JPH07254473A - Method to form superconducting connecting condition of mutual oxide superconductors - Google Patents

Method to form superconducting connecting condition of mutual oxide superconductors

Info

Publication number
JPH07254473A
JPH07254473A JP4607994A JP4607994A JPH07254473A JP H07254473 A JPH07254473 A JP H07254473A JP 4607994 A JP4607994 A JP 4607994A JP 4607994 A JP4607994 A JP 4607994A JP H07254473 A JPH07254473 A JP H07254473A
Authority
JP
Japan
Prior art keywords
oxide
powder
calcined
silver
calcined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4607994A
Other languages
Japanese (ja)
Inventor
Takashi Hase
隆司 長谷
Kazuyuki Shibuya
和幸 渋谷
Seiji Hayashi
征治 林
Yoshio Masuda
喜男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4607994A priority Critical patent/JPH07254473A/en
Publication of JPH07254473A publication Critical patent/JPH07254473A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PURPOSE:To provide an excellent supreconducting connecting condition of mutual oxide superconductors by heating an object by interposing oxide calcined powder having the same composition with a calcined body in a part of a connecting part area of a specific oxide calcined body, and annealing it after it is partially melted. CONSTITUTION:Raw material powder composed of Bi2O3, SrCO3, CaCO3 and CwO is weighed so that a mole ratio of Bi, Sr, Ca and Cw becomes 2:2:1:2, and after it is pulverized and mixed, heat treatment is performed, and it is calcined. Obtained Bi 2212 type calcined body powder 8 is filled in a silver pipe except a part, and is molded in a tape shape, and is formed as a silver sheath wire rod 6. Next, an end part of the wire rod 6 is cut open, and a Bi system 2212 oxide calcined body 8a is exposed, and the residual powder 8 is arranged and sandwiched between part of an area to be connected. Heat treatment is performed on this in the atmosphere, and after the calcined body 8a and the powder 8 are partially melted, they are annealed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体同士の
良好な超電導接続状態を形成するための有用な方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a useful method for forming a good superconducting connection between oxide superconductors.

【0002】[0002]

【従来の技術】希土類元素−アルカリ土類元素−銅酸化
物系セラミックスが酸化物超電導体として注目を集める
ようになって以来、幾多の複合酸化物について超電導現
象が検討されている。この酸化物超電導体は、従来の金
属系酸化物超電導体に比べ、超電導遷移温度(以下、T
cと記す)および上部臨界磁場(以下、Hc2 と記す)
が高いという特徴を有しているので、様々な分野への応
用が期待されている。例えばBi系酸化物は、Tcが8
0K程度の低Tc相のものと110K程度の高Tc相の
ものが存在し、Bi,Sr,Ca,Cuのモル比がほぼ
2:2:1:2の場合(2212型)には低Tc相とな
り、およそ2:2:2:3の場合(2223型、但しB
iの一部がPbにより置換されている)には高Tc相に
なることが知られており、いずれも良好なTc値を示す
物質として有望視されている。
2. Description of the Related Art Since rare earth element-alkaline earth element-copper oxide ceramics have been attracting attention as oxide superconductors, superconducting phenomena have been studied for many complex oxides. This oxide superconductor has a superconducting transition temperature (hereinafter, T
c) and the upper critical magnetic field (hereinafter referred to as Hc 2 )
It is expected to be applied to various fields because it has high characteristics. For example, Bi-based oxide has Tc of 8
There are low Tc phase of about 0K and high Tc phase of about 110K, and low Tc when the molar ratio of Bi, Sr, Ca, Cu is approximately 2: 2: 1: 2 (2212 type). In case of about 2: 2: 2: 3 (type 2223, but B
It is known that a part of i is replaced with Pb) to have a high Tc phase, and both are considered to be promising as a substance showing a good Tc value.

【0003】これらの酸化物超電導体を、銀パイプに充
填した後、伸線・圧延して銀シーステープ線材を作成
し、これをコイル状に巻いて熱処理を行ったり(Wind &
React法)、テープの状態で先に熱処理を行なってから
巻線したり( React & Wind 法)等の方法によって、酸
化物超電導マグネットが試作されており、研究開発が盛
んに実施されている。
These oxide superconductors are filled in a silver pipe, and then drawn / rolled to prepare a silver sheath tape wire, which is wound into a coil and subjected to heat treatment (Wind & Winding).
The oxide superconducting magnets have been prototyped by methods such as the React method), the tape is first heat-treated and then the winding is performed (React & Wind method), and research and development are actively carried out.

【0004】また上記の様な銀シーステープ線材を、B
i系2212型酸化物超電導体を用いて製造するに当た
っては、一般に次の方法が行なわれている。まずBi2
3,SrCO3 ,CaCO3 ,CuO等からなる原料粉
末を秤量して粉砕混合し、熱処理を行なって仮焼する。
次に、銀パイプに充填してからテープ状に成形した後、
昇温して部分溶融(CaOが生成して残存し、その他の
金属組成は液相として存在する状態を言う)させ、その
後の徐冷中に、Bi系2212型酸化物超電導体を高い
配向性を有する状態で結晶化させる。このような製造方
法を作用することによって、非超電導体の析出を抑えた
良好なテープ線材が作製できる。
In addition, the silver sheath tape wire as described above is
The following method is generally used for manufacturing the i-type 2212 type oxide superconductor. First, Bi 2
Raw material powders composed of O 3 , SrCO 3 , CaCO 3 , CuO, etc. are weighed, pulverized and mixed, heat-treated and calcined.
Next, after filling the silver pipe and forming into a tape shape,
The Bi-based 2212-type oxide superconductor has a high orientation while being heated to be partially melted (CaO is generated and remains, and the other metal compositions exist as a liquid phase). Crystallize in the state. By operating such a manufacturing method, it is possible to manufacture a good tape wire material in which precipitation of non-superconductors is suppressed.

【0005】これに対し、Bi系2223型酸化物超電
導体の場合は、熱処理工程が複雑であり、しかも数種類
の非超電導体を含む結晶性の低いものしか得られていな
い。その結果、20K程度以下の温度範囲では、Bi系
2212相の臨界電流密度(以下Jcと記す)は、Bi
系2223相に比較して高い値が得られている。また、
Bi系2223相の場合は、テープ長が長くなると極端
にJcが低下する。これは、Bi系2212相の場合、
溶融して液相から結晶化させるので、配向した大きな結
晶を成長させることが可能であるのに対し、Bi系22
23相の場合は固相反応でしか結晶化せず、大きな結晶
を成長させることが困難であることに起因している。
On the other hand, in the case of the Bi type 2223 type oxide superconductor, the heat treatment process is complicated, and only the one having a low crystallinity containing several kinds of non-superconductors is obtained. As a result, in the temperature range of about 20 K or less, the critical current density (hereinafter referred to as Jc) of the Bi-based 2212 phase is Bi
A high value is obtained as compared with the system 2223 phase. Also,
In the case of the Bi type 2223 phase, Jc extremely decreases as the tape length increases. This is the case of Bi system 2212 phase,
Since it is melted and crystallized from the liquid phase, it is possible to grow oriented large crystals, whereas Bi-based 22
This is because the 23-phase crystallizes only by the solid-phase reaction, and it is difficult to grow a large crystal.

【0006】ところで超電導体は、超電導体ループに誘
起された永久電流の時間的変動が小さく且つ発熱しない
ので、NMR等の様な高安定磁場の要求される機器等に
応用されている。酸化物超電導体を上記の様な機器に応
用する場合、酸化物超電導体同士の接続状態の良否がい
わゆる永久電流の減衰に大きく影響するので、良好な超
電導接続状態を達成することが重要である。
By the way, the superconductor is applied to equipments requiring a high stable magnetic field, such as NMR, because the permanent current induced in the superconductor loop has a small time variation and does not generate heat. When applying oxide superconductors to the above devices, it is important to achieve a good superconducting connection state, because the quality of the connection state between oxide superconductors greatly affects the so-called permanent current attenuation. .

【0007】超電導材料として実用化されているものと
しては、NbTi,Nb3 Sn等の金属系化合物が知ら
れており、NbTiについては線材同士の直接々続が行
われ、Nb3 SnについてはNb3 Sn粉末中に被接続
フィラメントを近接配置した後に熱処理することによっ
て接続されている。一方、Tcが金属系化合物よりも高
い酸化物超電導体を用いると、極低温の液体Heを使用
せずに済むので、冷却のために制約が緩和されて超電導
応用器具を簡単に冷却できるようになって有利である。
また冷却手段として、動力で動作する冷凍機を用いるこ
とができれば、ランニングコストを低く抑えることがで
き、有利である。こうしたことから、酸化物超電導体同
士を接続する方法についても様々なものが提案されてお
り、例えば(1) 単に酸化物超電導体同士を密着後加熱焼
成する方法(例えば特開平 1-24379号)、(2) 図2に示
されるように、接続部4を補強材3またはスリーブで囲
み、その中で酸化物超電導体粉末2を焼結させて酸化物
超電導体1同士を接続する方法(例えば特開昭63-26946
8 号,特開平1-17384 号等)、(3) Bi系酸化物超伝導
体の接続部に、前駆体または仮焼粉末を介在物として配
置し、大気中で溶融させる方法(例えば特開平3-242384
号)等が知られている。
Metal compounds such as NbTi and Nb 3 Sn are known to be put to practical use as superconducting materials. For NbTi, wires are directly connected to each other, and for Nb 3 Sn, Nb 3 Sn is used. 3 Sn powder is connected by arranging the filaments to be connected in close proximity and then heat treating them. On the other hand, when an oxide superconductor having a Tc higher than that of a metal-based compound is used, it is not necessary to use liquid He at a cryogenic temperature. Therefore, the constraint for cooling is eased and the superconducting application device can be easily cooled. Is advantageous.
Further, if a refrigerator that operates by power can be used as the cooling means, the running cost can be kept low, which is advantageous. For this reason, various methods have been proposed for connecting oxide superconductors to each other, for example, (1) a method in which oxide superconductors are simply adhered to each other and then heated and baked (for example, Japanese Patent Laid-Open No. 1-24379). (2) As shown in FIG. 2, a method in which the connecting portion 4 is surrounded by a reinforcing material 3 or a sleeve, and the oxide superconductor powder 2 is sintered therein to connect the oxide superconductors 1 to each other (for example, JP-A-63-26946
No. 8, JP-A-1-17384, etc.), (3) A method of arranging a precursor or calcined powder as an intervening material at the connection part of a Bi-based oxide superconductor and melting it in the atmosphere (eg, JP-A No. 3-242384
No.) etc. are known.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上述した
様な各接続方法では、夫々下記に示すような問題を有し
ており、いずれも不十分と言わざるを得なかった。まず
上記(1), (2)の方法では、接続部がいずれも固相反応で
生じる焼結体からなるものを想定したものであるので、
超電導体結晶の配向性および密着性が悪く、接続部のJ
cがそれ以外の部分のJcと比べて大きく低下するとい
う問題があった。
However, each of the connection methods as described above has the following problems, and it must be said that all of them are insufficient. First, in the above methods (1) and (2), it is assumed that all the connecting portions are made of a sintered body produced by a solid-phase reaction.
The orientation and adhesion of the superconducting crystal is poor, and J
There is a problem that c is greatly reduced as compared with Jc in other portions.

【0009】これに対し、Bi系2212型酸化物超電
導体を形成するBi系2212相では、前述したように
溶融して液相から結晶化するので、配向した大きな結晶
を成長させること可能であり、超電導接続に有利である
と考えられる。尚溶融状態から結晶化させる場合、介在
物のみを溶融させたのでは、液相から成長した結晶が被
接続酸化物超電導体であるBi系2212相と十分に接
続することが困難であるので、被接続体も介在物と同時
に溶融させ、被接続体と介在物を一体化して結晶化させ
ることが望ましいと言われている。
On the other hand, in the Bi-based 2212 phase forming the Bi-based 2212 type oxide superconductor, since it melts and crystallizes from the liquid phase as described above, it is possible to grow oriented large crystals. , Considered to be advantageous for superconducting connection. In the case of crystallizing from the molten state, it is difficult to sufficiently connect the crystal grown from the liquid phase with the Bi-based 2212 phase that is the oxide superconductor to be connected, by melting only the inclusions. It is said that it is desirable to melt the connected body at the same time as the inclusions so that the connected body and the inclusions are integrated and crystallized.

【0010】Bi系2212型酸化物超伝導体の部分溶
融温度は、その結晶粒の大きさと結晶性に大きく依存す
ると言われている。例えば、Bi23 ,SrCO3
CaCO3 ,CuO等の原料粉末をBi:Sr:Ca:
Cuのモル比が、2:2:1:2となるように秤量混合
し、熱処理してBi系2212型酸化物仮焼粉末を作成
する場合には、得られる粉末はBi系2212相を主体
とするが、その他に、Bi:Sr:Ca:Cuのモル比
が、2:2:0:1であるBi系2201相も含んでい
る。そしてそのようなBi系2212型酸化物仮焼粉末
と、Bi系2212型酸化物超電導体粉末とでは、最適
な部分溶融温度が大気において10℃以上も異なるので
ある。またBi系2212相は、Bi,Sr,Ca,C
u等のモル比が化量論比組成の2:2:1:2の場合に
は、それ自体の部分溶融温度の許容幅が3℃程度と非常
に小さい。従って、温度に対する制約が厳しくなり、B
i系2212型酸化物仮焼粉末とBi系2212型酸化
物超電導体粉末を同時に部分溶融させたのでは、良好な
状態で超電導接続することは困難である。
It is said that the partial melting temperature of the Bi-based 2212 type oxide superconductor largely depends on the crystal grain size and crystallinity. For example, Bi 2 O 3 , SrCO 3 ,
Raw material powders such as CaCO 3 and CuO are mixed with Bi: Sr: Ca:
When Cu is weighed and mixed in a molar ratio of 2: 2: 1: 2 and heat-treated to prepare a Bi-based 2212 type oxide calcined powder, the obtained powder is mainly a Bi-based 2212 phase. However, the Bi-based 2201 phase having a Bi: Sr: Ca: Cu molar ratio of 2: 2: 0: 1 is also included. The optimum partial melting temperature of such a Bi-based 2212 type oxide calcined powder and the Bi-based 2212 type oxide superconductor powder differ by 10 ° C. or more in the atmosphere. In addition, the Bi-based 2212 phase is Bi, Sr, Ca, C.
When the molar ratio of u or the like is 2: 2: 1: 2 which is a stoichiometric composition, the allowable range of the partial melting temperature of itself is about 3 ° C., which is very small. Therefore, the restriction on the temperature becomes strict and B
If the i-based 2212 type oxide calcined powder and the Bi-based 2212 type oxide superconductor powder are partially melted at the same time, it is difficult to perform superconducting connection in a good state.

【0011】前述した方法のうち前記 (3)の方法は、B
i系2212型酸化物超電導体の接続を想定したもので
あり、接続部に前駆体または酸化物仮焼粉末を配置して
大気中で熱処理するものである。しかしながらこのよう
な方法では、被接続体はBi系2212型酸化物超電導
体であるので、該酸化物超電導体と酸化物仮焼粉末の部
分溶融温度が大きく異なり、良好な状態で超電導接続す
ることが困難である。本発明はこうした状況のもとにな
されたものであって、その目的は、酸化物超電導体同士
の良好な超電導接続状態を形成する為の有用な方法を提
供することにある。
Of the above-mentioned methods, the method (3) is
It is assumed that an i-type 2212 type oxide superconductor is connected, and a precursor or a calcined oxide powder is placed at the connection portion and heat-treated in the atmosphere. However, in such a method, since the object to be connected is a Bi-based 2212 type oxide superconductor, the partial melting temperatures of the oxide superconductor and the oxide calcined powder are largely different, and the superconducting connection should be performed in a good state. Is difficult. The present invention has been made under these circumstances, and an object thereof is to provide a useful method for forming a good superconducting connection state between oxide superconductors.

【0012】[0012]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、酸化物超電導体同士の超電導接続状態を形成
するに当たり、Bi系2212相を主体として含有する
酸化物仮焼体の接続部領域の一部に、該仮焼体と同一組
成の酸化物仮焼粉末を介在させた状態で加熱し、前記酸
化物仮焼体および酸化物仮焼粉末を部分溶融させた後、
徐冷する工程を含む点に要旨を有する酸化物超電導体の
超電導接続方法である。
Means for Solving the Problems The present invention capable of achieving the above-mentioned object means that when forming a superconducting connection state between oxide superconductors, an oxide calcined body mainly containing a Bi-based 2212 phase is used. Part of the connection portion region is heated with an oxide calcined powder of the same composition as the calcined body interposed, and after partially melting the oxide calcined body and the oxide calcined powder,
This is a superconducting connection method for oxide superconductors, which has the point of including a step of gradually cooling.

【0013】上記発明において、接続部領域全体を銀シ
ース材で覆う構造にして部分溶融させることが、接続部
から液相を漏らさないという観点からして好ましい。ま
た酸化物仮焼粉末および酸化物仮焼粉末に銀を添加した
ものを用いて行なえば、部分溶融温度の幅を広め得ると
いう観点からして有利である。更に、上記のように構成
される接続部を複数組重ねて行なうことによって、酸化
物超電導線材自体の臨界電流(以下、Icと記す)の値
を更に高めることができる。
In the above invention, it is preferable that the entire connecting portion region is covered with the silver sheath material and partially melted, from the viewpoint that the liquid phase does not leak from the connecting portion. Further, it is advantageous to use the calcined oxide powder and the calcined oxide powder to which silver is added, from the viewpoint that the range of the partial melting temperature can be widened. Furthermore, by stacking a plurality of sets of connecting portions configured as described above, the value of the critical current (hereinafter referred to as Ic) of the oxide superconducting wire itself can be further increased.

【0014】一方、上記の製造工程において、徐冷の
後、急冷することが好ましく、この工程を付加すること
によって、Bi系2201相の生成を抑制することがで
きる。また加熱の雰囲気を、大気中とすることによっ
て、真空排気装置を設置しない簡易型の熱処理炉を用い
ることができ、熱処理を容易に行なうことができる。さ
らに、真空排気する制約から解放されるため炉の大型化
という点について有利となる。
On the other hand, in the above manufacturing process, it is preferable to perform gradual cooling followed by rapid cooling. By adding this process, the production of the Bi-based 2201 phase can be suppressed. Further, by setting the heating atmosphere to the atmosphere, a simple heat treatment furnace without a vacuum exhaust device can be used, and heat treatment can be easily performed. Further, since the restriction of vacuum evacuation is released, it is advantageous in terms of upsizing of the furnace.

【0015】[0015]

【作用】本発明者らは、酸化物超電導体同士の超電導接
続状態の形成についてかねてより研究を進めており、そ
の研究の一環として、図3または図4に示される様に、
Bi系2212型酸化物超電導体5(以下、単に酸化物
超電導体と呼ぶ)の結晶間に酸化物仮焼粉末8を介在さ
せた状態で非酸化性雰囲気で部分溶融させる方法を開発
し、その技術的意義が認められたので、先に出願してい
る(特願平4-290295号)。尚図3および図4において、
6は銀シース線材、7は銀シートを夫々示している。こ
うした構成を採用することによって、介在させる酸化物
仮焼粉末と接続部分の酸化物超電導体5との溶融温度の
差を縮小し、接続特性の改良を行なったものである。
The present inventors have been conducting research on the formation of a superconducting connection state between oxide superconductors for some time, and as a part of the research, as shown in FIG. 3 or FIG.
A method of partially melting in a non-oxidizing atmosphere with the oxide calcined powder 8 interposed between the crystals of the Bi-based 2212 type oxide superconductor 5 (hereinafter, simply referred to as oxide superconductor) was developed. Since the technical significance was recognized, I applied for it first (Japanese Patent Application No. 4-290295). In addition, in FIG. 3 and FIG.
6 is a silver sheath wire, and 7 is a silver sheet. By adopting such a configuration, the difference in melting temperature between the intercalated oxide calcined powder and the oxide superconductor 5 at the connection portion is reduced, and the connection characteristics are improved.

【0016】上記方法によって、一応の効果が得られた
のであるが、下記に示すような若干の問題を有してお
り、改良すべき点があった。即ち、この方法において
も、介在させる酸化物仮焼粉末8と接続部分の酸化物超
電導体5の溶融温度の差が5℃程度あるので、超電導接
続が十分に達成されない場合もある。またBi系221
2型酸化物超電導体の結晶化は、雰囲気中の酸素分圧に
強く依存するので、非酸化性雰囲気下で熱処理を行なう
この方法では、酸素分圧の正確な制御が余儀なくされる
という欠点がある。更に、この方法によれば、図3また
は図4に示した銀シース線材6の隙間から液相が流出す
ることがあるため、接続部において酸化物が欠落し、良
好な超電導接続を達成できないこともある。本発明は、
本発明者が先に提案した上記の方法を発展改良し、更に
高性能な超電導接続を目指したものである。
Although the above-mentioned method provided some effect, it had some problems as described below, and there was a point to be improved. That is, even in this method, the difference in melting temperature between the intercalated oxide calcined powder 8 and the oxide superconductor 5 at the connecting portion is about 5 ° C., and thus superconducting connection may not be sufficiently achieved. In addition, Bi system 221
Since the crystallization of the type 2 oxide superconductor strongly depends on the oxygen partial pressure in the atmosphere, this method of performing heat treatment in a non-oxidizing atmosphere has a drawback that accurate control of the oxygen partial pressure is unavoidable. is there. Further, according to this method, since the liquid phase may flow out from the gap between the silver sheath wire rods 6 shown in FIG. 3 or FIG. 4, the oxide is missing at the connection portion, and good superconducting connection cannot be achieved. There is also. The present invention is
The present invention has been developed and improved on the above-mentioned method previously proposed, and aims at higher performance superconducting connection.

【0017】本発明者らは、本発明者らが先に提案した
発明における問題を解決するという観点から、様々な角
度から検討してきた。そして本発明者らは、まずBi2
3,SrCO3,CaCO3 およびCuOの原料粉末を用
い、これをBi:Sr:Ca:Cuのモル比が2:2:
1:2となるように秤量混合し、これを大気中において
835℃で30時間の熱処理を施してBi系2212型
酸化物仮焼粉末を作成した。このとき得られた仮焼粉末
は、Bi系2212相を主体とし、Bi系2201相を
含有する混合相になっていた。そしてこの酸化物仮焼粉
末が接続部領域の少なくとも一部に形成される酸化物仮
焼体の相互の間に、該仮焼体と同一組成の酸化物仮焼粉
末を介在させた状態で加熱することによって、接続部領
域における酸化物仮焼体と介在される仮焼粉末の溶融解
温度の差を殆どなくすことができることを見いだし、本
発明を完成した。またこの方法によれば、非酸化性雰囲
気でなくとも、溶融解温度の差をなくすことができるの
で、加熱雰囲気を大気中で行なうことができ、酸素分圧
の正確な制御を行なう必要はない。
The present inventors have studied from various angles from the viewpoint of solving the problems in the invention previously proposed by the present inventors. Then, the present inventors first of all describe Bi 2
Raw material powders of O 3 , SrCO 3 , CaCO 3 and CuO were used, and the molar ratio of Bi: Sr: Ca: Cu was 2: 2:
The mixture was weighed and mixed in a ratio of 1: 2, and heat-treated in the atmosphere at 835 ° C. for 30 hours to prepare a Bi-based 2212 type oxide calcined powder. The calcined powder obtained at this time was a mixed phase containing mainly the Bi-based 2212 phase and the Bi-based 2201 phase. The calcined oxide powder is heated with the calcined oxide powder having the same composition as the calcined body interposed between the calcined oxide bodies formed in at least a part of the connection region. By doing so, it was found that the difference in melting solution temperature between the calcined oxide body and the calcined powder interposed in the connection region can be almost eliminated, and the present invention has been completed. Further, according to this method, the difference in melting solution temperature can be eliminated even in a non-oxidizing atmosphere, so that the heating atmosphere can be performed in the atmosphere, and it is not necessary to accurately control the oxygen partial pressure. .

【0018】また本発明者らは、前記仮焼体および仮焼
粉末を作成する際に、出発原料中に銀粉末を添加するこ
とによって、酸化物仮焼粉末それ自体の最適な部分溶融
温度の幅を広め得ることも見いだした。即ち、下記表1
は、Bi系2212型酸化物粉末作成時の原料の出発組
成と、それら粉末を仮焼した後に銀パイプに充填して銀
シーステープ線材に加工し、部分溶融温度で熱処理して
得られたものの臨界電流(以下、Icと記す)の関係を
示したものであるが、この結果から明らかなように、原
料粉末に銀を添加することによって、Ic(4.2K,
2T)値を全体的に向上させ得ることがわかる。更に、
Biの含有量を2.1と若干増加させた場合には、最適
な部分溶融温度の幅を10℃以上に広げることができる
ことがわかる。
In addition, the inventors of the present invention added the silver powder to the starting material when preparing the calcined body and the calcined powder, so that the optimum partial melting temperature of the oxide calcined powder itself was controlled. I have also found that it can be broadened. That is, Table 1 below
Of the starting composition of the Bi-based 2212 type oxide powder, which was obtained by calcining the powder, filling it into a silver pipe, processing it into a silver sheath tape wire, and heat treating it at a partial melting temperature. The relationship between the critical currents (hereinafter referred to as Ic) is shown. As is clear from this result, by adding silver to the raw material powder, Ic (4.2K,
It can be seen that the 2T) value can be improved overall. Furthermore,
It can be seen that when the Bi content is slightly increased to 2.1, the range of the optimum partial melting temperature can be expanded to 10 ° C. or more.

【0019】[0019]

【表1】 [Table 1]

【0020】ところで部分溶融時には液相が生成する
が、この液相が接続部から漏れると、接続部のIcが低
下したり、テープ線材をコイル状に巻いたときに燐接す
るテープ間で短絡を生じて発生する磁場の大きさを低下
させたりする。こうした不都合を発生させないという観
点からして、部分溶融時に発生する液相を接続部内に封
じ込める構成を採用するのが好ましい。こうした構成と
して、例えば後記図6〜8に示す様に、部分溶融させる
仮焼粉末を銀シース材9で覆う構造にすることが挙げら
れる。こうした構成を採用することによって、Icを向
上させると共に、短絡を発生させることなくテープ線材
を巻線することができる。
By the way, a liquid phase is generated during partial melting, but if this liquid phase leaks from the connecting portion, the Ic of the connecting portion is lowered, or a short circuit is made between the tapes which are phosphorus-contacted when the tape wire is wound in a coil shape. It may reduce the magnitude of the generated magnetic field. From the viewpoint of not causing such an inconvenience, it is preferable to adopt a configuration in which the liquid phase generated at the time of partial melting is contained in the connection portion. As such a structure, for example, as shown in FIGS. 6 to 8 described later, a structure in which a partially melted calcined powder is covered with a silver sheath material 9 can be mentioned. By adopting such a configuration, Ic can be improved and the tape wire can be wound without causing a short circuit.

【0021】尚本発明では、熱処理によって部分溶融さ
せた後、徐冷する必要があるが、これは結晶を配向させ
て大きく成長させる為に必要である。この徐冷の際の冷
却速度は、かなりの幅が容認され、1〜10℃/hr程
度でよい。但し、830℃付近から前述の非超電導酸化
物相であるBi系2201相が結晶化を始めるので、こ
の温度よりも低温まで徐冷を行なうと、超電導体相であ
るBi系2212相が不安定になる。従って、徐冷後は
Bi系2201相の安定領域を急冷することで、できる
だけBi系2201相の生成を抑制する必要があり、こ
のときの急冷温度は500〜2000℃/hr程度が適
当である。この様な熱処理パターンとしては、例えば後
記図5に示す様なものが挙げられる。またこの様な熱処
理は、接続部だけでなく全体的に行なわれ、このとき前
記仮焼体も酸化物超電導体になる。
In the present invention, it is necessary to partially melt the material by heat treatment and then gradually cool it, which is necessary for orienting the crystal and for large growth. The cooling rate at the time of this gradual cooling is allowed to have a considerable range, and may be about 1 to 10 ° C./hr. However, since the Bi-based 2201 phase, which is the non-superconducting oxide phase, starts to crystallize from around 830 ° C., if the gradual cooling is performed to a temperature lower than this temperature, the Bi-based 2212 phase that is the superconductor phase becomes unstable. become. Therefore, after the gradual cooling, it is necessary to suppress the formation of the Bi-based 2201 phase as much as possible by rapidly cooling the stable region of the Bi-based 2201 phase. .. An example of such a heat treatment pattern is shown in FIG. Further, such a heat treatment is performed not only on the connecting portion but also on the whole, and at this time, the calcined body also becomes an oxide superconductor.

【0022】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any design changes made to the gist of the preceding and the following will be applied to the present invention. It is included in the technical scope.

【0023】[0023]

【実施例】【Example】

実施例1 Bi,Sr,Ca,Cuのモル比が化学量論比組成の
2:2:1:2となるように、Bi23 ,SrCO
3 ,CaCO3 ,CuOからなる原料粉末を秤量し、粉
砕混合した後熱処理を行なって仮焼した。得られたBi
系2212型酸化物仮焼粉末を、その一部を除いて銀パ
イプに充填し、テープ状に成形して銀シース線材とし
た。
Example 1 Bi 2 O 3 and SrCO were adjusted so that the molar ratio of Bi, Sr, Ca and Cu was a stoichiometric composition of 2: 2: 1: 2.
Raw material powders composed of 3 , CaCO 3 , and CuO were weighed, pulverized and mixed, and then heat-treated for calcination. Bi obtained
The system 2212 type oxide calcined powder, except for a part thereof, was filled in a silver pipe and formed into a tape shape to obtain a silver sheath wire.

【0024】次に、図1に示すように、得られた一対の
銀シース線材6の端部の片面側を部分的に切り開き、B
i系2212型酸化物仮焼体8aを露出させ、接続する
領域の一部に残余のBi系2212型酸化物仮焼粉末8
を配して挟み込んだ。これを大気中で前記図5に示した
パターンで熱処理した。熱処理後、接続部分を観察した
ところ、銀シース線材6の外側への液相の漏出が認めら
れた。また図1に示したように、接続部をまたいでIc
(4.2K,2T)を測定した結果、銀シース線材6の
Ic(=50A)に近い45Aという値が得られてい
た。
Next, as shown in FIG. 1, one side of the end portions of the obtained pair of silver sheath wires 6 is partially cut open, and B
The i-type 2212-type oxide calcined powder 8a is exposed, and the remaining Bi-type 2212-type oxide calcined powder 8 is exposed in a part of the connecting region.
I placed and sandwiched it. This was heat-treated in the air in the pattern shown in FIG. When the connected portion was observed after the heat treatment, leakage of the liquid phase to the outside of the silver sheath wire rod 6 was recognized. In addition, as shown in FIG.
As a result of measuring (4.2K, 2T), a value of 45 A, which is close to Ic (= 50 A) of the silver sheath wire 6, was obtained.

【0025】比較例1 前記図3または図4に示した様に、Bi系2212型酸
化物超電導体5間に酸化物仮焼粉末8を介在させた状態
で、非酸化性雰囲気中で部分溶融させる方法によって、
酸化物超伝導体接続を行ない、接続部分のIcを測定し
た。具体的には、Bi,Sr,Ca,Cuのモル比が化
学量論比組成の2:2:1:2となるように、Bi2
3 ,SrCO3 ,CaCO3 ,CuOからなる原料粉末
を秤量し、粉砕混合した後熱処理を行なって仮焼した。
得られたBi系2212酸化物仮焼粉末を、その一部を
除いて銀パイプに充填し、テープ状に成形した。その
後、前記図5に示したパターンでBi系2212型酸化
物超電導体を含む銀シース線材6を作成した。
Comparative Example 1 As shown in FIG. 3 or FIG. 4, partial melting was performed in a non-oxidizing atmosphere with the oxide calcined powder 8 interposed between the Bi type 2212 type oxide superconductors 5. Depending on how
The oxide superconductor was connected and the Ic of the connected portion was measured. Specifically, Bi 2 O is used so that the molar ratio of Bi, Sr, Ca, and Cu becomes a stoichiometric composition of 2: 2: 1: 2.
Raw material powders composed of 3 , SrCO 3 , CaCO 3 , and CuO were weighed, pulverized and mixed, and then heat-treated for calcination.
The obtained Bi-based 2212 oxide calcined powder was filled in a silver pipe except for a part thereof and molded into a tape shape. Thereafter, a silver sheath wire rod 6 containing a Bi-based 2212 type oxide superconductor was formed in the pattern shown in FIG.

【0026】得られた銀シース線材6の端部を部分的に
切り開き、Bi系2212型酸化物超電導体5の結晶を
露出させ、その接続する部分に残余のBi系2212型
酸化物仮焼粉末8と銀シート7を配して挟み込んだ。こ
れを酸素分圧10Torrで前記図5に示したパターン
で熱処理した。熱処理後、接続部分を観察したところ、
銀シース線材6の外側への液相の漏出が認められた。ま
た図3に示したように、接続部をまたいでIc(4.2
K,2T)を測定した結果、銀シース線材6のIc(=
50A)の半分である25Aという値しか得られなかっ
た。
The end of the obtained silver sheath wire 6 is partially cut open to expose the crystal of the Bi-based 2212 type oxide superconductor 5, and the remaining Bi-based 2212 type oxide calcined powder is connected to the connecting portion. 8 and the silver sheet 7 were arranged and sandwiched. This was heat-treated at an oxygen partial pressure of 10 Torr in the pattern shown in FIG. After the heat treatment, when observing the connection part,
It was confirmed that the liquid phase leaked to the outside of the silver sheath wire rod 6. Further, as shown in FIG. 3, Ic (4.2
As a result of measuring K, 2T), Ic (=
Only a value of 25A, which is half of 50A) was obtained.

【0027】実施例2 実施例1で作成した一対の銀シース線材6の端部の片面
側を部分的に切り開いてBi系2212型酸化物仮焼体
8aを露出させ、それらを向き合わせ、接続する面に、
仮焼して得られたBi系2212型酸化物仮焼粉末8を
配した。その後、図6に示すように、スリーブ形状の銀
シース材9を接続部領域全体にかぶせ、この銀シース材
9の上からプレスして銀シース線材6間の隙間をなくし
た。これを大気中で、前記図5に示したパターンで熱処
理した。熱処理後、銀シース材9の外側への液相の漏出
は認められなかった。そして図6に示す様に、接続部を
またいでIc(4.2K,2T)を測定したところ、接
続部を含まない銀シース線材6のIcと同じ50Aが得
られていた。尚この例では、Bi系2212型酸化物仮
焼粉末8を接続面となるように配したけれども、接続部
領域の内部であれば、液相となって同様の効果が得られ
るので、配する場所は接続面に限定されない。
Example 2 A pair of silver sheath wire rods 6 produced in Example 1 were partially cut open on one side to expose Bi-based 2212 type oxide calcined body 8a, which were then faced and connected. On the side
A Bi-based 2212 type oxide calcinated powder 8 obtained by calcination was placed. After that, as shown in FIG. 6, a sleeve-shaped silver sheath material 9 was covered over the entire connecting portion region and pressed from above the silver sheath material 9 to eliminate the gap between the silver sheath wire rods 6. This was heat-treated in the air in the pattern shown in FIG. After the heat treatment, no leakage of the liquid phase to the outside of the silver sheath material 9 was observed. Then, as shown in FIG. 6, when Ic (4.2K, 2T) was measured across the connecting portion, the same 50A as Ic of the silver sheath wire rod 6 not including the connecting portion was obtained. In this example, the Bi-based 2212-type oxide calcined powder 8 is arranged so as to serve as the connection surface, but if it is inside the connection region, it becomes a liquid phase and the same effect can be obtained, so it is arranged. The place is not limited to the connection surface.

【0028】実施例3 実施例1で作成した一対の銀シース線材6の端部の片面
側を部分的に切り開いてBi系2212型酸化物仮焼体
8aを露出させ、それらを向き合わせた。次いで図7に
示すように、少なくとも片面にBi系2212酸化物仮
焼粉末8bを露出させて圧着した銀シート7を、被接続
体である酸化物仮焼体8a,8aの上に配置した。その
後、スリーブ形状の銀シース材9を接続部にかぶせ、こ
の銀シース材9の上からプレスして接続部の隙間をなく
した。これを大気中で、前記図5に示したパターンで熱
処理した。熱処理後、銀シース材9の外側への液相の漏
出は認められなかった。そして図7に示す様に、接続部
をまたいでIc(4.2K,2T)を測定したところ、
接続部を含まない銀シース線材6のIcと同じ50Aが
得られていた。尚この例では、Bi系2212型酸化物
仮焼粉末8bを圧着した銀シート7を、図示した様に、
接続部内のBi系2212型酸化物超電導粉末8側とな
るように配置したけれども、Bi系2212型酸化物仮
焼粉末8は液相として広がるので、接続部に内部であれ
ば、銀シート6を銀シース材9側に配置したも同様の効
果が得られる。
Example 3 A pair of silver sheath wire rods 6 prepared in Example 1 were partially cut open at one end to expose Bi-based 2212 type oxide calcined bodies 8a, and they were faced to each other. Next, as shown in FIG. 7, the silver sheet 7 having the Bi-based 2212 oxide calcined powder 8b exposed on at least one surface and being pressure-bonded was placed on the oxide calcined bodies 8a, 8a which are the objects to be connected. Then, the sleeve-shaped silver sheath material 9 was covered on the connection portion, and pressed from above the silver sheath material 9 to eliminate the gap between the connection portions. This was heat-treated in the air in the pattern shown in FIG. After the heat treatment, no leakage of the liquid phase to the outside of the silver sheath material 9 was observed. Then, as shown in FIG. 7, when Ic (4.2K, 2T) was measured across the connecting portion,
The same 50A as Ic of the silver sheath wire rod 6 not including the connecting portion was obtained. In this example, the silver sheet 7 to which the Bi-based 2212 type oxide calcined powder 8b is pressure bonded is
Although it was arranged so as to be on the side of the Bi-based 2212 type oxide superconducting powder 8 in the connection portion, the Bi-based 2212 type oxide calcined powder 8 spreads as a liquid phase. The same effect can be obtained by arranging it on the silver sheath material 9 side.

【0029】実施例4 前記表1に示した結果で部分溶融温度の許容範囲の最も
広かったもの、即ちBi,Sr,Ca,Cu,Agのモ
ル比が2.1:2:1:1.9:0.1となるように、
前記原料粉末を秤量し、前記実施例3と同様にして接続
部を作成した。即ち、図7においてBi系2212型酸
化物仮焼粉末8a,8bの組成のみが実施例3と異なる
ものを作成した。これを大気中で前記図5に示したパタ
ーンで熱処理した。熱処理後、銀シース材9の外側への
液相の漏出は認められなかった。そして図7に示す様
に、接続部をまたいでIc(4.2K,2T)を測定し
たところ、接続部を含まない銀シース線材6のIcと同
じ130Aが得られており、この値は実施例3での値を
大きく上回っていた。尚この例では、Bi系2212型
酸化物仮焼粉末8bを圧着した銀シート7を、接続部内
のBi系2212型酸化物超電導粉末8側となるように
配置したけれども、Bi系2212型酸化物仮焼粉末8
は液相として広がるので、接続部の内部であれば、銀シ
ート7を銀シース材9側に配置したも同様の効果が得ら
れる。
Example 4 According to the results shown in Table 1 above, the maximum allowable range of partial melting temperature, that is, the molar ratio of Bi, Sr, Ca, Cu and Ag was 2.1: 2: 1: 1. To be 9: 0.1
The raw material powder was weighed and a connection portion was prepared in the same manner as in Example 3. That is, in FIG. 7, only the composition of the Bi-based 2212 type oxide calcined powders 8a and 8b was different from that of Example 3. This was heat-treated in the air in the pattern shown in FIG. After the heat treatment, no leakage of the liquid phase to the outside of the silver sheath material 9 was observed. Then, as shown in FIG. 7, when Ic (4.2K, 2T) was measured across the connecting portion, the same 130A as Ic of the silver sheath wire rod 6 not including the connecting portion was obtained. The value in Example 3 was greatly exceeded. In this example, the silver sheet 7 to which the Bi-based 2212-type oxide calcined powder 8b is pressure bonded is arranged so as to be on the Bi-based 2212-type oxide superconducting powder 8 side in the connection portion. Calcined powder 8
Since it spreads as a liquid phase, the same effect can be obtained if the silver sheet 7 is arranged on the silver sheath material 9 side as long as it is inside the connecting portion.

【0030】実施例5 実施例4で用いた銀シース線材6、Bi系2212型酸
化物仮焼粉末8a,8bおよび銀シート7の組み合わせ
を二組重ねて用い、図8に示す様に、接続部にスリーブ
形状の銀シース材9をかぶせ、この銀シース材9の上か
らプレスして、接続部の隙間をなくした。これを大気中
で前記図5に示したパターンで熱処理した。熱処理後、
銀シース材9の外側への液相の漏出は認められなかっ
た。そして図8に示す様に、接続部をまたいで銀シース
線材6の2本分のIc(4.2K,2T)を測定したと
ころ、実施例4の接続部を含まない銀シース線材6のI
c(=130A)の二倍の260Aの値が得られてい
た。尚この例では、接続部を2か所設けたものを示した
けれども、同様にして接続部を3か所以上有する超電導
接続が可能であり、Icの値を更に高めることができ、
有利である。
Example 5 Two combinations of the silver sheath wire 6, the Bi-based 2212 type oxide calcined powders 8a and 8b, and the silver sheet 7 used in Example 4 were used by stacking two sets, and were connected as shown in FIG. A sleeve-shaped silver sheath material 9 was covered on the portion and pressed from above the silver sheath material 9 to eliminate the gap at the connecting portion. This was heat-treated in the air in the pattern shown in FIG. After heat treatment,
No leakage of the liquid phase to the outside of the silver sheath material 9 was observed. Then, as shown in FIG. 8, when Ic (4.2K, 2T) of two silver sheath wire rods 6 was measured across the connecting portion, I of the silver sheath wire rod 6 of Example 4 not including the connecting portion was measured.
A value of 260 A, which is twice the value of c (= 130 A), was obtained. In this example, although the connection portion is provided at two places, the superconducting connection having three or more connection portions can be similarly performed, and the value of Ic can be further increased.
It is advantageous.

【0031】[0031]

【発明の効果】以上述べた如く本発明によれば、酸化物
超電導体同士の良好な超電導接続状態を形成できる様に
なった。従って本発明を適用すれば、超電導接続状態形
成後においても永久電流モードを達成することができ、
酸化物超電導体を様々な技術分野で利用する場合に極め
て有用である。
As described above, according to the present invention, it becomes possible to form a good superconducting connection state between oxide superconductors. Therefore, by applying the present invention, it is possible to achieve a persistent current mode even after forming the superconducting connection state,
It is extremely useful when the oxide superconductor is used in various technical fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する際の一構成例を示す模式図で
ある。
FIG. 1 is a schematic diagram showing a configuration example when implementing the present invention.

【図2】従来の接続状態を説明する為の模式図である。FIG. 2 is a schematic diagram for explaining a conventional connection state.

【図3】本発明者らが先に提案した接続状態の一例を説
明する為の模式図である。
FIG. 3 is a schematic diagram for explaining an example of a connection state previously proposed by the present inventors.

【図4】本発明者らが先に提案した接続状態の他の例を
説明する為の模式図である。
FIG. 4 is a schematic diagram for explaining another example of the connection state previously proposed by the present inventors.

【図5】熱処理のパターン例を示した図である。FIG. 5 is a diagram showing an example of a heat treatment pattern.

【図6】本発明を実施する際の一構成例を示す模式図で
ある。
FIG. 6 is a schematic diagram showing an example of the configuration for carrying out the present invention.

【図7】本発明を実施する際の他の構成例を示す模式図
である。
FIG. 7 is a schematic diagram showing another example of the configuration when carrying out the present invention.

【図8】本発明を実施する際の更に他の構成例を示す模
式図である。
FIG. 8 is a schematic diagram showing still another configuration example when implementing the present invention.

【符号の説明】[Explanation of symbols]

1 酸化物超電導体 2 酸化物超電導体粉末 3 補強材 4 接続部 5 Bi系2212型酸化物超電導体 6 銀シース線材 7 銀シート 8,8b 酸化物仮焼粉末 8a 酸化物仮焼体 9 銀シース材 DESCRIPTION OF SYMBOLS 1 oxide superconductor 2 oxide superconductor powder 3 reinforcing material 4 connection part 5 Bi type 2212 type oxide superconductor 6 silver sheath wire rod 7 silver sheet 8, 8b oxide calcined powder 8a oxide calcined body 9 silver sheath Material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 喜男 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Masuda 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Research Institute, Kobe Steel Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体同士の超電導接続状態を
形成するに当たり、Bi系2212相を主体として含有
する酸化物仮焼体の接続部領域の一部に、該仮焼体と同
一組成の酸化物仮焼粉末を介在させた状態で加熱し、前
記酸化物仮焼体および酸化物仮焼粉末を部分溶融させた
後、徐冷する工程を含むことを特徴とする酸化物超電導
体同士の超電導接続状態を形成する方法。
1. When forming a superconducting connection state between oxide superconductors, a part of a connecting portion of an oxide calcined body mainly containing a Bi-based 2212 phase has the same composition as the calcined body. Between the oxide superconductors, the method includes heating the oxide calcined powder in a state of being interposed, partially melting the oxide calcined body and the oxide calcined powder, and then gradually cooling the oxide calcined body. Method of forming a superconducting connection.
【請求項2】 接続部領域全体を銀シース材で覆う構造
にして部分溶融させる請求項1に記載の方法。
2. The method according to claim 1, wherein the entire connection area is covered with a silver sheath material and partially melted.
【請求項3】 酸化物仮焼体および酸化物仮焼粉末に銀
を添加したものを用いて行なう請求項1または2に記載
の方法。
3. The method according to claim 1, which is carried out using an oxide calcined body and an oxide calcined powder to which silver is added.
【請求項4】 請求項1〜3のいずれかに記載した接続
部を複数組重ねて行なう方法。
4. A method of stacking a plurality of sets of the connecting parts according to claim 1.
【請求項5】 徐冷の後、急冷する請求項1〜4のいず
れかに記載の方法。
5. The method according to claim 1, wherein after the slow cooling, the rapid cooling is performed.
【請求項6】 大気中で加熱する請求項1〜5のいずれ
かに記載の方法。
6. The method according to claim 1, wherein heating is performed in the atmosphere.
JP4607994A 1994-03-16 1994-03-16 Method to form superconducting connecting condition of mutual oxide superconductors Withdrawn JPH07254473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4607994A JPH07254473A (en) 1994-03-16 1994-03-16 Method to form superconducting connecting condition of mutual oxide superconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4607994A JPH07254473A (en) 1994-03-16 1994-03-16 Method to form superconducting connecting condition of mutual oxide superconductors

Publications (1)

Publication Number Publication Date
JPH07254473A true JPH07254473A (en) 1995-10-03

Family

ID=12736989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4607994A Withdrawn JPH07254473A (en) 1994-03-16 1994-03-16 Method to form superconducting connecting condition of mutual oxide superconductors

Country Status (1)

Country Link
JP (1) JPH07254473A (en)

Similar Documents

Publication Publication Date Title
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
EP0513867B1 (en) Method of manufacturing oxide superconductor
EP0634379B1 (en) Joined product of of superconductive oxide materials and its manufacture
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
EP1107324B1 (en) Method of joining oxide superconductors and superconductor members produced by same
JPH07254473A (en) Method to form superconducting connecting condition of mutual oxide superconductors
JP3218947B2 (en) Manufacturing method of oxide superconducting wire
JPH1112094A (en) Production of rare earth-barium-cuprate-based superconductor
JPH0982445A (en) Superconductive connecting method for oxide type superconductive wire
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JP3538620B2 (en) Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
Shimoyama Melt Processing Techniques: Melt Processing for BSCCO
JPH10188696A (en) Oxide superconductive wire and its connecting method
JPH05319824A (en) Production of oxide superconductor laminated body
JPH04296408A (en) Oxide superconducting wire rod and manufacture thereof
JPH06203669A (en) Manufacture of bi oxide superconductor
JPH087680A (en) Manufacture of oxide superconductive wire rod
JPH05339008A (en) Tl-pb oxide superconducting material and its production
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH06140120A (en) Superconductive connecting method for oxide superconductor
JPH0462726A (en) Manufacture of oxide superconductive wire material
JPH02229787A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605