JPH07256779A - Manufacture of fiber reinforced thermoplastic resin composite tube - Google Patents

Manufacture of fiber reinforced thermoplastic resin composite tube

Info

Publication number
JPH07256779A
JPH07256779A JP6055574A JP5557494A JPH07256779A JP H07256779 A JPH07256779 A JP H07256779A JP 6055574 A JP6055574 A JP 6055574A JP 5557494 A JP5557494 A JP 5557494A JP H07256779 A JPH07256779 A JP H07256779A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
pipe
layer
core
sizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP6055574A
Other languages
Japanese (ja)
Inventor
Mitsuo Sasakura
満雄 笹倉
Koichi Adachi
浩一 足立
Sumio Nakatake
純夫 中武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP6055574A priority Critical patent/JPH07256779A/en
Publication of JPH07256779A publication Critical patent/JPH07256779A/en
Ceased legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for manufacturing continuously and efficiently fiber reinforced resin composite tubes having excellent pressure resistance, impact resistance, and excellent dimensional precision. CONSTITUTION:A fiber reinforced thermoplastic resin composite tube E to be manufactured consists of a tube body A2 consisting of a sheet fiber composite for a first reinforcing layer, a thermoplastic resin inner tube B1, a second reinforcing layer C2 made of a tape-like or string-like fiber composite which is wound spirally, and a thermoplastic resin outer tube D. Insides of the four layer tubes, an inner tube sizing core 15 having an inner tube abutting section is provided. The inner tube sizing core 15 and a tip of a core 6 of a first extrusion mold are connected through a connecting member 7 which is arranged so as not to contact with the thermoplastic resin inner tube B1. On the outside of the outer tube D, a metallic sizing tube 16 is provided so as to face the inner tube sizing core 15 so as to lead the four layer tubes for sizing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化熱可塑性樹脂
複合管の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin composite pipe.

【0002】[0002]

【従来の技術】一般に、合成樹脂管は、金属管と比較し
て軽量でかつ錆びないという優れた特性を有しているた
め、従来より広く用いられている。しかしながら、合成
樹脂管は、金属管より耐圧性および耐衝撃性において劣
っている。
2. Description of the Related Art Generally, synthetic resin pipes have been widely used since they have the excellent characteristics of being light in weight and not rusting as compared with metal pipes. However, the synthetic resin pipe is inferior to the metal pipe in pressure resistance and impact resistance.

【0003】そこで、この問題を解決するため、内層と
なる熱可塑性樹脂管の内部にこれと略同一の外径を有す
るコアを挿入した状態で該熱可塑性樹脂管の外面に連続
強化繊維が管の長手方向に配されているテープ状繊維複
合体をスパイラル状に巻き付けて強化層を形成し、さら
にこの強化層の外面にそい熱可塑性樹脂を溶融状態で押
し出して積層し、強化層の外面に熱可塑性樹脂外層を形
成する繊維強化樹脂管の製造方法が提案された(特開平
4−201548号参照)。
Therefore, in order to solve this problem, a continuous reinforcing fiber is formed on the outer surface of the thermoplastic resin pipe with a core having an outer diameter substantially the same as that of the thermoplastic resin pipe as the inner layer inserted therein. The tape-shaped fiber composites arranged in the longitudinal direction are spirally wound to form a reinforcing layer, and the thermoplastic resin is extruded in a molten state on the outer surface of the reinforcing layer to be laminated on the outer surface of the reinforcing layer. A method for producing a fiber-reinforced resin tube for forming a thermoplastic resin outer layer has been proposed (see Japanese Patent Laid-Open No. 4-201548).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記先
提案の方法によれば、強化層と内外層の熱可塑性樹脂の
接着を強固なものとなすために、一般に、テープ状繊維
複合体の巻付け作業および外層熱可塑性樹脂の被覆作業
を成形すべき熱可塑性樹脂の軟化温度以上の温度領域で
行なう必要があった。
However, according to the previously proposed method, in order to secure the adhesion between the reinforcing layer and the thermoplastic resin of the inner and outer layers, generally, the tape-shaped fiber composite is wound. It was necessary to carry out the work and the work of coating the outer layer thermoplastic resin in a temperature range above the softening temperature of the thermoplastic resin to be molded.

【0005】また、管変形を極小となすために内層とな
る熱可塑性樹脂管の内部にこれと略同一の外径を有する
コアを挿入している。ところが、このような温度領域で
上記の作業を連続的に行なった場合には、熱可塑性樹脂
の溶融温度、外部からの加熱温度によりコアが蓄熱状態
となり、その蓄熱状態の発生とともに管内面とコア円周
面との接触面が大きく、管抵抗が大きくなって、管の滑
りが不均一になり、引取機からの引き取りが不安定とな
った。
Further, in order to minimize the deformation of the pipe, a core having an outer diameter substantially the same as that of the thermoplastic resin pipe as an inner layer is inserted inside. However, when the above work is continuously performed in such a temperature range, the core is in a heat storage state due to the melting temperature of the thermoplastic resin and the heating temperature from the outside, and when the heat storage state occurs, the inner surface of the pipe and the core The contact surface with the circumferential surface was large, the pipe resistance was large, the pipe slipped unevenly, and the take-up from the take-up machine became unstable.

【0006】したがって、上記先提案の方法では、寸法
精度に優れかつ耐圧性と耐衝撃性が向上した繊維強化樹
脂管を連続的に製造することは、困難であるという問題
があった。
Therefore, the method proposed above has a problem that it is difficult to continuously manufacture a fiber-reinforced resin tube having excellent dimensional accuracy and improved pressure resistance and impact resistance.

【0007】本発明の目的は、上記の従来技術の問題を
解決し、耐圧性と耐衝撃性に優れ、しかも寸法精度の良
い繊維強化樹脂複合管を連続的に能率よく製造すること
ができる方法を提供しようとするにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to produce a fiber-reinforced resin composite pipe excellent in pressure resistance and impact resistance and having high dimensional accuracy continuously and efficiently. To try to serve.

【0008】[0008]

【課題を解決するための手段】請求項1記載の本発明
は、長手方向に配された連続強化繊維に熱可塑性樹脂が
融着されてなる第1強化層用シート状繊維複合体を管状
体に連続成形しつつ、管状体の内側に熱可塑性樹脂を溶
融状態で第1押出金型より押し出して積層し、熱可塑性
樹脂製内管を有する2層管を製造する工程、つぎにこの
2層管の外側に、長手方向に配された連続強化繊維に熱
可塑性樹脂が融着された第2強化層用テープ状またはひ
も状繊維複合体をスパイラル状に巻き付けて融着し、3
層管を製造する工程、さらに3層管の外側に熱可塑性樹
脂を第2押出金型より溶融状態で押し出して積層し、熱
可塑性樹脂製外管を有する4層管を製造する工程を含む
繊維強化熱可塑性樹脂複合管の製造方法において、該4
層管の内側に内管当接部を有する内管サイジングコアを
設け、内管サイジングコアと前記第1押出金型のコア先
端とを、熱可塑性樹脂製内管に接触しないように配置し
た連結部材を介して接続し、外管の外側に、内管サイジ
ングコアと対向するように金属サイジング管を設けて、
4層管を導くことによりサイジングすることを特徴とす
る繊維強化熱可塑性樹脂複合管の製造方法であり、この
ことにより上記目的の達成が可能となる。
The present invention according to claim 1 provides a sheet-like fiber composite for a first reinforcing layer, which is obtained by fusing a thermoplastic resin to continuous reinforcing fibers arranged in a longitudinal direction, into a tubular body. A step of producing a two-layer pipe having an inner pipe made of a thermoplastic resin by continuously extruding a thermoplastic resin in a molten state from a first extrusion die and laminating the same inside a tubular body while continuously forming the two layers. The tape-shaped or string-shaped fiber composite for the second reinforcing layer, in which the thermoplastic resin is fused to the continuous reinforcing fibers arranged in the longitudinal direction, is spirally wound around the outside of the pipe and is fused,
A fiber including a step of manufacturing a layered tube and a step of manufacturing a four-layered tube having a thermoplastic resin outer tube by further extruding a thermoplastic resin in a molten state from a second extrusion die and laminating the same on the outside of the three-layer tube In the method for manufacturing a reinforced thermoplastic resin composite pipe,
An inner pipe sizing core having an inner pipe contact portion is provided inside the layered pipe, and the inner pipe sizing core and the core tip of the first extrusion die are arranged so as not to come into contact with the thermoplastic resin inner pipe. Connected via a member, on the outside of the outer pipe, a metal sizing pipe is provided so as to face the inner pipe sizing core,
A method for producing a fiber-reinforced thermoplastic resin composite pipe, characterized by sizing by guiding a four-layer pipe, whereby the above object can be achieved.

【0009】また請求項2記載の発明は、内管サイジン
グコアの内管当接部が、拡径または縮径可能な弾性体か
らなるものであることを特徴とした繊維強化熱可塑性樹
脂複合管の製造方法であり、このことにより上記目的の
達成が可能となる。
The invention according to claim 2 is characterized in that the inner pipe abutting portion of the inner pipe sizing core is made of an elastic body capable of expanding or contracting in diameter. The above-mentioned object can be achieved by this.

【0010】上記において、シート状、テープ状、また
はひも状の繊維複合体に用いられる強化繊維としては、
熱可塑性樹脂の強化のために使用される連続繊維のすべ
てが使用可能である。
In the above, as the reinforcing fiber used in the sheet-shaped, tape-shaped, or string-shaped fiber composite,
All of the continuous fibers used for the reinforcement of thermoplastics can be used.

【0011】この強化繊維としては、例えば、ガラス繊
維、炭素繊維、シリコン繊維、チタン繊維、ボロン繊
維、および微細な金属繊維などの無機繊維、アラミド繊
維、ビニロン繊維、エコノール繊維、ポリエステル繊
維、ポリアミド繊維などの有機繊維をあげることがで
き、コストおよび物性の点からガラス繊維が好ましく用
いられる。
Examples of the reinforcing fibers include inorganic fibers such as glass fibers, carbon fibers, silicon fibers, titanium fibers, boron fibers, and fine metal fibers, aramid fibers, vinylon fibers, econol fibers, polyester fibers, polyamide fibers. And the like, and glass fibers are preferably used in terms of cost and physical properties.

【0012】そして、この連続強化繊維は直径1〜数1
0μmの連続フィラメントよりなるロービング状または
ストランド状のものが用いられる。シート状、テープ
状、またはひも状繊維複合体の強化繊維は、同じ種類お
よび異なる種類のいずれでもよい。
This continuous reinforcing fiber has a diameter of 1 to several 1
A roving-like or strand-like one made of 0 μm continuous filament is used. The reinforcing fibers of the sheet-shaped, tape-shaped, or string-shaped fiber composite may be of the same type or different types.

【0013】また、上記熱可塑性樹脂製内管に用いられ
る熱可塑性樹脂としては、管状に押出可能なものであれ
ば、特に限定はないが、例えば、ポリ塩化ビニル、塩素
化ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポ
リスチレン、ポリアミド、ポリカーボネート、ポリフェ
ニレンサルファイド、ポリスルホン、ポリエーテルエー
テルケトンなどがあげられる。
The thermoplastic resin used in the thermoplastic resin inner tube is not particularly limited as long as it can be extruded into a tubular shape. For example, polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene. , Polypropylene, polystyrene, polyamide, polycarbonate, polyphenylene sulfide, polysulfone, polyether ether ketone, and the like.

【0014】これらの熱可塑性樹脂は、管の使用目的に
応じて単独または複数の混合物として用いることができ
る。そして前記熱可塑性樹脂には、熱安定剤、可塑剤、
滑剤、酸化防止剤、紫外線吸収剤、顔料、強化繊維のよ
うな添加剤、無機充填材、加工助剤、改質剤などを配合
してもよい。
These thermoplastic resins can be used alone or as a mixture of a plurality of them depending on the purpose of use of the pipe. And the thermoplastic resin, a heat stabilizer, a plasticizer,
Lubricants, antioxidants, ultraviolet absorbers, pigments, additives such as reinforcing fibers, inorganic fillers, processing aids and modifiers may be added.

【0015】シート状、テープ状、およびひも状の繊維
複合体において連続強化繊維に融着される熱可塑性樹脂
は、熱可塑性樹脂製内管に用いられる熱可塑性樹脂と同
一である必要性は格別になく、融着性のよい熱可塑性樹
脂であればよい。
The thermoplastic resin fused to the continuous reinforcing fibers in the sheet-shaped, tape-shaped, and string-shaped fiber composites is particularly required to be the same as the thermoplastic resin used in the thermoplastic resin inner tube. However, any thermoplastic resin having good fusion property may be used.

【0016】しかしながら、テープ状またはひも状の繊
維複合体に用いられる熱可塑性樹脂の、熱可塑性樹脂製
内管に用いられる熱可塑性樹脂に対する融着性よりも、
テープ状またはひも状の繊維複合体の熱可塑性樹脂と直
接に接するシート状繊維複合体の熱可塑性樹脂に対する
融着性の方を、大きいものとする方が好ましく、このよ
うにすればシート状繊維複合体とテープ状またはひも状
繊維複合体との層間の接着性が高くなる。
However, the fusion resistance of the thermoplastic resin used in the tape-shaped or string-shaped fiber composite to the thermoplastic resin used in the thermoplastic resin inner tube is
It is preferable that the fusion property of the tape-shaped or string-shaped fiber composite which is in direct contact with the thermoplastic resin of the sheet-shaped fiber composite to the thermoplastic resin is larger, and thus the sheet-shaped fiber is formed. The adhesion between the layers of the composite and the tape-shaped or string-shaped fiber composite is increased.

【0017】なお、ここでいう融着性とは、双方の樹脂
を溶融状態になるまで加熱したうえで圧着し、冷却後、
融着した界面が容易に破断しないことをいう。
The term "fusing property" as used herein means that both resins are heated to a molten state and then pressure-bonded, and after cooling,
It means that the fused interface does not break easily.

【0018】熱可塑性樹脂製外管に用いる熱可塑性樹脂
は、とくに制限はなく、すべての熱可塑性樹脂を用いる
ことができるが、テープ状またはひも状用に用いられて
いる熱可塑性樹脂と融着性のよい熱可塑性樹脂を用いる
のが好ましい。
The thermoplastic resin used for the thermoplastic resin outer tube is not particularly limited, and all thermoplastic resins can be used, but they are fused with the thermoplastic resin used for tape or string. It is preferable to use a thermoplastic resin having good properties.

【0019】シート状繊維複合体の幅は、これより成形
せられる管状体の外周長さと略等しく、強化層の所望厚
みにより決められるが、通常0.1〜5mmである。
The width of the sheet-shaped fiber composite is approximately equal to the outer peripheral length of the tubular body formed from the sheet-shaped fiber composite and is determined by the desired thickness of the reinforcing layer, but it is usually 0.1 to 5 mm.

【0020】またシート状繊維複合体の繊維量は、5〜
70容量%である。
The fiber amount of the sheet-shaped fiber composite is 5 to 5.
70% by volume.

【0021】ここで、シート状繊維複合体の繊維量が5
容量%以下では、充分な補強効果が得られず、70容量
%を越えると、熱可塑性樹脂との融着性が低下し、充分
に界面が融着しない。
Here, the fiber amount of the sheet-like fiber composite is 5
When the content is less than or equal to volume%, a sufficient reinforcing effect cannot be obtained, and when the content exceeds 70% by volume, the fusion property with the thermoplastic resin is deteriorated and the interface is not sufficiently fused.

【0022】管状体の略周方向の強化層に用いられるテ
ープ状またはひも状繊維複合体の幅および厚みは、特に
限定されないが、テープ状の繊維複合体の場合は、幅1
0〜100mm、厚み0.1〜5mmのものが用いら
れ、ひも状の繊維複合体の場合には、直径0.5〜5m
m程度のものが用いられる。
The width and thickness of the tape-shaped or string-shaped fiber composite used for the reinforcing layer in the substantially circumferential direction of the tubular body are not particularly limited, but in the case of the tape-shaped fiber composite, the width 1
Those having a thickness of 0 to 100 mm and a thickness of 0.1 to 5 mm are used. In the case of a string-shaped fiber composite, the diameter is 0.5 to 5 m.
The thing of about m is used.

【0023】連続強化繊維に熱可塑性樹脂を融着させる
方法としては、例えば多数のフィラメントよりなるロー
ビング状またはストランド状の束状連続強化繊維を、粉
体状熱可塑性樹脂の流動床中を通過させ、または粉体状
熱可塑性樹脂を分散した液体の槽中を通過させて粉体状
熱可塑性樹脂をフィラメント間に含浸させた後に必要に
より一旦乾燥させることにより繊維間に熱可塑性樹脂を
保持、捕捉し、つぎに溶融温度以上に加熱して、繊維と
樹脂を一体化せしめると同時に、またはその後に、シー
ト状、テープ状またはひも状に成形する方法が採用され
る。
As a method for fusing the thermoplastic resin to the continuous reinforcing fibers, for example, roving-like or strand-like continuous reinforcing fibers composed of a large number of filaments are passed through a fluidized bed of the powdery thermoplastic resin. , Or the powdery thermoplastic resin is passed through a liquid tank to impregnate the powdery thermoplastic resin between the filaments, and then once dried if necessary to retain and capture the thermoplastic resin between the fibers. Then, a method is adopted in which the fibers and the resin are heated at a temperature higher than the melting temperature to integrate them, or at the same time, or thereafter, they are formed into a sheet shape, a tape shape, or a string shape.

【0024】長手方向に配された連続強化繊維に熱可塑
性樹脂が融着されてなる第1強化層用シート状繊維複合
体から管状体に連続的に成形し、前進させつつ管状体の
内側に熱可塑性樹脂を溶融状態で第1押出金型より押し
出して積層し、熱可塑性樹脂製内管を有する2層管とす
る。
From the sheet-shaped fiber composite for the first reinforcing layer, which is obtained by fusing a thermoplastic resin to continuous reinforcing fibers arranged in the longitudinal direction, is continuously molded into a tubular body, and while advancing, the inside of the tubular body is advanced. A thermoplastic resin is extruded in a molten state from a first extrusion die and laminated to form a two-layer pipe having a thermoplastic resin inner pipe.

【0025】この際、管状体の内部に空気圧等により圧
力をかけるのが、好ましく、これにより、密着性の向
上、概略径の保持等を果たし得る。
At this time, it is preferable to apply a pressure to the inside of the tubular body by air pressure or the like, whereby the adhesion can be improved and the approximate diameter can be maintained.

【0026】また、上記4層管の内側に設けられかつ内
管当接部を有する内管サイジングコアと、第1押出金型
のコア先端とを接続する連結部材としては、鎖または棒
状材あるいはまたワイヤ等の線材を使用することがで
き、所要の強度と耐熱性を有する長尺材であれば、いず
れも使用可能である。
The connecting member for connecting the inner pipe sizing core, which is provided inside the four-layer pipe and has the inner pipe contact portion, and the tip of the core of the first extrusion die, is a chain or rod-shaped member or Wires such as wires can be used, and any long material having required strength and heat resistance can be used.

【0027】つぎに、本発明を、図面を参照して詳細に
説明する。
Next, the present invention will be described in detail with reference to the drawings.

【0028】この明細書において、前後は図1を基準と
し、前とは図1の右側、後とは同左側をいうものとす
る。
In this specification, the front and rear sides are based on FIG. 1, the front side means the right side of FIG. 1, and the rear side means the same left side.

【0029】図1〜図3において、本発明の方法に用い
られる繊維強化熱可塑性樹脂複合管の製造装置は、第1
強化層用シート状繊維複合体(A1)が巻かれている巻戻し
ロール(1) と、その前方に配置されかつ先端部が前向き
直角に折り曲げられるとともに、その外周部が横断面円
形の第1押出金型の内金型(2) となされた熱可塑性樹脂
押出し用第1押出機(3) と、第1押出機(3) の後部一側
方に配置された加熱手段(4) と、第1強化層用シート状
繊維複合体(A1)から管状体(A2)を形成させるための賦形
金型(5) と、第1押出機(3) の先端部の軸心に設けられ
かつ第1押出金型の内金型(2) より前方に突き出した突
出部を有するコア(6) と、第1押出金型の内金型(2) の
先端部分からコア(6) の突出部の基部までのびている外
金型(5a)と、外金型(5a)の前方に配置された第2強化層
用テープ状繊維複合体(C1)の巻き付け機(8) と、その巻
付け位置の一側方に配された加熱手段(11)と、加熱手段
(11)の前方に配置された熱可塑性樹脂押出し用第2押出
機(12)と、第2押出機(12)の先端に外金型と同心状に設
けられた第2押出金型の被覆金型(13)と、その前方に配
置された冷却装置(14)と、その冷却装置(14)に設けられ
た金属サイジング管(16)と、それと対向する位置に設け
られかつ内管当接部(25)を有する内管サイジングコア(1
5)と、内管サイジングコア(15)および前記第1押出金型
(2) のコア(6) 先端を互いに連結しかつ熱可塑性樹脂製
内管に接触しないように配置された鎖、棒状材またはワ
イヤ等よりなる連結部材(7) と、冷却装置の前方に配置
された引取り機(17)とを備えているものである。
1 to 3, the apparatus for producing a fiber-reinforced thermoplastic resin composite pipe used in the method of the present invention is the first
A rewind roll (1) around which a sheet-shaped fiber composite for a reinforcing layer (A1) is wound, and a first roll having a circular cross section with its front end bent forward and at a right angle. A first extruder (3) for extruding a thermoplastic resin, which is formed as an inner die (2) of the extrusion die, and a heating means (4) arranged on one side of the rear part of the first extruder (3), A shaping die (5) for forming a tubular body (A2) from the sheet-shaped fiber composite (A1) for the first reinforcing layer, and the shaft center of the tip of the first extruder (3) and A core (6) having a protrusion projecting forward from the inner die (2) of the first extrusion die, and a protrusion of the core (6) from the tip of the inner die (2) of the first extrusion die The outer die (5a) extending to the base of the, the winding machine (8) for the tape-shaped fiber composite for the second reinforcing layer (C1) arranged in front of the outer die (5a), and the winding position Heating means (11) arranged on one side of, Heating means
A second extruder (12) for extruding a thermoplastic resin arranged in front of (11), and a coating of a second extrusion die provided concentrically with the outer die at the tip of the second extruder (12) The mold (13), the cooling device (14) arranged in front of the mold (13), the metal sizing pipe (16) provided in the cooling device (14), and the inner pipe contact provided at a position opposite to the metal sizing pipe (16). Inner tube sizing core (1) with part (25)
5), the inner pipe sizing core (15) and the first extrusion die
The core (6) of (2) is connected in front of the cooling device with the connecting member (7) made of chains, rods or wires arranged so as to connect the tips to each other and not to contact the thermoplastic resin inner pipe. It is equipped with a take-off machine (17) that has been removed.

【0030】図2に示すように、第1押出金型の内金型
(2) と賦形金型(5) との間には、第1強化層用シート状
繊維複合体(A1)を突き合わせ、または重ね合わせて成形
すべき管状体(A2)の厚み分の間隙が設けられている。コ
ア(6) は、第1押出金型の内金型(2) の先端近くから逆
円錐状に太くなっていて、コア突出部では大径の円形状
となっている。このコア突出部に、熱可塑性樹脂製内管
(B1)に接触しないように配置した鎖、棒状材またはワイ
ヤ等の連結部材(7) の一端を接続し、この連結部材(7)
の他端を、内管当接部(25)を有する内管サイジングコア
(15)に接続する。
As shown in FIG. 2, the inner die of the first extrusion die
Between the (2) and the shaping die (5), a gap corresponding to the thickness of the tubular body (A2) to be formed by abutting or superimposing the sheet-like fiber composite for the first reinforcing layer (A1). Is provided. The core (6) is thickened in an inverted conical shape from the vicinity of the tip of the inner die (2) of the first extrusion die, and has a large diameter circular shape at the core protruding portion. Inner pipe made of thermoplastic resin
Connect one end of the connecting member (7) such as a chain, rod-shaped material or wire arranged so as not to contact (B1), and connect this connecting member (7).
The other end of the inner pipe sizing core having an inner pipe contact portion (25)
Connect to (15).

【0031】この場合、コア(6) の先端部と、内管当接
部(25)を有する内管サイジングコア(15)とを連結する
鎖、棒状材またはワイヤ等の連結部材(7) は、管状体(A
2)が成形されたときに取り付けてもよいが、第1押出金
型の内金型(2) 、およびコア(6) 、賦形金型(5) 等を取
り付けた後に、あらかじめ取り付けておく方が好まし
い。
In this case, the connecting member (7) such as a chain, a rod-shaped material or a wire for connecting the tip portion of the core (6) and the inner pipe sizing core (15) having the inner pipe contact portion (25) is , Tubular body (A
Although it may be attached when 2) is molded, it is attached in advance after attaching the inner die (2) of the first extrusion die, the core (6), the shaping die (5), etc. Is preferred.

【0032】また、内管当接部(25)を有する内管サイジ
ングコア(15)の取り付けは、2層管(A3)が成形された時
に、管を切開し、熱可塑性樹脂製内管(B1)に接触しない
ように配置した鎖、棒状材またはワイヤ等の連結部材
(7) の端部に接続するように取り付けるのが、好まし
い。
Further, the inner pipe sizing core (15) having the inner pipe abutting portion (25) is attached by cutting the pipe when the two-layer pipe (A3) is molded and making the thermoplastic resin inner pipe ( Connecting members such as chains, rods or wires arranged so as not to contact B1)
It is preferable to attach it so that it is connected to the end of (7).

【0033】この内管サイジングコア(15)の位置は、冷
却装置(14)の後方であればどの位置でもよいが、冷却装
置(14)に設けられている金属サイジング管(16)に対向す
る位置にある方が、サイジングと同時に冷却・固化が行
なわれて、寸法精度のよいものが得られるので、好まし
い。なお、金属サイジング管(16)と内管サイジングコア
(15)との間には、4層管の管状体の厚み分の間隙があけ
られている。
The inner pipe sizing core (15) may be located at any position behind the cooling device (14), but faces the metal sizing pipe (16) provided in the cooling device (14). The position is preferable because cooling and solidification are performed at the same time as sizing, and a product having good dimensional accuracy can be obtained. The metal sizing pipe (16) and the inner pipe sizing core
A gap corresponding to the thickness of the tubular body of the four-layered pipe is provided between (15).

【0034】[0034]

【作用】本発明の請求項1記載の発明による繊維強化熱
可塑性樹脂複合管の製造方法は、4層管の内側に、内管
当接部を有する内管サイジングコアを設け、内管サイジ
ングコアと前記第1押出金型のコア先端とを、熱可塑性
樹脂製内管に接触しないように配置した連結部材を介し
て接続し、外管の外側に、内管サイジングコアと対向す
るように金属サイジング管を設けて、4層管を導くもの
で、4層管の内面を、内管サイジングコアの内管当接部
に接触させて、所望の内径寸法となるようにし、それと
対向する金属サイジング管に、4層管の外面を接触させ
ることで、所望の外径寸法となるようにして、冷却・固
化させるものである。そうすることにより、管の内外の
寸法が安定して、寸法精度が良好となり、また管変形を
極小にすることができる。
According to the method for producing a fiber-reinforced thermoplastic resin composite pipe according to the first aspect of the present invention, an inner pipe sizing core having an inner pipe contact portion is provided inside a four-layer pipe, and the inner pipe sizing core is provided. And the tip of the core of the first extrusion die are connected via a connecting member arranged so as not to contact the thermoplastic resin inner tube, and a metal is provided outside the outer tube so as to face the inner tube sizing core. A sizing tube is provided to guide a four-layer tube. The inner surface of the four-layer tube is brought into contact with the inner tube abutting portion of the inner tube sizing core so as to have a desired inner diameter dimension, and the metal sizing that faces it The outer surface of the four-layer pipe is brought into contact with the pipe so that the pipe has a desired outer diameter and is cooled and solidified. By doing so, the inner and outer dimensions of the tube are stabilized, the dimensional accuracy is improved, and the tube deformation can be minimized.

【0035】また請求項2記載の発明は、内管サイジン
グコアの内管当接部を、拡径または縮径可能な弾性体に
より構成して、これを熱可塑性樹脂製内管に当接させる
もので、不測の押出変動等により内側表面に微細な荒れ
や寸法変化が生じた場合にも追随することができて、こ
れにより内径寸法が安定する。
According to a second aspect of the present invention, the inner pipe contact portion of the inner pipe sizing core is made of an elastic body capable of expanding or contracting the diameter, and is brought into contact with the thermoplastic resin inner pipe. However, it is possible to follow up even when minute roughness or dimensional change occurs on the inner surface due to unexpected extrusion fluctuation or the like, and the inner diameter dimension is thereby stabilized.

【0036】このようにして、本発明の方法によれば、
寸法精度が非常に優れている繊維強化熱可塑性樹脂複合
管を、容易にかつ連続的に能率よく製造することできる
ものである。
Thus, according to the method of the present invention,
(EN) A fiber-reinforced thermoplastic resin composite pipe having extremely excellent dimensional accuracy can be easily and continuously manufactured efficiently.

【0037】[0037]

【実施例】【Example】

実施例1 本発明の方法により、繊維強化熱可塑性樹脂複合管を製
造した。
Example 1 A fiber-reinforced thermoplastic resin composite pipe was manufactured by the method of the present invention.

【0038】1) 繊維複合体の製造方法 まず本発明に用いられるシート状繊維複合体(A1)、およ
びテープ状繊維複合体(C1)は、図4に示す流動床装置(1
8)を用いて製造した。
1) Method for Producing Fiber Composite First, the sheet-shaped fiber composite (A1) and the tape-shaped fiber composite (C1) used in the present invention are the fluidized bed apparatus (1) shown in FIG.
8) was used.

【0039】同図において、流動床装置(18)の槽底は多
孔板(19)で構成せられており、気体供給路から送られて
きた空気や窒素などの気体(G) が多孔板(19)の下方から
これの多数の孔を通って上方に噴出せしめられる。その
結果、流動床装置(18)の槽内に入れられた粉体状熱可塑
性樹脂は、噴出気体(G) によって流動化状態となり流動
床(R) が形成される。流動床装置(18)の槽内およびその
前後壁上端には、束状強化繊維を案内するためのガイド
ロール(20)が設けられている。
In the figure, the bottom of the tank of the fluidized bed apparatus (18) is composed of a perforated plate (19), and gas (G) such as air or nitrogen sent from the gas supply path is perforated ( It is jetted upward from the lower part of 19) through many holes. As a result, the powdery thermoplastic resin put in the tank of the fluidized bed apparatus (18) is fluidized by the jetted gas (G) and the fluidized bed (R) is formed. A guide roll (20) for guiding the bundled reinforcing fibers is provided inside the tank of the fluidized bed apparatus (18) and at the upper ends of the front and rear walls thereof.

【0040】上記流動床装置(18)を用い、巻戻しロール
(21)から多数のフィラメントよりなる束状強化繊維(F1)
10本を、巻取りロール(22)によりひねりが生じないよ
うにしながら巻戻して、粉体状熱可塑性樹脂の流動(20)
中を通過させ、束状強化繊維(F1)の各フィラメントに粉
体状樹脂を付着させる。粉体状熱可塑性樹脂としては、
酢酸ビニル−塩化ビニル共重合体(酢酸ビニル8%、平
均粒径250μm)を用い、強化繊維としては繊維径2
3μmのモノフィラメントの束よりなるロービング状ガ
ラス繊維(日東紡株式会社製、品番#4400)を用い
た。
Using the above fluidized bed apparatus (18), a rewinding roll
Bundled reinforcing fiber (F1) consisting of many filaments from (21)
The ten rolls are rewound by the take-up roll (22) without twisting, and the powdery thermoplastic resin flows (20).
The powdery resin is attached to each filament of the bundle-like reinforcing fiber (F1) by passing through the inside. As the powdery thermoplastic resin,
A vinyl acetate-vinyl chloride copolymer (vinyl acetate 8%, average particle size 250 μm) was used, and the reinforcing fiber had a fiber diameter of 2
A roving glass fiber (product number # 4400, manufactured by Nitto Boseki Co., Ltd.) made of a bundle of 3 μm monofilaments was used.

【0041】ついで、粉体状熱可塑性樹脂付着強化繊維
(F2)を約180℃に加熱された一対の加熱ロール(23)を
通過させて加熱・加圧し、熱可塑性樹脂を溶融させて、
これを強化繊維と一体化せしめ、厚み0.6mmの繊維
複合体(F3)を得、これを巻取りロール(22)に巻取った。
この繊維複合体(F3)の熱可塑性樹脂と強化繊維との容量
割合は、熱可塑性樹脂75%、強化繊維25%であっ
た。
Then, a powdery thermoplastic resin adhesion reinforcing fiber
(F2) is passed through a pair of heating rolls (23) heated to about 180 ° C. to heat and pressurize to melt the thermoplastic resin,
This was integrated with the reinforcing fiber to obtain a fiber composite (F3) having a thickness of 0.6 mm, which was wound on a winding roll (22).
The volume ratio of the thermoplastic resin to the reinforcing fiber of this fiber composite (F3) was 75% of the thermoplastic resin and 25% of the reinforcing fiber.

【0042】上記繊維複合体(F3)を切断し、連続強化繊
維が長手方向に配された幅96mm、厚み0.6mmの
シート状繊維複合体(A1)を、また連続強化繊維が長さ方
向に配された幅20mm、厚み0.6mmのテープ状繊
維複合体(C1)をそれぞれ得た。
The above fiber composite (F3) was cut to obtain a sheet-like fiber composite (A1) having a width of 96 mm and a thickness of 0.6 mm in which continuous reinforcing fibers were arranged in the longitudinal direction, and continuous reinforcing fibers were formed in the longitudinal direction. A tape-shaped fiber composite (C1) having a width of 20 mm and a thickness of 0.6 mm, which was arranged in the above, was obtained.

【0043】2) 繊維強化熱可塑性樹脂複合管の製造
方法 つぎに、図1〜図3に示す繊維強化熱可塑性樹脂複合管
の製造装置を用いて、本発明の方法により繊維強化熱可
塑性樹脂複合管を製造した。
2) Method for producing fiber-reinforced thermoplastic resin composite pipe Next, using the apparatus for producing fiber-reinforced thermoplastic resin composite pipes shown in FIGS. 1 to 3, the fiber-reinforced thermoplastic resin composite is produced by the method of the present invention. The tube was manufactured.

【0044】すなわち、まず、上記のようにして製造さ
れた第1強化層用シート状繊維複合体(A1)を、図1の巻
戻しロール(1) に移し、これを巻戻しつつ、加熱手段で
ある熱風発生機(4) により200℃の熱風を吹き付けて
加熱した。つぎにこの第1強化層用シート状繊維複合体
(A1)を、賦形金型(5) と第1押出金型の内金型(2) およ
びコアの(6) と外金型(5a)との間の間隙に導き、第1押
出金型の内金型(2) を通過せしめることにより、外径2
9mm、厚み0.6mmの管状体(A2)を連続して成形し
た。
That is, first, the sheet-shaped fiber composite for a first reinforcing layer (A1) manufactured as described above is transferred to the rewinding roll (1) shown in FIG. The hot air generator (4) was heated to 200 ° C. for blowing. Next, this sheet-like fiber composite for the first reinforcing layer
(A1) is introduced into the gap between the shaping die (5), the inner die (2) of the first extrusion die and the core (6) and the outer die (5a), and the first extrusion die Outer diameter of 2 by passing through the inner mold (2) of the mold
A tubular body (A2) having a thickness of 9 mm and a thickness of 0.6 mm was continuously molded.

【0045】このとき、コア(6) の先端には、これと内
管当接部(25)を有する内管サイジングコア(15)とを接続
する連結部材としての鎖(7) の一端部を、第1押出金型
の内金型(2) およびコア等を取り付けた時に、あらかじ
め取り付けておいた。
At this time, one end of the chain (7) as a connecting member for connecting the core (6) to the inner pipe sizing core (15) having the inner pipe contact portion (25) is attached to the tip of the core (6). , The inner die (2) of the first extrusion die, the core, etc. were attached in advance.

【0046】また、第1押出金型の内金型(2) 、コア
(6) 、および外金型(5a)は、200℃に加熱されてお
り、ここで第1強化層用シート状繊維複合体(A1)の両側
縁部を突き合わせて融着し、管状体(A2)を形成した。
Further, the inner die (2) of the first extrusion die, the core
(6) and the outer mold (5a) are heated to 200 ° C., where both side edges of the sheet-like fiber composite for a first reinforcing layer (A1) are butted against each other to form a tubular body ( A2) was formed.

【0047】ついで、この両側縁部を融着した管状体(A
2)を前進させつつその内面にそって第1押出機(3) より
熱可塑性樹脂(B) を第1押出金型の内金型(2) から溶融
状態で押し出して積層し、強化繊維が軸方向に配された
第1強化層(A1)を有する厚み1.5mmの熱可塑性樹脂
製内管(B1)を形成することにより、外径29mmの2層
管(A3)とした。
Then, the tubular body (A
While advancing 2), the thermoplastic resin (B) is extruded from the inner die (2) of the first extrusion die in a molten state along the inner surface thereof by the first extruder (3) and laminated, and the reinforcing fiber is A two-layer pipe (A3) having an outer diameter of 29 mm was formed by forming a 1.5 mm-thick thermoplastic resin inner pipe (B1) having a first reinforcing layer (A1) arranged in the axial direction.

【0048】このとき、管状体(A2)内部に空気圧等によ
り圧力をかけることにより、密着性の向上、および概略
径の保持等を果し得るので、好ましい。
At this time, it is preferable to apply pressure to the inside of the tubular body (A2) by air pressure or the like, because the adhesion can be improved and the approximate diameter can be maintained.

【0049】また、その2層管(A3)が成形された時に、
該管(A3)を切開し、内管当接部(25)を有する内管サイジ
ングコア(15)に、熱可塑性樹脂製内管(B1)に接触しない
ように配置した鎖よりなる連結部材(7) の他端部を接続
した。
When the two-layer pipe (A3) is molded,
The pipe (A3) is incised, and the inner pipe sizing core (15) having the inner pipe abutting portion (25) is connected to the thermoplastic resin inner pipe (B1) by a connecting member made of a chain ( The other end of 7) was connected.

【0050】なお、熱可塑性樹脂製内管(B1)を構成する
熱可塑性樹脂(B) としては、塩素化ポリ塩化ビニル(塩
素化度64重量%)を用いた。
As the thermoplastic resin (B) constituting the thermoplastic resin inner tube (B1), chlorinated polyvinyl chloride (chlorination degree 64% by weight) was used.

【0051】つぎに、2層管(A3)をそのまま前進させつ
つ、巻き付け機(8) により第2強化層用テープ状繊維複
合体(C1)を、軸方向に対し75°の角度でスパイラル状
に巻き付けるとともに、加熱手段(11)である遠赤外線ヒ
ーターにより、2層管(A3)およびテープ状繊維複合体(C
1)を加熱し、後者を第1強化層(A1)に融着して、第1強
化層(A1)の外面に強化繊維が略周方向に配された第2強
化層(C2)を形成することにより、3層管とした。
Next, while advancing the two-layer pipe (A3) as it is, the tape-shaped fiber composite for the second reinforcing layer (C1) was spirally formed at an angle of 75 ° to the axial direction by the winding machine (8). It is wound around and is heated by a far-infrared heater that is a heating means (11) to form a two-layer pipe (A3) and a tape-shaped fiber composite
1) is heated and the latter is fused to the first reinforcing layer (A1) to form the second reinforcing layer (C2) in which the reinforcing fibers are arranged in the circumferential direction on the outer surface of the first reinforcing layer (A1). By doing so, a three-layer tube was obtained.

【0052】ついで、この3層管を第2押出金型の被覆
金型(13)に導き、第2押出機(12)により溶融可塑化され
た熱可塑性樹脂を第2押出金型の被覆金型(13)より押し
出して、第2強化層(C2)の外周に被覆し、厚み1mmの
熱可塑性樹脂製外管(D) を形成し、4層管とした。
Then, this three-layer pipe is introduced into the coating die (13) of the second extrusion die, and the thermoplastic resin melt-plasticized by the second extruder (12) is coated with the second extrusion die. It was extruded from the mold (13) and covered on the outer periphery of the second reinforcing layer (C2) to form a thermoplastic resin outer tube (D) having a thickness of 1 mm to obtain a four-layer tube.

【0053】ここで、熱可塑性樹脂製外管(D) を構成す
る熱可塑性樹脂としては、ポリ塩化ビニルを用いた。
Here, polyvinyl chloride was used as the thermoplastic resin constituting the thermoplastic resin outer tube (D).

【0054】そして、4層管を、冷却装置(14)に設けら
れかつ内径32.1mmを有する金属サイジング管(16)
と、外径25.0mmのシリコンゴム製の内管当接部(2
5)を有する内管サイジングコア(15)との間隙に導き入れ
る。ここで、コア(6) の先端と内管当接部(25)を有する
内管サイジングコア(15)とは、熱可塑性樹脂製内管(B1)
に接触しないように配置した鎖よりなる連結部材(7) を
介して連結されている。
A four-layer pipe is provided in the cooling device (14) and has a metal sizing pipe (16) having an inner diameter of 32.1 mm.
And the inner tube abutting part (2
It is introduced into the gap with the inner pipe sizing core (15) having 5). Here, the inner tube sizing core (15) having the tip of the core (6) and the inner tube abutting portion (25) means the thermoplastic resin inner tube (B1).
Are connected to each other via a connecting member (7) composed of chains arranged so as not to come into contact with.

【0055】内管サイジングコア(15)は、図3に示すよ
うな構造を有している。
The inner pipe sizing core (15) has a structure as shown in FIG.

【0056】すなわち、内管サイジングコア(15)は、右
側の六角ナット(24)を時計回りの方向に回し締め付ける
ことにより、六角ナット(24)とシリコンビム製の内管当
接部(25)との間に設けられたスペーサー(26)が内管当接
部(25)側に移動して、内管当接部(25)を偏平状に変形せ
しめることにより、所望の管内径寸法に拡径することが
できる。
That is, the inner pipe sizing core (15) is tightened by turning the hexagon nut (24) on the right side in the clockwise direction to tighten the hexagon nut (24) and the inner pipe contact portion (25) made of silicon bim. The spacer (26) provided between the inner pipe contact portion (25) moves to the inner pipe contact portion (25) side to deform the inner pipe contact portion (25) into a flat shape, thereby expanding the diameter to a desired pipe inner diameter. can do.

【0057】また、右側の六角ナット(24)を逆に、反時
計回りの方向に回すことによって、上記とは逆にスペー
サー(26)が六角ナット(24)側に移動し、シリコンゴム製
の内管当接部(25)が元の形状に膨らんで、これを縮径す
ることができるものである。このようにすることによっ
て、内管サイジングコア(15)のシリコンゴム製の内管当
接部(25)を、常に熱可塑性樹脂製内管(B1)の内面に接触
させることができて、寸法の安定性を図り得るものであ
る。。
By rotating the hex nut (24) on the right side counterclockwise, the spacer (26) moves to the hex nut (24) side contrary to the above, and the spacer made of silicone rubber The inner tube contact portion (25) swells to its original shape and can be reduced in diameter. By doing so, the inner tube abutting portion (25) made of silicone rubber of the inner tube sizing core (15) can always be in contact with the inner surface of the thermoplastic resin inner tube (B1), The stability of can be achieved. .

【0058】このように4層管は、これの熱可塑性樹脂
製外管(D1)の外面が金属サイジング管(16)に接触し、か
つ熱可塑性樹脂製内管(B1)の内面が内管サイジングコア
(15)シリコンゴム製の内管当接部(25)に常時接触するこ
とによって同時にサイジングされ、かつ冷却・固化する
ものである。
Thus, in the four-layer pipe, the outer surface of the thermoplastic resin outer pipe (D1) is in contact with the metal sizing pipe (16), and the inner surface of the thermoplastic resin inner pipe (B1) is the inner pipe. Sizing core
(15) The inner pipe abutting portion (25) made of silicone rubber is constantly in contact with the inner pipe abutting portion (25) to be simultaneously sized and cooled and solidified.

【0059】そして、上記一連の工程を、4層管を引取
り機(17)で引き取りつつ行なうことにより、繊維強化熱
可塑性樹脂複合管(E) を連続的に能率よく製造すること
ができた。
The fiber-reinforced thermoplastic resin composite pipe (E) could be continuously and efficiently manufactured by carrying out the above-mentioned series of steps while taking the four-layer pipe by the take-up machine (17). .

【0060】このようして得られた実施例1の繊維強化
熱可塑性樹脂複合管の肉厚をデジタル式マイクロメータ
ーを用いて、また外径をダイヤルゲージを用いてそれぞ
れ任意に4点で測定した結果、肉厚は平均3.45m
m、外径は平均32.0mmであった。また同複合管の
内径をデジタル式ノギスを用いて任意に4点で測定した
結果、平均24.9mmであり、寸法精度が非常に優れ
ていた。
The wall thickness of the fiber-reinforced thermoplastic resin composite pipe of Example 1 obtained in this way was measured with a digital micrometer, and the outer diameter was measured with a dial gauge at arbitrary four points. As a result, the wall thickness is 3.45m on average
m, and the outer diameter was 32.0 mm on average. Further, the inner diameter of the composite pipe was measured at 4 points arbitrarily using a digital caliper, and as a result, it was 24.9 mm on average, and the dimensional accuracy was very excellent.

【0061】比較例1 比較のために、実施例1のシリコンゴム製の内管当接部
を有した内管サイジングコアの代わりに、繊維強化熱可
塑性樹脂複合管の内径と略同一の外径を有する長さ10
00mmの管状のコアを用いたほかは、実施例1の場合
と同様にして繊維強化熱可塑性樹脂複合管を製造した。
その結果、第1強化層用シート状繊維複合体を管状体に
賦形し、その内面に内層用熱可塑性樹脂を押し出して積
層し、加熱融着一体化してから20分経過後にその管の
引き取りが不安定となった。引き続き4層管を製造した
が、引き取りの不安定が継続したため、連続的に製造す
ることが不可能となった。
Comparative Example 1 For comparison, instead of the inner tube sizing core having the inner tube abutting portion made of silicone rubber of Example 1, an outer diameter substantially the same as the inner diameter of the fiber reinforced thermoplastic resin composite tube. With a length of 10
A fiber-reinforced thermoplastic resin composite tube was produced in the same manner as in Example 1 except that a tubular core of 00 mm was used.
As a result, the sheet-shaped fiber composite for the first reinforcing layer was shaped into a tubular body, and the thermoplastic resin for the inner layer was extruded and laminated on the inner surface of the tubular body, and after 20 minutes from heat fusion integration, the tube was taken out. Became unstable. Although four-layer pipes were continuously manufactured, it became impossible to manufacture them continuously because the instability of taking over continued.

【0062】こうして得られた比較例1の繊維強化熱可
塑性樹脂複合管の肉厚は、管の長手方向に厚肉部と薄肉
部が混在しており、内径寸法にも変化がみられた。この
比較例1の複合管の肉厚をデジタル式マイクロメーター
を用いて任意に4点で測定するとともに、内径をデジタ
ル式ノギスを用いて任意に4点出測定した結果、厚肉部
の肉厚は4.0mm、内径は24.0mm、また薄肉部
の肉厚は3.0mm、内径は26.0mmであって、寸
法精度が非常に劣るものであった。
The wall thickness of the fiber-reinforced thermoplastic resin composite pipe of Comparative Example 1 thus obtained was such that the thick wall portion and the thin wall portion were mixed in the longitudinal direction of the pipe, and the inner diameter dimension was also changed. The wall thickness of the composite pipe of Comparative Example 1 was measured at 4 points arbitrarily using a digital micrometer, and the inner diameter was arbitrarily measured at 4 points using a digital caliper. Was 4.0 mm, the inner diameter was 24.0 mm, the thickness of the thin portion was 3.0 mm, and the inner diameter was 26.0 mm, and the dimensional accuracy was very poor.

【0063】[0063]

【発明の効果】本発明の請求項1記載の発明は、上述の
ように、長手方向に配された連続強化繊維に熱可塑性樹
脂が融着されてなる第1強化層用シート状繊維複合体を
管状体に連続成形しつつ、管状体の内側に熱可塑性樹脂
を溶融状態で第1押出金型より押し出して積層し、熱可
塑性樹脂製内管を有する2層管を製造する工程、つぎに
この2層管の外側に、長手方向に配された連続強化繊維
に熱可塑性樹脂が融着された第2強化層用テープ状また
はひも状繊維複合体をスパイラル状に巻き付けて融着
し、3層管を製造する工程、さらに3層管の外側に熱可
塑性樹脂を第2押出金型より溶融状態で押し出して積層
し、熱可塑性樹脂製外管を有する4層管を製造する工程
を含む繊維強化熱可塑性樹脂複合管の製造方法におい
て、該4層管の内側に内管当接部を有する内管サイジン
グコアを設け、内管サイジングコアと前記第1押出金型
のコア先端とを、熱可塑性樹脂製内管に接触しないよう
に配置した連結部材を介して接続し、外管の外側に、内
管サイジングコアと対向するように金属サイジング管を
設けて、内管サイジングコアと、それに対向する位置に
ある冷却装置に設けられた金属サイジング管との間隙に
4層管を導き入れてサイジングするものであり、熱可塑
性樹脂製内管には内管当接部が接触し、また熱可塑性樹
脂製外管には、金属サイジング管が接触して、冷却・固
化されるため、それぞれ管の内径および外径の寸法が安
定して、寸法精度が良好となる。
As described above, the invention according to claim 1 of the present invention is a sheet-shaped fiber composite for a first reinforcing layer in which a thermoplastic resin is fused to continuous reinforcing fibers arranged in the longitudinal direction. While continuously molding into a tubular body, a step of producing a two-layer pipe having a thermoplastic resin inner pipe by laminating a thermoplastic resin in a molten state by extrusion from a first extrusion die inside the tubular body, and then A tape-shaped or string-shaped fiber composite for the second reinforcing layer, in which the thermoplastic resin is fused to the continuous reinforcing fibers arranged in the longitudinal direction, is spirally wound around the outer side of the two-layer pipe and is fused to A fiber including a step of manufacturing a layered tube and a step of manufacturing a four-layered tube having a thermoplastic resin outer tube by further extruding a thermoplastic resin in a molten state from a second extrusion die and laminating the same on the outside of the three-layer tube In the method for producing a reinforced thermoplastic resin composite pipe, the inside of the four-layer pipe is An inner pipe sizing core having a pipe contact portion is provided, and the inner pipe sizing core and the core tip of the first extrusion die are connected via a connecting member arranged so as not to come into contact with the thermoplastic resin inner pipe. , A metal sizing pipe is provided outside the outer pipe so as to face the inner pipe sizing core, and four layers are provided in the gap between the inner pipe sizing core and the metal sizing pipe provided in the cooling device at a position facing the inner pipe sizing core. The pipe is guided in and sized.The inner pipe abutting part contacts the thermoplastic resin inner pipe, and the metal sizing pipe contacts the thermoplastic resin outer pipe to cool and solidify. Therefore, the inner diameter and the outer diameter of the tube are stable, and the dimensional accuracy is good.

【0064】さらに請求項2記載の発明によれば、内管
サイジングコアが拡径または縮径可能な弾性体からなる
内管当接部を有するものであり、これを熱可塑性樹脂製
内管に接触させることにより、複合管の内径の寸法が安
定して、寸法精度が良好となるものである。
Further, according to the invention of claim 2, the inner pipe sizing core has an inner pipe contact portion made of an elastic body capable of expanding or contracting the diameter. By bringing them into contact with each other, the inner diameter of the composite pipe is stabilized and the dimensional accuracy is improved.

【0065】また本発明によれば、熱可塑性樹脂製内
管、第1強化層、および第2強化層の各境界においてそ
れぞれ熱可塑性樹脂が順次連続的に融着一体化し、しか
も第1強化層に補強繊維の不存在部分が生じるようなこ
とのない優れた繊維強化熱可塑性樹脂複合管を容易にか
つ連続的に能率よく製造することができる。
Further, according to the present invention, the thermoplastic resin is sequentially and continuously fused and integrated at each boundary of the thermoplastic resin inner tube, the first reinforced layer and the second reinforced layer. An excellent fiber-reinforced thermoplastic resin composite pipe can be easily and continuously produced efficiently without causing the absence of reinforcing fibers.

【0066】なお、2層管の外面に第2強化層用テープ
状またはひも状繊維複合体をスパイラル状に巻き付ける
さい、および3層管の外面にそい熱可塑性樹脂を溶融状
態で押し出して積層するさいに、管内部に空気圧により
圧力をかけ概略径を保持させつつ行なえば、管変形をお
それることなく、前記繊維複合体の巻き付け時に充分な
加熱が可能であるとともに、熱可塑性樹脂の形成を高温
高圧下で行なうことが可能であるから、第1強化層、第
2強化層、および熱可塑性樹脂製内管の熱可塑性樹脂の
接着強度を向上することができる。
When the tape-shaped or string-shaped fiber composite for the second reinforcing layer is spirally wound around the outer surface of the two-layer tube, and the thermoplastic resin is extruded in a molten state and laminated on the outer surface of the three-layer tube. Finally, if pressure is applied to the inside of the tube by air pressure while maintaining the approximate diameter, sufficient heating can be performed at the time of winding the fiber composite without fear of tube deformation, and the thermoplastic resin can be formed at a high temperature. Since it can be performed under high pressure, the adhesive strength between the first reinforcing layer, the second reinforcing layer, and the thermoplastic resin of the thermoplastic resin inner tube can be improved.

【0067】そして本発明の方法により得られた繊維強
化熱可塑性樹脂複合管の第1強化層には、管の軸方向に
連続強化繊維が配されているので、管の線膨張が抑制さ
れ、その結果、熱収縮量が少なくなって各層の界面での
剥離が発生しにくくなる。また第2強化層には、管の略
周方向に連続強化繊維が配されているので、管の耐圧性
および耐衝撃性が向上する。
In the first reinforced layer of the fiber-reinforced thermoplastic resin composite pipe obtained by the method of the present invention, continuous reinforcing fibers are arranged in the axial direction of the pipe, so that the linear expansion of the pipe is suppressed, As a result, the amount of heat shrinkage is reduced and peeling at the interface between the layers is less likely to occur. Further, since the continuous reinforcing fibers are arranged in the second reinforcing layer in the substantially circumferential direction of the pipe, the pressure resistance and impact resistance of the pipe are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に使用する繊維強化熱可塑性樹脂
複合管の製造装置の一例を示す一部切欠き概略平面図で
ある。
FIG. 1 is a partially cutaway schematic plan view showing an example of an apparatus for producing a fiber-reinforced thermoplastic resin composite pipe used in the method of the present invention.

【図2】図1のII−II線に沿う断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】内管サイジングコアの一部切欠き概略平面図で
ある。
FIG. 3 is a partially cutaway schematic plan view of an inner pipe sizing core.

【図4】本発明の方法に用いる繊維複合体を製造する流
動床装置の一例を示す垂直断面図である。
FIG. 4 is a vertical sectional view showing an example of a fluidized bed apparatus for producing a fiber composite used in the method of the present invention.

【符号の説明】[Explanation of symbols]

2 第1押出金型の内金型 3 第1押出機 4 熱風発生機 5 賦形金型 5a 外金型 6 第1押出金型のコア 7 連結部材(鎖) 8 巻き付け機 14 冷却装置 15 内管サイジングコア 16 金属サイジング管 25 内管当接部 A1 シート状繊維複合体 A2 管状体 A3 2層管 B 熱可塑性樹脂 B1 熱可塑性樹脂製内管 C1 第2強化層用テープ状繊維複合体 C2 第2強化層 D 熱可塑性樹脂製外管 E 繊維強化熱可塑性樹脂複合管 2 Inner die of first extrusion die 3 First extruder 4 Hot air generator 5 Molding die 5a Outer die 6 Core of first extrusion die 7 Connecting member (chain) 8 Winding machine 14 Cooling device 15 Inside Tube Sizing core 16 Metal sizing tube 25 Inner tube abutting part A1 Sheet-shaped fiber composite A2 Tubular body A3 Two-layer tube B Thermoplastic resin B1 Thermoplastic resin inner tube C1 Tape-like fiber composite for second reinforcing layer C2 No. 2 Reinforcement layer D Thermoplastic resin outer tube E Fiber reinforced thermoplastic resin composite tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 23:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area B29L 23:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に配された連続強化繊維に熱可
塑性樹脂が融着されてなる第1強化層用シート状繊維複
合体を管状体に連続成形しつつ、管状体の内側に熱可塑
性樹脂を溶融状態で第1押出金型より押し出して積層
し、熱可塑性樹脂製内管を有する2層管を製造する工
程、つぎにこの2層管の外側に、長手方向に配された連
続強化繊維に熱可塑性樹脂が融着された第2強化層用テ
ープ状またはひも状繊維複合体をスパイラル状に巻き付
けて融着し、3層管を製造する工程、さらに3層管の外
側に熱可塑性樹脂を第2押出金型より溶融状態で押し出
して積層し、熱可塑性樹脂製外管を有する4層管を製造
する工程を含む繊維強化熱可塑性樹脂複合管の製造方法
において、該4層管の内側に内管当接部を有する内管サ
イジングコアを設け、内管サイジングコアと前記第1押
出金型のコア先端とを、熱可塑性樹脂製内管に接触しな
いように配置した連結部材を介して接続し、外管の外側
に、内管サイジングコアと対向するように金属サイジン
グ管を設けて、4層管を導くことによりサイジングする
ことを特徴とする、繊維強化熱可塑性樹脂複合管の製造
方法。
1. A sheet-shaped fiber composite for a first reinforcing layer, which is obtained by fusing a thermoplastic resin to continuous reinforcing fibers arranged in a longitudinal direction, is continuously molded into a tubular body, and a thermoplastic resin is provided inside the tubular body. A step of producing a two-layer pipe having a thermoplastic resin inner pipe by extruding and laminating resin in a molten state from a first extrusion die, and then continuously strengthening the two-layer pipe in the longitudinal direction outside the two-layer pipe. A process for manufacturing a three-layer pipe by spirally winding and fusing a tape-shaped or string-shaped fiber composite for the second reinforcing layer, in which a thermoplastic resin is fused to the fiber, and further thermoplasticity on the outside of the three-layer pipe In a method for producing a fiber-reinforced thermoplastic resin composite pipe, which comprises a step of producing a 4-layer pipe having a thermoplastic resin outer pipe by extruding a resin in a molten state from a second extrusion die and laminating the resin, Provide an inner pipe sizing core with an inner pipe contact part inside The pipe sizing core and the tip of the core of the first extrusion die are connected via a connecting member arranged so as not to contact the thermoplastic resin inner pipe, and the outer pipe faces the inner pipe sizing core. A method for producing a fiber-reinforced thermoplastic resin composite pipe, which comprises sizing by providing a metal sizing pipe as described above and guiding a four-layer pipe.
【請求項2】 内管サイジングコアの内管当接部が拡径
または縮径可能な弾性体からなるものである、請求項1
記載の繊維強化熱可塑性樹脂複合管の製造方法。
2. The inner pipe contact portion of the inner pipe sizing core is made of an elastic body capable of expanding or contracting its diameter.
A method for producing the fiber-reinforced thermoplastic resin composite pipe described.
JP6055574A 1994-03-25 1994-03-25 Manufacture of fiber reinforced thermoplastic resin composite tube Ceased JPH07256779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6055574A JPH07256779A (en) 1994-03-25 1994-03-25 Manufacture of fiber reinforced thermoplastic resin composite tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6055574A JPH07256779A (en) 1994-03-25 1994-03-25 Manufacture of fiber reinforced thermoplastic resin composite tube

Publications (1)

Publication Number Publication Date
JPH07256779A true JPH07256779A (en) 1995-10-09

Family

ID=13002509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6055574A Ceased JPH07256779A (en) 1994-03-25 1994-03-25 Manufacture of fiber reinforced thermoplastic resin composite tube

Country Status (1)

Country Link
JP (1) JPH07256779A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441929C (en) * 2006-05-24 2008-12-10 上海意耐玻璃钢有限公司 Glass fiber reinforced plastic pipeline and its production process
JP2010144882A (en) * 2008-12-19 2010-07-01 Kurabe Ind Co Ltd Hose and method for manufacturing of hose
JP2015505753A (en) * 2011-12-16 2015-02-26 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング A winding method for producing a rotationally symmetric tubular hollow body preform, an apparatus for producing a rotationally symmetric tubular hollow body preform, and a rotationally symmetric tubular hollow body preform Method of manufacturing an apparatus for manufacturing
JP2016527100A (en) * 2013-06-05 2016-09-08 ハチンソン Composite connecting rod, method for manufacturing such a rod, and aircraft ceiling or floor structure incorporating the same
CN107355599A (en) * 2017-08-03 2017-11-17 曹如锋 A kind of RTP road and its manufacture method
WO2023103109A1 (en) * 2021-12-10 2023-06-15 公元股份有限公司 Production equipment for fiber reinforced composite pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441929C (en) * 2006-05-24 2008-12-10 上海意耐玻璃钢有限公司 Glass fiber reinforced plastic pipeline and its production process
JP2010144882A (en) * 2008-12-19 2010-07-01 Kurabe Ind Co Ltd Hose and method for manufacturing of hose
JP2015505753A (en) * 2011-12-16 2015-02-26 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング A winding method for producing a rotationally symmetric tubular hollow body preform, an apparatus for producing a rotationally symmetric tubular hollow body preform, and a rotationally symmetric tubular hollow body preform Method of manufacturing an apparatus for manufacturing
JP2016527100A (en) * 2013-06-05 2016-09-08 ハチンソン Composite connecting rod, method for manufacturing such a rod, and aircraft ceiling or floor structure incorporating the same
CN107355599A (en) * 2017-08-03 2017-11-17 曹如锋 A kind of RTP road and its manufacture method
WO2023103109A1 (en) * 2021-12-10 2023-06-15 公元股份有限公司 Production equipment for fiber reinforced composite pipe

Similar Documents

Publication Publication Date Title
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH07117178B2 (en) Composite pipe
JPH0911354A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH03243333A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH0692127B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH074877B2 (en) Method for manufacturing fiber-reinforced resin pipe
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH08323882A (en) Manufacture of fiber-reinforced thermosetting resin composite pipe
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH0735270A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH07232394A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH08174704A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH07117146A (en) Production of fiber reinforced thermoplastic resin composite pipe
JPH0516262A (en) Manufacture of fiber-reinforced thermoplastic resin tube
JPH07144372A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe

Legal Events

Date Code Title Description
A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20040225