブデン触媒;酸化バナジウム触媒;
酸化タングステン触媒などを例示することができる。こ
れらの触媒のうちではパラジウム触媒を使用することが
好ましく、特にパラジウム・担体触媒を使用することが
好ましく、とりわけパラジウム・炭素、パラジウム・ア
ルミナを使用するのが良い。
The hydrogen transfer catalyst used in the method of the present invention may be any known one. Specifically, Raney nickel, reduced nickel, nickel and diatomaceous earth,
Nickel carrier catalyst supported on various carriers such as alumina, pumice, silica gel, acid clay; cobalt catalyst such as Raney cobalt, reduced cobalt, cobalt, cobalt / carrier catalyst; copper such as Raney copper, reduced copper, copper / carrier catalyst Catalyst: Palladium black, palladium oxide, colloidal palladium, palladium / carbon, palladium / barium sulfate, palladium / barium carbonate, etc. palladium catalyst; platinum black, colloidal platinum, platinum sponge, platinum oxide, platinum sulfide, platinum / carbon, etc. platinum -Platinum catalysts such as carrier catalysts; colloidal rhodium, rhodium-carbon, rhodium catalysts such as rhodium oxide; platinum group catalysts such as ruthenium catalysts; rhenium catalysts such as nilenium heptaoxide and rhenium carbon; copper chromium oxide catalysts; molybdenum oxide catalysts Vanadium oxide catalysts;
A tungsten oxide catalyst etc. can be illustrated. Among these catalysts, it is preferable to use a palladium catalyst, particularly preferable to use a palladium / carrier catalyst, and particularly preferable to use palladium / carbon and palladium / alumina.

【0008】これらの水素移動触媒の使用量は、原料の
アンモニアに対し、金属原子として0.001〜1.0
グラム原子、好ましくは0.002〜0.2グラム原子
が良い。
The amount of these hydrogen transfer catalysts used is 0.001 to 1.0 as metal atoms relative to the raw material ammonia.
Gram atoms, preferably 0.002-0.2 gram atoms are good.

【0009】本発明方法において原料となるアンモニア
は、ノニルフェノールに対して等量あれば反応は進行す
るが、一般に過剰量使用した方が選択率が高くなる傾向
にあり、ノニルフェノールに対して1.5当量以上、好
ましくは2〜5当量使用するのがよい。アンモニアが少
ない場合はジノニルジフェニルアミン、N−(ノニルシ
クロヘキシル)ノニルアニリン等の副生量が増し好まし
くない。
In the method of the present invention, the reaction proceeds if ammonia, which is a raw material, is equivalent to nonylphenol, but generally the selectivity tends to be higher when it is used in an excess amount. It is good to use more than equivalent, preferably 2 to 5 equivalent. If the amount of ammonia is small, the amount of by-products such as dinonyldiphenylamine and N- (nonylcyclohexyl) nonylaniline increases, which is not preferable.

【0010】本発明方法において、反応を開始させるに
は、ノニルシクロヘキサノンが必要であり、反応開始時
に触媒量のノニルシクロヘキサノンを装入しておくか、
叉はノニルフェノールからノニルシクロヘキサノンへ変
換させるための水素を封入しておく必要がある。反応開
始時に必要なノニルシクロヘキサノンの量は、ノニルフ
ェノールに対し触媒量の約0.03モル倍以上であれば
特に問題ないが、好ましくは0.05〜0.40モル倍
が良い。また、最初にノニルシクロヘキサノンを装入し
ない場合は、この量のノニルシクロヘキサノンを生成す
るに相当する量、即ち約0.06モル倍以上、好ましく
は0.10〜0.80モル倍の水素を反応開始時に反応
器に封入すれば良い。この量より少ないと反応速度が小
さくなり好ましくない。
In the method of the present invention, nonylcyclohexanone is required to start the reaction, and a catalytic amount of nonylcyclohexanone may be charged at the start of the reaction.
In addition, it is necessary to enclose hydrogen for converting nonylphenol to nonylcyclohexanone. The amount of nonylcyclohexanone required at the start of the reaction is not particularly problematic as long as it is about 0.03 mol times or more the catalyst amount relative to nonylphenol, but preferably 0.05 to 0.40 mol times. When nonylcyclohexanone is not initially charged, hydrogen is reacted in an amount corresponding to the production of this amount of nonylcyclohexanone, that is, about 0.06 mol times or more, preferably 0.10 to 0.80 mol times of hydrogen. It may be sealed in the reactor at the start. If it is less than this amount, the reaction rate becomes slow, which is not preferable.

【0011】本発明方法は、無溶媒あるいは原料及び生
成物と不活性な公知の有機溶剤中で行うことができる。
The method of the present invention can be carried out without solvent or in a known organic solvent which is inert to the raw materials and products.

【0012】本発明の方法における反応温度は通常15
0〜350℃、好ましくは200〜300℃の範囲で選
ばれる。反応圧力は通常10〜100kg/cm2、好
ましくは30〜80kg/cm2の範囲で行うのが良
い。
The reaction temperature in the method of the present invention is usually 15
It is selected in the range of 0 to 350 ° C, preferably 200 to 300 ° C. The reaction pressure is usually 10 to 100 kg / cm 2 , and preferably 30 to 80 kg / cm 2 .

【0013】反応終了後、冷却した反応混合溶液は濾過
し、触媒を分離する。この回収触媒は再使用できる。次
いで、ろ液を水洗し過剰のアンモニアを除去した後、減
圧蒸留によってノニルアニリンを得る。
After completion of the reaction, the cooled reaction mixture solution is filtered to separate the catalyst. This recovered catalyst can be reused. Next, the filtrate is washed with water to remove excess ammonia, and then nonylaniline is obtained by vacuum distillation.

【0014】[0014]

【実施例】以下、本発明の方法を実施例によって具体的
に説明する。 実施例1 内容積500mlのステンレス製オートクレーブに、ノ
ニルフェノール132.2g(0.6モル)、ノニルシ
クロヘキサノン24.9g(0.1モル)、エヌ・イー
・ケムキャット社製5%Pd/C(50%含水品)5.
0g、25%アンモニア水136.2g(2.0モル)
を仕込んだ。オートクレーブ内を窒素置換した後、22
0℃まで昇温して5時間反応を行った。次いで反応液を
冷却し、反応混合液より5%Pd/Cを濾別し、濾液を
水洗した。濾液の一部を採取し、液体クロマトグラフィ
ーにより分析した結果、ノニルフェノールの転化率は2
0%、ノニルアニリンの選択率は87%であった。
EXAMPLES The method of the present invention will be described in detail below with reference to examples. Example 1 132.2 g (0.6 mol) of nonylphenol, 24.9 g (0.1 mol) of nonylcyclohexanone, and 5% Pd / C (50% made by NE Chemcat) were placed in a stainless steel autoclave having an internal volume of 500 ml. Hydrous product) 5.
0 g, 136.2 g (2.0 mol) of 25% aqueous ammonia
Was charged. After replacing the inside of the autoclave with nitrogen, 22
The temperature was raised to 0 ° C. and the reaction was performed for 5 hours. Then, the reaction solution was cooled, 5% Pd / C was filtered off from the reaction mixture, and the filtrate was washed with water. As a result of collecting a part of the filtrate and analyzing it by liquid chromatography, the conversion rate of nonylphenol was 2
The selectivity of 0% and nonylaniline was 87%.

【0015】実施例2 内容積500mlのステンレス製オートクレーブに、最
初に仕込みのノニルシクロヘキサノンがない以外は実施
例1の通りに仕込んだ。オートクレブ内を窒素置換した
後水素で11kg/cm2Gに加圧した。150℃まで
昇温し、撹拌下にこの温度で2時間反応させ、更に22
0℃まで昇温して5時間反応を行った。次いで実施例1
と同様に処理、分析した。その結果、ノニルフェノール
の転化率は17%、ノニルアニリンの選択率は85%で
あった。
Example 2 A stainless steel autoclave having an internal volume of 500 ml was charged as in Example 1 except that initially charged nonylcyclohexanone was not used. The inside of the autoclave was replaced with nitrogen, and then pressurized to 11 kg / cm 2 G with hydrogen. The temperature is raised to 150 ° C., and the reaction is continued for 2 hours at this temperature with stirring.
The temperature was raised to 0 ° C. and the reaction was performed for 5 hours. Then Example 1
The sample was treated and analyzed in the same manner as in. As a result, the conversion of nonylphenol was 17% and the selectivity of nonylaniline was 85%.

【0016】[0016]

【発明の効果】水素移動触媒及び水の存在下、ノニルフ
ェノールを水素受容体且つノニルシクロヘキサノン供給
源として使用し、アンモニアと反応させることにより、
ノニルアニリンを高選択率で得ることができる。
INDUSTRIAL APPLICABILITY By using nonylphenol as a hydrogen acceptor and a nonylcyclohexanone source in the presence of a hydrogen transfer catalyst and water and reacting with ammonia,
Nonylaniline can be obtained with high selectivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素移動触媒、水及び触媒量のノニルシ
クロヘキサノンの存在下、ノニルフェノールとアンモニ
アを反応させることを特徴とするノニルアニリンの製造
方法。
1. A process for producing nonylaniline, which comprises reacting nonylphenol with ammonia in the presence of a hydrogen transfer catalyst, water and a catalytic amount of nonylcyclohexanone.
【請求項2】 水素移動触媒及び水の存在下、水素加圧
下において、一部のノニルフェノールをノニルシクロヘ
キサノンに変換しつつ、ノニルフェノールとアンモニア
を反応させることを特徴とするノニルアニリンの製造方
法。
2. A process for producing nonylaniline, which comprises reacting nonylphenol with ammonia while converting a part of nonylphenol into nonylcyclohexanone in the presence of a hydrogen transfer catalyst and water under pressure of hydrogen.
JP5173142A 1993-07-13 1993-07-13 Production of nonylaniline Pending JPH0725833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5173142A JPH0725833A (en) 1993-07-13 1993-07-13 Production of nonylaniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5173142A JPH0725833A (en) 1993-07-13 1993-07-13 Production of nonylaniline

Publications (1)

Publication Number Publication Date
JPH0725833A true JPH0725833A (en) 1995-01-27

Family

ID=15954897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5173142A Pending JPH0725833A (en) 1993-07-13 1993-07-13 Production of nonylaniline

Country Status (1)

Country Link
JP (1) JPH0725833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483489A (en) * 2013-09-27 2014-01-01 凯瑞化工股份有限公司 Preparation method of catalytic resin for nonyl phenol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483489A (en) * 2013-09-27 2014-01-01 凯瑞化工股份有限公司 Preparation method of catalytic resin for nonyl phenol

Similar Documents

Publication Publication Date Title
JP3485609B2 (en) Catalyst for process for producing 4-hydroxy-2.2.6.6-tetramethylpiperidine
JPH0725833A (en) Production of nonylaniline
EP0908447B1 (en) Process for the preparation of cyanoarylmethylamine
EP0023751B1 (en) Process for producing five, six or seven membered saturated nitrogen containing heterocyclic compounds
JP4692700B2 (en) Process for producing aromatic cyanoaminomethyl
JP3177350B2 (en) Method for producing dinonyldiphenylamine
US3923891A (en) Hydrogenation of benzonitrile to dibenzylamine
JPH0725836A (en) Production of dinonyldiphenylamine
KR0138789B1 (en) Production of aminodiphenylamine
US4935545A (en) Process for the disproportionation of alkylated aromatic primary amines
JPH0533215B2 (en)
JP3154598B2 (en) N- (4'-nonylcyclohexyl) -4-nonylaniline and method for producing the same
EP0630881A1 (en) Process for the preparation of diphenylamine
JP4709352B2 (en) Method for purifying 3-aminopropanol
EP1229018B1 (en) Single step hydrogenation of nitrobenzene to p-aminophenol
JP2795492B2 (en) Method for producing indole or indole derivative
JP2516222B2 (en) Process for producing 4- (4-hydroxyphenyl) -cyclohexanol
JP3234655B2 (en) Process for producing diphenylamine or its nuclear substituted product
JP4147809B2 (en) Method for producing halogenated aromatic methylamines
JPH0770003A (en) Production of diphenylamines
JPS6036411B2 (en) Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol
JP2523140B2 (en) Method for producing (4-hydroxyphenyl) -cyclohexanecarboxylic acid
JP2503022B2 (en) 4. Method for producing <->-hydroxybiphenyl-3-carboxylic acid
JPS5862128A (en) Preparation of p-phenylphenol compound or its ether
JPH01272540A (en) Production of 1-phenylethanol