JPH07256331A - Method for cooling thick plate - Google Patents

Method for cooling thick plate

Info

Publication number
JPH07256331A
JPH07256331A JP5058694A JP5058694A JPH07256331A JP H07256331 A JPH07256331 A JP H07256331A JP 5058694 A JP5058694 A JP 5058694A JP 5058694 A JP5058694 A JP 5058694A JP H07256331 A JPH07256331 A JP H07256331A
Authority
JP
Japan
Prior art keywords
cooling
plate
scale
water
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5058694A
Other languages
Japanese (ja)
Inventor
Takanori Miyake
孝則 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5058694A priority Critical patent/JPH07256331A/en
Publication of JPH07256331A publication Critical patent/JPH07256331A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To prevent the overcooling phenomenon of the edge in the width direction of a plate by measuring the distribution of the thickness of scale on the surface of a plate during hot rolling, and cooling the plate after controlling the water injection position and the amount of injection water of a scale removing device so that they matched with target values. CONSTITUTION:At the time of rolling, a scale thickness measuring sensor is arranged near a scale device. In addition to an existing nozzle, a nozzle is additionally installed, whose position can be controlled according to a rolling width, and which can jetting out water only to both edges in the width direction of a plate. And, before cooling the plate after rolling, by either of patterns or their combination, the residual amount of scale on both edges of the plate, is made less than that in the center part during rolling. Consequently, at the time of direct quenching thereafter, the thermal conductivity of water on the surface of the plate, lowers, overcooling after water cooling of the edge in the width direction of the plate, can be prevented, and the generation of an edge wave strain on the plate, can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、造船用高張力鋼、海洋
構造物用高張力鋼、調質鋼等の厚鋼板を製造するに際し
ての制御冷却方法に関し、特に、平坦度が高く、材質の
均一な厚鋼板を得るための冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controlled cooling method for producing thick steel plates such as high-strength steel for shipbuilding, high-strength steel for offshore structures, and tempered steel. The present invention relates to a cooling method for obtaining a uniform thick steel plate.

【0002】[0002]

【従来の技術】厚鋼板を熱間圧延後、直ちに冷却して所
望の鋼材とするのに用いる制御冷却設備は、該厚鋼板の
板幅方向温度分布を冷却終了時点で均一にし、板全体で
均一な材質特性さらには良好な平坦度を得るため、板幅
方向の両端近傍に過冷防止用の冷却水マスキング装置あ
るいは冷却用配管系統をいくつかに分割して設け、水量
クラウンを付与するようになっている。例えば、特開昭
64−68427号公報は、図6に示すように、加速冷
却装置の冷却ゾーン内に冷却水のマスキング板を鋼板長
手方向に複数に分割して設け、板幅方向の表面粗度分布
の変化に応じて板幅方向の水量密度分布を決定して、厚
鋼板を冷却する方法を開示している。また、特開昭63
−149315号公報は、圧延終了後の鋼板表面粗度を
8μm以上15μm以下の範囲に調整して冷却する方法
を、さらに特開昭64−62423号公報は、鋼板上面
にたまった水が板幅方向に流れ、中央部に比べ板幅端部
の流量が大きくなることが歪発生の原因と考え、板幅方
向に水冷ヘッダを分割して配設し、水量クラウンを付与
する方法を開示している。
2. Description of the Related Art A controlled cooling facility used for immediately cooling a thick steel plate after hot rolling to obtain a desired steel product has a uniform temperature distribution in the plate width direction of the thick steel plate at the end of cooling, and the whole plate is cooled. In order to obtain uniform material characteristics and good flatness, a cooling water masking device for preventing overcooling or a cooling piping system should be installed in several parts near both ends in the plate width direction to give a water amount crown. It has become. For example, in Japanese Patent Laid-Open No. 64-68427, as shown in FIG. 6, a masking plate for cooling water is provided in a cooling zone of an accelerating cooling device by dividing it into a plurality of plates in the longitudinal direction of the steel plate, and a surface roughness in the plate width direction is provided. Disclosed is a method of cooling a thick steel plate by determining a water amount density distribution in the plate width direction according to a change in the degree distribution. In addition, JP-A-63
JP-A-149315 discloses a method of cooling the steel sheet surface roughness after rolling in the range of 8 μm or more and 15 μm or less, and JP-A-64-62423 discloses that the water accumulated on the top surface of the steel sheet has a plate width. It is considered that the cause of the strain is that the flow rate at the end of the plate width is larger than that at the center, and a water cooling header is dividedly arranged in the plate width direction, and a method of giving a water amount crown is disclosed. There is.

【0003】ところで、これら従来の制御冷却方法のう
ち、加速冷却装置を用いる場合においては、板幅方向の
端部近傍にマスキング板の設置が可能であり、それによ
って板幅方向端部の過冷を防止することができた。しか
しながら、ライン上に直接焼入装置を配設した場合にお
いては、鋼板を完全に水中にどぶづけするため、板幅方
向端部を機械的にマスキングすることは困難であり、鋼
板の冷却歪(特に耳波、腹波)の制御は、加速冷却設備
を用いる場合に比べて難しかった。
By the way, among these conventional controlled cooling methods, when the accelerated cooling device is used, it is possible to install a masking plate in the vicinity of the end portion in the plate width direction, whereby the end portion in the plate width direction is undercooled. Could be prevented. However, when the quenching device is directly arranged on the line, it is difficult to mechanically mask the plate width direction end portion because the steel plate is completely exposed to the water, and the cooling strain of the steel plate ( In particular, control of the ear wave and the abdominal wave) was difficult as compared with the case of using the accelerated cooling equipment.

【0004】また、直接焼入材を製造する場合は、その
材の焼入後強度が高いため、ホットレベラでは矯正不能
であったり、コールドレベラでは歪が治らないケースが
多かった。したがって、冷却時の歪の制御能力が不足す
るがために、プレス工程等の本来は不必要な工程が増加
する原因となっている。さらに、直接焼入の場合は、板
幅方向に水量クラウン自体を付与することが困難であ
り、上記歪の発生防止の点で満足できる冷却方法はなか
った。
Further, in the case of directly producing a hardened material, since the strength of the material after quenching is high, it is often impossible to correct it with a hot leveler, and in many cases the distortion cannot be cured with a cold leveler. Therefore, the ability to control strain during cooling is insufficient, which causes an increase in originally unnecessary steps such as a pressing step. Further, in the case of direct quenching, it is difficult to give the water amount crown itself in the plate width direction, and there is no satisfactory cooling method from the viewpoint of preventing the above-mentioned distortion.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、特に、オンラインに焼入装置を伴う制御冷却に
おいて、板幅方向で均一な材質と良好な鋼板平坦度を得
る厚鋼板の制御冷却方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a control method for thick steel plates that obtains a uniform material in the plate width direction and a good flatness of the steel plate, especially in controlled cooling involving an online quenching device. The purpose is to provide a cooling method.

【0006】[0006]

【課題を解決するための手段】発明者は、前記問題点を
解決するために、鋭意研究し、圧延機に従来より付帯す
るスケール除去装置と、熱間圧延中に鋼板のスケール厚
をオンラインで測定し、その情報を活用することに着眼
した。本発明は、その着眼を具現化したものであり、す
なわち、本発明は、複数パスの熱間圧延後、厚鋼板を制
御冷却する方法において、上記冷却に先立ち、熱間圧延
中に厚鋼板表面上のスケール厚分布を測定し、その測定
値が該厚鋼板表面上のスケール厚分布の目標値と一致す
るように、スケール除去装置の水噴射位置及び噴射水量
を制御した後に、冷却することを特徴とする厚鋼板の冷
却方法である。
In order to solve the above-mentioned problems, the inventor has conducted diligent research, and on-line the scale removing device conventionally attached to a rolling mill and the scale thickness of a steel sheet during hot rolling. We focused on measuring and utilizing the information. The present invention embodies the viewpoint, that is, the present invention is a method of controlling cooling of a thick steel sheet after hot rolling of a plurality of passes, in the method of cooling the thick steel sheet prior to the cooling, during the hot rolling. The above scale thickness distribution is measured, and cooling is performed after controlling the water injection position and the water injection amount of the scale removing device so that the measured value matches the target value of the scale thickness distribution on the surface of the thick steel plate. This is a characteristic method for cooling thick steel plates.

【0007】この場合、冷却水の噴射には、圧延機に既
存のスケール除去装置に配置されたノズルヘッダの他、
適切な位置に新たに新設したノズルヘッダが利用でき
る。また、本発明は、厚鋼板のオンライン焼入れを行う
のに好適であるが、通常の加速冷却に使用しても良い。
In this case, in order to inject the cooling water, in addition to the nozzle header arranged in the existing scale removing device in the rolling mill,
A newly installed nozzle header can be used at an appropriate position. Further, although the present invention is suitable for performing on-line quenching of thick steel plates, it may be used for ordinary accelerated cooling.

【0008】[0008]

【作用】本発明では、複数パスの熱間圧延後、厚鋼板を
制御冷却する方法において、上記冷却に先立ち、熱間圧
延中に厚鋼板表面上のスケール厚分布を測定し、その測
定値が該厚鋼板表面上のスケール厚分布の目標値と一致
するように、スケール除去装置の水噴射位置及び噴射水
量を制御した後に、冷却するようにしたので、鋼板幅方
向の両端において、特定範囲のスケール厚を薄くし、冷
却時の水の熱伝達係数を中央部付近に比べ低くすること
ができるようになる。その結果、該両端部の特定範囲で
冷却速度が遅くなり、その部分の過冷却が抑制され、所
謂耳波歪の発生が防止できるようになる。また、本発明
では、圧延機に付帯したスケール除去装置により、鋼板
表裏面の一次スケール、二次スケールを除去し、圧延ス
ケール疵、かみ込み疵の発生をも防止できる。さらに、
熱間圧延中の所定パスにおいて板幅方向のスケール厚み
を実測し、スケール情報として利用し、冷却前に鋼板表
面のスケール厚を特定の厚さ以下にできるようになるの
で、全幅にわたって均一な冷却速度、冷却停止温度分布
が得られ、加速冷却設備のみならず、直接焼入装置を用
いた場合でも、冷却後歪の制御が可能となり、材質上も
鋼板全体で均一化が達成できる。
According to the present invention, in a method of controlling cooling of a thick steel sheet after hot rolling for a plurality of passes, prior to the cooling, the scale thickness distribution on the surface of the thick steel sheet is measured during hot rolling, and the measured value is In order to match the target value of the scale thickness distribution on the surface of the thick steel plate, after cooling the water injection position and the amount of water injection of the scale removing device, cooling was performed, so that at both ends in the steel plate width direction, a specific range of The scale thickness can be reduced, and the heat transfer coefficient of water during cooling can be made lower than that near the central portion. As a result, the cooling rate becomes slower in the specific range of the both end portions, supercooling of the portion is suppressed, and so-called ear wave distortion can be prevented from occurring. Further, in the present invention, the scale removing device attached to the rolling mill can remove the primary scale and the secondary scale of the front and back surfaces of the steel sheet, and prevent the occurrence of rolling scale flaws and bite flaws. further,
Scale thickness in the strip width direction is actually measured in a predetermined pass during hot rolling, and it is used as scale information so that the scale thickness on the surface of the steel sheet can be reduced to a specific thickness or less before cooling, so uniform cooling over the entire width is possible. The speed and cooling stop temperature distribution can be obtained, and even when using not only accelerated cooling equipment but also a direct quenching device, the strain after cooling can be controlled, and the material can be made uniform throughout the steel sheet.

【0009】なお、これらの効果は、スケールが密着し
た鋼板表面では地金とスケールはほぼ完全接触であるこ
とと、スケール表面は粗度が粗く、濡れ性がよく、水の
熱伝達係数が高いが、スケールが剥離した部分は濡れ性
がないため、膜沸騰が起こりやすく、熱伝達係数が低く
なることによるのである。以下、実施例において、図1
〜5に基づき、本発明の内容を具体的に説明する。
These effects are that the base metal and the scale are almost completely in contact with each other on the surface of the steel plate with which the scale is in close contact, that the surface of the scale is rough, the wettability is good, and the heat transfer coefficient of water is high. However, since the portion where the scale is peeled off has no wettability, film boiling is likely to occur and the heat transfer coefficient becomes low. Hereinafter, in the examples, FIG.
The contents of the present invention will be specifically described with reference to FIGS.

【0010】[0010]

【実施例】ここでは、板厚25mm、板幅4000mm
の厚鋼板を圧延機で複数回パスして熱間圧延した場合に
ついて述べる。使用したスケール除去装置は、圧延機に
既に付帯するものであった。しかし、板幅方向端部のス
ケール除去用可動式ノズルは、既設ノズル用配管とは別
配管系統であり、鋼板の板幅が変更された場合に対応で
きるようにフレキシブルパイプで接続されている。そし
て、該ノズルは、板幅方向両端部より最大距離で300
mmの範囲内のスケール除去を可能とするため、複数個
新設してあり、本実施例では、両端部に各2組設置し
た。さらに、板幅方向の中央部付近もスケール除去がで
きるように、可動式ノズルが上記両端の2組とは別個
に、鋼板幅方向の任意の位置に1組以上追加設置する場
合もある。
[Example] Here, a plate thickness of 25 mm and a plate width of 4000 mm
The case of hot-rolling the thick steel plate of No. 3 by a rolling mill multiple times will be described. The scale removing device used was already attached to the rolling mill. However, the scale-removing movable nozzle at the end portion in the plate width direction is a pipe system separate from the existing nozzle pipe, and is connected by a flexible pipe so as to be able to cope with the case where the plate width of the steel plate is changed. Then, the nozzle has a maximum distance of 300 from both ends in the plate width direction.
In order to enable the scale removal within the range of mm, a plurality of them are newly provided. In this embodiment, two sets are provided at each end. Further, one or more sets of movable nozzles may be additionally installed at an arbitrary position in the steel plate width direction separately from the two sets at both ends so that the scale can be removed also in the vicinity of the central portion in the plate width direction.

【0011】鋼板表面上のスケール厚は、光距離センサ
を用いて測定し、目標とするスケール厚み分布と比較す
る手段及びその情報をスケール除去装置の水噴射制御手
段に送るようになっている。図1は、上記装置を用いて
本発明に係る厚鋼板の冷却方法を実施した結果の一例で
ある。そこでは、焼入後おける冷却停止時の鋼板幅方向
の温度分布が示され、従来の方法に従い鋼板幅方向に均
一にスケール除去をかけた場合と、本発明に従い鋼板幅
方向の両端近傍のみ、スケール厚みセンサの情報をベー
スに、水噴射圧を増加した場合の比較図である。従来法
による場合、図1(a)に示すように、板幅方向の端部
近傍は、圧延終了後に直接焼入れ、あるいは加速冷却を
しても、中央部に比較して冷却停止時温度は低くなり、
150℃程度のもの低下となった。加速冷却の場合は、
マスキング装置を設置して端部の過冷却現象を防止し、
冷却後の耳波発生をある程度防止できたが、直接焼入の
場合は、水冷方法がどぶづけのため、端部過冷を設備的
に防止することは困難であった。
The scale thickness on the surface of the steel sheet is measured by using an optical distance sensor, and means for comparing with a target scale thickness distribution and its information are sent to the water injection control means of the scale removing device. FIG. 1 is an example of a result of carrying out the method for cooling a thick steel plate according to the present invention using the above apparatus. There, the temperature distribution in the steel plate width direction at the time of cooling stop after quenching is shown, when the scale is uniformly removed in the steel plate width direction according to the conventional method, and only in the vicinity of both ends in the steel plate width direction according to the present invention, It is a comparison figure in the case of increasing water injection pressure based on the information of a scale thickness sensor. In the case of the conventional method, as shown in FIG. 1 (a), the temperature near the edge in the sheet width direction is lower than the temperature at the center even if direct quenching or accelerated cooling is performed after the rolling is completed. Becomes
It decreased by about 150 ° C. For accelerated cooling,
Install a masking device to prevent the edge from overcooling,
Although it was possible to prevent the generation of ear waves after cooling to some extent, in the case of direct quenching, it was difficult to prevent the end supercooling from the viewpoint of equipment, because the water cooling method was blunt.

【0012】一方、本発明に係る厚鋼板の冷却方法を適
用する場合は、上述のように、圧延時にスケール装置近
傍にスケール厚み実測センサを配設すると同時に、従来
タイプの既設ノズルに追加して、圧延幅に応じて位置制
御可能な鋼板幅方向の両端部のみに水を噴出できるノズ
ルを追加設置してある。そして、圧延後の冷却に先立
ち、下記パターンのいずれかあるいは組み合わせで、圧
延中に鋼板両端部のスケール残存量を中央部に比べて少
なくする。これにより鋼板幅方向の端部はスケール付着
量が少なくなるので、図1(b)に示すように、その後
の直接焼入時に鋼板表面上での水の熱伝導係数が低くな
り、鋼板幅方向端部の水冷後の過冷が防止でき、鋼板に
耳波歪の発生が解消できた。
On the other hand, when the method for cooling a thick steel plate according to the present invention is applied, as described above, the scale thickness measurement sensor is arranged near the scale device during rolling, and at the same time, it is added to the existing type nozzle. In addition, nozzles that can eject water are additionally installed only at both ends in the width direction of the steel plate whose position can be controlled according to the rolling width. Then, prior to cooling after rolling, one of the following patterns or a combination thereof is used to reduce the amount of scale remaining at both end portions of the steel sheet during rolling as compared to the central portion. As a result, the amount of scale adhered to the edges of the steel sheet in the width direction is reduced, and as shown in FIG. 1 (b), the coefficient of heat conduction of water on the surface of the steel sheet is reduced during the subsequent direct quenching. It was possible to prevent overcooling of the edges after water cooling and eliminate the occurrence of ear wave distortion on the steel sheet.

【0013】パターン1:鋼板幅方向の両端部近傍に可
動式デスケーリングノズルを追加設置し、そのノズルか
らの冷却水の噴射圧を既設デスケーリングノズルより0
〜50%だけ高目に設定する。 パターン2:上記鋼板幅方向両端部に追加した可動式デ
スケーリングノズルからの冷却水噴出の回数を設定 図2は、直接焼入前に鋼板のスケール付着量が多い部分
が、冷却水熱伝導係数の大きい核沸騰域に早く到達する
現象を示しており、図2より過去の各種知見から明らか
になっていることが確認できた。
Pattern 1: Movable descaling nozzles are additionally installed near both ends in the width direction of the steel sheet, and the injection pressure of cooling water from the nozzles is set to 0 from the existing descaling nozzles.
Set higher by ~ 50%. Pattern 2: Set the number of times cooling water is jetted from the movable descaling nozzles added to both ends of the steel sheet in the width direction. It is confirmed that the nucleate boiling region of a large amount of water reaches the nucleate boiling region quickly, and it is confirmed from FIG. 2 that it is clear from various past findings.

【0014】図3(a)は、本発明の実施で得た、スケ
ール除去時の冷却水噴射圧量とスケール付着量の関係を
示しており、スケール除去時の水噴射圧が高くなるとス
ケールが多く剥離されることを示しており、記号アは図
2のスケール付着量が多い(ア)の場合、記号ハは図2
の(ハ)の場合に対応している。図3(b)は、ミルデ
スケリング回数とスケール付着量の関係を示しており、
デスーケリング回数が多くなるほどスケールが多く剥離
されることを示しており、上記同様に図2の(ア)と
(ハ)と対応している。
FIG. 3 (a) shows the relationship between the amount of cooling water sprayed during scale removal and the amount of scale adhering, which was obtained in the practice of the present invention. The scale increases as the water spray pressure during scale removal increases. It indicates that a large amount is peeled off. The symbol A indicates that the amount of scale adhesion in FIG.
It corresponds to the case of (c). FIG. 3B shows the relationship between the number of mill descaling and the amount of scale adhesion,
It is shown that the larger the number of times of descaling, the more scale is peeled off, which corresponds to (a) and (c) of FIG.

【0015】つぎに、本発明と従来法との実施で得た厚
鋼板の外観を図4に示す。図4から明らかなように、直
接焼入後の鋼板平坦度は、従来法で得たもの(図4
(a))に比べ、本発明を実施したものは耳波歪が大幅
に改善され、平坦な形状が得られるようになった。ま
た、図5に示すように、従来方法による鋼板幅方向の端
部は直接焼入時に過冷となり、端部が中央部に比てビッ
カース硬さで100ポイント以上高くなる場合もあった
が(図5(a))、本発明の適用により鋼板幅方向全体
に亙り均一な高度、材質が得られるようになった(図5
(b))。なお、図5の硬度測定値は、鋼板表層下1m
mでの値である。
Next, the appearance of the thick steel plate obtained by carrying out the present invention and the conventional method is shown in FIG. As is clear from FIG. 4, the flatness of the steel sheet after direct quenching was obtained by the conventional method (see FIG.
Compared to (a), the earphone distortion of the present invention was significantly improved and a flat shape was obtained. Further, as shown in FIG. 5, the edge portion in the width direction of the steel sheet by the conventional method is overcooled during direct quenching, and the edge portion may have a Vickers hardness of 100 points or more higher than the center portion ( 5 (a), by applying the present invention, it is possible to obtain a uniform height and material throughout the width direction of the steel sheet (FIG. 5).
(B)). In addition, the hardness measurement value of FIG. 5 is 1 m below the surface layer of the steel plate.
The value at m.

【0016】[0016]

【発明の効果】以上述べたように、本発明に係る厚鋼板
の冷却方法の採用により、鋼板幅方向両端は、圧延後に
直接焼入を行っても、その部分の過冷が防止された。ま
た、本発明は、加速冷却プロセスにも活用でき、マスキ
ング装置なしで鋼板幅方向端部の過冷現象を防止して、
水冷後の耳波歪も解消できる。
As described above, by adopting the method for cooling a thick steel plate according to the present invention, even if both ends in the width direction of the steel plate are directly quenched after rolling, overcooling of the part is prevented. Further, the present invention can also be utilized in the accelerated cooling process, preventing the overcooling phenomenon of the steel sheet width direction end without a masking device,
It can also eliminate ear wave distortion after water cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼入後、鋼板幅方向の冷却停止時の温度分布で
あり、(a)は従来による均一冷却、(b)は本発明に
より冷却位置を調整した場合の結果である。
FIG. 1 is a temperature distribution when quenching is stopped in the width direction of a steel sheet after quenching, where (a) is a conventional uniform cooling and (b) is a result when the cooling position is adjusted according to the present invention.

【図2】鋼板表面温度と冷却水の熱伝達係数との関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a steel plate surface temperature and a heat transfer coefficient of cooling water.

【図3】(a)はスケール除去における水噴射圧とスケ
ール付着量との関係、(b)は水噴射回数とスケール付
着量との関係を示す図である。
FIG. 3A is a diagram showing a relationship between a water injection pressure and a scale adhesion amount in scale removal, and FIG. 3B is a diagram showing a relationship between a water injection frequency and a scale adhesion amount.

【図4】直接焼入後の厚鋼板の形状変化を示す図であ
り、(a)は従来法、(b)は本発明法を適用した結果
である。
FIG. 4 is a diagram showing a shape change of a thick steel plate after direct quenching, where (a) is a result of applying a conventional method and (b) is a result of applying the method of the present invention.

【図5】直接焼入後の厚鋼板幅方向端部の材質を、ビッ
カース硬度で示す図であり、(a)は従来法、(b)は
本発明法による結果である。
FIG. 5 is a view showing the Vickers hardness of the material of the thick steel sheet widthwise end portion after direct quenching, where (a) is the result by the conventional method and (b) is the result by the method of the present invention.

【図6】加速冷却時に冷却水から鋼板端部をマスキング
する板を配設した従来の冷却方法を説明する図である。
FIG. 6 is a diagram illustrating a conventional cooling method in which a plate that masks the steel plate end portion from cooling water is provided during accelerated cooling.

【符号の説明】[Explanation of symbols]

1 厚鋼板 2 耳波歪 3 マスキング板 4 板の進行方向 1 Thick steel plate 2 Ear wave distortion 3 Masking plate 4 Plate traveling direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数パスの熱間圧延後、厚鋼板を制御冷
却する方法において、 上記冷却に先立ち、熱間圧延中に厚鋼板表面上のスケー
ル厚分布を測定し、その測定値が該厚鋼板表面上のスケ
ール厚分布の目標値と一致するように、スケール除去装
置の水噴射位置及び噴射水量を制御した後に、冷却する
ことを特徴とする厚鋼板の冷却方法。
1. A method for controlling and cooling a thick steel sheet after hot rolling for a plurality of passes, wherein the scale thickness distribution on the surface of the thick steel sheet is measured during hot rolling before the cooling, and the measured value is the thickness. A method for cooling a thick steel plate, which comprises cooling the water after controlling the water injection position and the water injection amount of the scale removing device so that the scale thickness distribution on the surface of the steel plate coincides with the target value.
JP5058694A 1994-03-22 1994-03-22 Method for cooling thick plate Withdrawn JPH07256331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5058694A JPH07256331A (en) 1994-03-22 1994-03-22 Method for cooling thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5058694A JPH07256331A (en) 1994-03-22 1994-03-22 Method for cooling thick plate

Publications (1)

Publication Number Publication Date
JPH07256331A true JPH07256331A (en) 1995-10-09

Family

ID=12863084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5058694A Withdrawn JPH07256331A (en) 1994-03-22 1994-03-22 Method for cooling thick plate

Country Status (1)

Country Link
JP (1) JPH07256331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147733A (en) * 2011-12-21 2013-08-01 Jfe Steel Corp High tensile strength steel sheet having excellent strength-elongation balance and method for producing the same
US10449584B2 (en) 2013-05-30 2019-10-22 Primetals Technologies Austria GmbH Adjustable descaler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147733A (en) * 2011-12-21 2013-08-01 Jfe Steel Corp High tensile strength steel sheet having excellent strength-elongation balance and method for producing the same
US10449584B2 (en) 2013-05-30 2019-10-22 Primetals Technologies Austria GmbH Adjustable descaler

Similar Documents

Publication Publication Date Title
TWI433736B (en) Method and equipment for flatness control in cooling a stainless steel strip
TWI382888B (en) Method and means of continuous casting
JP3796133B2 (en) Thick steel plate cooling method and apparatus
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JPS6314052B2 (en)
JPH07256331A (en) Method for cooling thick plate
JP3656707B2 (en) Controlled cooling method for hot rolled steel sheet
KR101140965B1 (en) Cooling method for inverted angle
JPH06328118A (en) Method for cooling thick steel plate
JP2000237858A (en) Continuous casting method
JP3287254B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP2001191158A (en) Continuous casting method of steel
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP3296374B2 (en) Descaling method during hot rolling of austenitic stainless steel
JPH11129015A (en) Method of producing thin-scale steel sheet
JPS5886922A (en) Quick cooling device of steel plate
JP2015174134A (en) Production method of steel plate
JP2000233266A (en) Production of steel plate having good surface characteristic
JP3171326B2 (en) Thick steel plate manufacturing method
JP3386925B2 (en) Hot rolling material descaling equipment
JPH10113713A (en) Production of steel plate of controlled cooling
JP2005074480A (en) Facility for producing hot-rolled steel plate, and its production method
JPS63176419A (en) Direct online hardening method for steel plate
JP6981435B2 (en) Hot-rolled steel sheet manufacturing equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605